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Abstract 

Transforming growth factor-β (TGF-β) family members exert their function via specific type 
I and type II serine/threonine kinase receptors and intracellular Smad transcription factors, 
including the common mediator Smad4. The dual effects of TGF-β signaling on tumor initia-
tion and progression are cell-specific and yet to be determined under distinct contexts. A 
number of genetically manipulated mouse models with alterations in the TGF-β pathway 
genes, particularly the pivotal Smad4, revealed that these genes play crucial functions in 
maintaining tissue homeostasis and suppressing tumorigenesis. Loss of Smad4 plays a causal 
role in initiating squamous cell carcinomas of skin and upper digestive tract as well as ade-
nocarcinomas of gastrointestinal tract. However, for some cancers like pancreatic and 
cholangiocellular carcinomas, Smad4 deficiency does not initiate the tumorigenesis but acts 
as a promoter to accelerate or synergize the development and progression of cancers that 
are started by other oncogenic pathways. Intriguingly, emerging evidences from mouse 
models have highlighted the important roles of non-cell autonomous effects of 
Smad4-mediated TGF-β signaling in the inhibition of oncogenesis. All these data have greatly 
deepened our understanding of molecular mechanisms of cell-autonomous and non-cell 
autonomous effect of Smad4-mediated TGF-β signaling in suppressing carcinogenesis, which 
may facilitate the development of successful therapies targeting TGF-β signaling for the 
treatment of human cancers.  
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Introduction 
The tumorigenesis of all human cancers can be 

divided into a series of landmarks that are required to 
be overcome by a “cancer cell.” First, the cells within 
a tissue undergo genetic or epigenetic alterations and 
acquire the potential to become malignant, whereby 
they undergo unregulated proliferation and recruit a 
blood supply, and finally, the cells invade and me-
tastasize to other sites [1]. However, this is not a very 
favorable course for oncogenic cells because in addi-
tion to known cancer defense mechanisms such as 
DNA repair, there exists a dynamic and reciprocal 
struggle between the genetically altered cells and 
their microenvironment. Malignant cells must sub-

vert the microenvironmental controls for survival; 
however, the tumor microenvironment, which in-
cludes extracellular matrix, blood vasculature, in-
flammatory cells, and fibroblasts, hinders the tumor 
development by the virtue of a network of soluble 
growth factors and cytokines within the stroma, 
which act in an autocrine and paracrine fashion. Any 
defection by the microenvironment during the anti-
cancer battle may damage the equilibrium and result 
in a spectrum of dysfunctions, including cancer [2]. 

Among the pathways involving growth factors 
that serve as the mediators of tumorigenesis, the 
transforming growth factor-β (TGF-β) signaling 
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pathway has attracted much attention [3]. TGF-β 
plays a confirmed yet complicated role in directing 
the autonomous, local, and systemic cellular re-
sponses that together regulate the initiation, progres-
sion, and prognostic outcome of human cancers [4,5]. 
Other pathways altered in human cancer might con-
tribute to the TGF-β-mediated regulation of tumori-
genesis to some extent [6-13]. Unlike fibroblast 
growth factor, insulin-like growth factor, and epithe-
lial growth factor, which mainly act as tumor pro-
moters by influencing cell proliferation, TGF-β plays 
a dual role in tumorigenesis. During initiation and 
early progression of the tumor, TGF-β serves as a 
tumor suppressor by inhibiting proliferation and ac-
celerating apoptosis, which is supported by the fact 
that loss or mutation of the members of the TGF-β 
signaling pathway in humans causes unregulated cell 
growth and eventually cancer. In late stages of tumor 
progression, elevated levels of TGF-β promote tumor 
formation by facilitating migration, invasion, angio-
genesis, and evasion of the immune system, with its 
increased production being associated with poor 
prognosis for patients [3]. However, the “dou-
ble-edged sword” of TGF-β exerts both cell-specific 
and context-dependent effects. For example, TGF-β 
not only inhibits the uncontrolled proliferation of 
epithelial, endothelial and hematopoietic cells, but 
also mediates tumor promotion predominately 
through the surrounding stroma other than the pre-
cancerous epithelial cells themselves [14]. Therefore, 
there is an urgent need to evaluate the mechanisms 
by which cell-specific and context-dependent respon-
siveness to TGF-β occurs in the fields of receptor ex-

pression, availability of downstream components, 
and establishment of crosstalk communication with 
other pathways. 

Smads are the key intracellular mediators of 
transcriptional responses to TGF-β. In mammals, the 
8 Smads are subdivided into 3 distinct classes: recep-
tor-regulated Smads (R-Smads) comprising Smads 2 
and 3 (transduce TGF-β signaling) and Smads 1, 5, 
and 8 (transduce bone morphogenetic protein (BMP) 
signaling); a common Smad called co-Smad4; and 2 
inhibitory Smads (I-Smads), namely, Smads 6 and 7 
[15]. Smad4 is the pivotal factor of the TGF-β path-
way and functions as a key tumor suppressor. The 
germline mutation of Smad4 gene causes Juvenile 
Polyposis Syndrome (JPS). Homozygous deletion or 
intragenic mutation of somatic Smad4 gene frequently 
occurs in the carcinomas of the pancreas, gastrointes-
tine, and skin. Dysregulated Smad4 expression is also 
usually found in few types of cancers [16,17]. The 
gene knockout and transgenic techniques of genetic 
manipulation have been used to generate a number of 
mouse models that faithfully recapitulate the initia-
tion and progression processes of human cancers and 
deepen our understanding of molecular mechanisms 
of cancer physiopathology. The development of a 
conditional knockout mouse bearing a floxed Smad4 
allele [18] and a spectrum of appropriate tis-
sue-specific Cre transgenic mice have been used to 
elaborate the function and the related molecular 
mechanisms of Smad4-mediated TGF-β signaling in 
maintaining tissue homeostasis and suppressing tu-
morigenesis (see Table 1). 

Table 1. Smad4-deficient mouse models that recapitulate human tumorigenesis 

Tumor type Smad4-deficient cells Phenotypic cells With combined mutations 

Smad4 complete knockout mice 

Tumors throughout the gastroin-
testinal tract  

All type of cells Gastrointestinal epithelial cells Alone [51, 53] or with Apc+/- [50, 64, 65], 
elf+/- [58-60] 

Tissue-specific Smad4 conditional knockout mice 

Tumors throughout the gastroin-
testinal tract 

T cells Gastrointestinal epithelial cells Alone [107] 

Pancreatic ductal adenocarcino-
mas 

Pancreatic progenitor cells Pancreatic ductal epithelial 
cells 

With KrasG12D [29, 31, 32] or 
KrasG12D;Ink4a/ArfCo/Co [29] 

Skin squamous cell carcinomas Keratinocytes Keratinocytes Alone [79, 80] or with PtenCo/Co [80] 
Head and neck squamous cell 
carcinoma 

Oral epithelial cells Oral epithelial cells Alone [82] 

Esophagus and forestomach 
Squamous Cell Carcinoma 

Esophageal and forestomach 
epithelial cells 

Esophageal and forestomach 
epithelial cells 

Alone or with PtenCo/Co [81] 

Cholangiocellular carcinoma Hepatocytes and bile duct 
epithelial cells 

Bile duct epithelial cells With PtenCo/Co [101] 

Breast squamous cell carcinoma Mammary epithelial cells Mammary epithelial cells Alone [102] 
Keratocystic odontogenic tumors Odontoblasts or HERS cells Odontoblasts/HERS cells or 

HERS cells 
Alone [108] 
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Cell-autonomous effect of Smad4-mediated 
TGF-β signaling in suppressing tumorigene-
sis 
Pancreatic cancer 

Genetic dysregulation of TGF-β signaling path-
way is commonly observed in pancreatic cancer [19]. 
The alternative name of human SMAD4, i.e., DPC4 
(deleted in pancreatic carcinoma, locus 4), suggests the 
close relationship of loss of this gene with pancreatic 
cancer [20]. Several evidences support the role of 
SMAD4 as a tumor suppressor gene in pancreatic 
tumorigenesis. Loss of heterozygosity (LOH) at 18q, 
where SMAD4 gene is located, occurs in 90% of pan-
creatic carcinomas [21]. Homozygous deletion or in-
tragenic inactivating mutations of SMAD4 gene as 
well as the complete loss of SMAD4 protein expres-
sion are observed in 50% ductal adenocarcinomas 
[20], 34% invasive adenocarcinoma of the Vater am-
pulla [22], and 55% endocrine pancreatic carcinomas 
[23]. The expression level of SMAD4 protein is in-
versely associated with histopathological grades of 
pancreatic cancers [24]. Loss of SMAD4 expression 
has also been postulated as the indication of pancre-
atic origin in metastatic carcinoma [19]. However, 
some studies have also suggested that compromised 
TGF-β signaling may account for the progression of 
pancreatic cancer rather than the initiation step. Res-
toration of SMAD4 in a variety of SMAD4-null pan-
creatic tumor cell lines did not affect proliferation but 
inhibited pancreatic tumor invasion and angiogenesis 
[25]. However, the role of Smad4-mediated TGF-β 
signaling in pancreatic cancer progression and me-
tastasis is controversial. For instance, high expression 
of TGF-β isoforms in human pancreatic ductal ade-
nocarcinoma tissues correlates with the poor progno-
sis [26]. Patients expressing SMAD4 unexpectedly 
exhibit significantly worse outcomes and did not 
benefit from surgery [27]. One study showed that 
cells expressing SMAD4 showed an enhanced 
TGF-β-mediated epithelial-to-mesenchymal transi-
tion (EMT) [28,29]. These instances highlighted the 
tumor promoting role of SMAD4 in pancreatic car-
cinogenesis. 

Recently, the dual role of Smad4 was established 
in a cohort of mouse models of human pancreatic 
cancer. Selective Smad4 or TGF-β type II receptor 
(Tgfbr2) deletion in pancreatic epithelium had no de-
tectable effect on pancreatic development or physi-
ology, indicating an inculpable role of Smad4 defi-
ciency in initiating pancreatic tumorigenesis. How-
ever, when combined with activated Kras expression 
in mice, Smad4 haploinsufficiency, loss of Smad4 or 

loss of Tgfbr2 accelerated the progression of 
Kras-initiated neoplasms to high-grade tumors. These 
in vivo results favor the conclusion that Smad4 medi-
ates the tumor inhibitory action of TGF-β signaling, 
predominantly at the progressive stage of tumori-
genesis [29-31]. Smad4 deficiency also markedly in-
duces the development of tumors into adenocarci-
nomas in the event of Ink4a/Arf loss and Kras activa-
tion. Interestingly, however, the adenocarcinomas in 
Pdx1-Cre;KrasG12D;Smad4Co/Co;Ink4a/ArfCo/Co and 
Pdx1-Cre;KrasG12D;Smad4Co/Co;Ink4a/ArfCo/+ mice exhib-
ited greatly reduced proportion of sarcomatoid his-
tology which is commonly presented in those of 
Pdx1-Cre;KrasG12D;Ink4a/ArfCo/Co and 
Pdx1-Cre;KrasG12D;Ink4a/ArfCo/+ mice, while maintain-
ing a differentiated histopathology [29,32]. This find-
ing validates the observations that intact Smad4 fa-
cilitates EMT and TGF-β-dependent metastasis in 
human pancreatic cancers [33,34]. Although the 
above studies have not addressed the conundrum of 
the Smad4 switch from a tumor-suppressive to a tu-
mor-promotion pathway in pancreatic cancer, 
Smad4-dependent inhibition of β-catenin degradation 
[35] and the activation of signal transducers and acti-
vators of transcription 3 (Stat3) [28] as well as the ef-
fects of stromal fibroblasts [36-38] may be involved. 
These experimental elaborations are regarded as a 
perfect paradigm in which molecular mechanisms of 
physiopathology in human diseases and mice models 
are reciprocally validated. 
Gastroenterological tumor 

Alimentary canal epithelial tumors with aber-
rant TGF-β signaling usually emerge as part of the 
JPS or in the form of sporadic gastric, intestinal, and 
colorectal adenocarcinomas [39-42]. LOH at 18q, ho-
mozygous deletion or intragenic mutations of 
SMAD4 gene [3,16] as well as promoter hypermethy-
lation [43,44] are widely observed in sporadic gas-
troenterological tumors. JPS is a rare autosomal 
dominant disorder characterized by a predisposition 
to hamartomatous polyps and cancers of the gastro-
intestinal and colorectal tract. This syndrome is 
caused by germline mutation of either SMAD4 
(15%–20%) or bone morphogenetic protein receptor type 
IA (BMPR1A) (20%–25%) [17,45-49]. Supporting evi-
dence for SMAD4 haploinsufficiency in tumor initia-
tion and progression is provided by studies on het-
erozygous Smad4+/- mice. Gastric, duodenal, and 
colonic polyps morphologically resembling those of 
human juvenile polypsosis develop in all aged 
Smad4+/- heterozygous mice. LOH and malignant 
transformation are frequently observed at later stages 
of Smad4+/- tumors [50-53]. Until recently, by using a 
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Sleeping Beauty system to generate transposon-based 
insertional mutations in the gastrointestinal epithe-
lium of mice, Starr and his colleagues have generated 
mouse mutants by phenocopying the initiation and 
progression of human gastrointestinal tumors, and 
identified driver genes including adenomatous poly-
posis coli (Apc), phosphatase and tensin homolog deleted on 
chromosome 10 (Pten), Bmpr1a, and Smad4 [54].  

Lines of evidence indicate that SMAD4 defi-
ciency not only initiates gastroenterological carcino-
genesis, but also functions during progression to-
wards malignancy that commonly requires the com-
promise of other tumor suppressor pathways. Em-
bryonic liver fodrin (ELF) is a crucial adaptor protein 
in TGF-β signaling and is required for Smad3 and 
Smad4 localization and signaling. Significant loss of 
ELF expression is often coupled with reduced 
SMAD4 expression in human gastric and colonic 
cancer tissues [55-57]. Similarly, a spectrum of 
early-onset gastrointestinal tumors ranging from oral 
to colonic linage develops in elf+/-;Smad4+/- mutant 
mice, indicating a synergistic role of ELF and Smad4 
in tumor suppression [58-60]. APC is a member of the 
WNT signaling pathway and the most commonly 
mutated gene in human colorectal cancer [61-63].  
The in cis compound Apc+/-;Smad4+/- gastrointestinal 
polyps develop into more malignant tumors as com-
pared to the tumors in the simple Smad4+/ or Apc+/- 
heterozygotes [50,64]. Further studies indicated that 
the loss of Smad4-mediated TGF-β signaling in tumor 
epithelial cells induced the accumulation of immature 
myeloid cells through a CCL9/CCR1 chemotactic 
loop that promote tumor invasion [65]. 

Recently, multipotent intestinal stem cells that 
generate the entire epithelial structure are found to be 
located at the specific site of villus, and are likely to 
play the role of “cancer stem cells” during tumori-
genesis [66-71]. Since BMP signaling plays an impor-
tant role in the stem cell renewal function [72,73], it is 
of great importance to dissect the contribution of in-
testinal stem cell-specific TGF-β signaling pathway to 
the gastrointestinal carcinogenesis. 
Squamous cell carcinomas in the skin and upper 
digestive tract 

The epidermis of the skin, the mucosa of the oral 
cavity and esophagus comprise most of the stratified 
squamous epithelia of the body, and they share 
common ground on aspects of tissue genesis, differ-
entiation and even oncogenic transformation. TGF-β 
is an important regulator of squamous epithelial cell 
development and the maintenance of tissue homeo-
stasis. The biphasic role of TGF-β as both a tu-
mor-suppressor and a tumor-promoter has been 

validated in mouse model overexpressing TGF-β1 in 
keratinocytes [74]. However, a majority of in vivo 
evidences have supported the concept that TGF-β 
signaling is primarily a tumor-suppression pathway 
with growth inhibitory effects. Keratinocytic Smad4 
is the major transducer of TGF-β and BMP signaling, 
both of which exert their unique influences on epi-
dermal biology [75-77]. In human skin squamous cell 
carcinomas, 57% samples exhibited LOH at the 
SMAD4 locus. The incidence of loss of SMAD4 ex-
pression was high, particularly in poorly differenti-
ated skin carcinomas [78]. Keratinocyte-specific loss 
of Smad4 in mice resulted in spontaneous skin tumor 
formation at as early as 5 months of age, indicating 
that Smad4 deficiency initiated squamous cell carci-
noma formation. Notably, Smad4 has been shown to 
interact with the PTEN/Akt signaling pathway to 
repress skin tumor formation [79,80]. The synergistic 
role of Smad4 with PTEN in suppressing epidermal 
and esophageal tumorigenesis has further been con-
firmed in keratinocyte-specific 
K5-Cre;Smad4Co/Co;PtenCo/Co mice. Smad4 and PTEN 
have been shown to suppress esophageal tumori-
genesis through the cooperative induction of cell cy-
cle inhibitors [81]. On the other hand, enhanced 
Smad4 binding to the Snail promoter likely contrib-
utes to Smad2 loss–associated Snail activation and 
EMT during skin carcinogenesis [78]. A very recent 
study has revealed the casual role of Smad4 loss in 
head and neck squamous cell carcinoma (HNSCC) 
development and progression. In either human 
HNSCC or mouse models in which Smad4 was spe-
cifically deleted in the upper digestive tract, Smad4 
downregulation occurred at the stage prior to tumor 
formation. Further analyses suggest that Smad4 loss 
causes HNSCC formation and invasion which is 
largely due to defects in the Fanconi anemia/Brca 
DNA repair pathway, increased genomic instability 
and inflammation [82]. 

A number of studies have recently identified 
follicle stem cells that reside in a quiescent niche and 
can give rise to all skin epithelial lineages [83-85]. Our 
latest work has implicated that loss of Smad4 induces 
hyperactivation of follicle stem cells which is associ-
ated with skin squamous cell carcinoma formation in 
mice, and eventually results in the depletion of folli-
cle stem cells, thereby indicating that Smad4 plays a 
pivotal role in follicle stem cell maintenance [86]. In-
creasing evidences suggest that the harmonization of 
TGF-β/BMP signaling with other pathways, includ-
ing Sonic hedgehog, Wnt, Notch, and Akt signaling 
pathways is required for achieving balanced 
self-renewal and activation of multipotent follicle 
stem cells [86-93]. 
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Other cancers 

Cancers of the breast, liver, and prostate are 
among the most prevalent human cancers. However, 
the role of TGF-β signaling in the initiation and pro-
gression of these diseases is not as explicit as in pan-
creatic and colorectal cancers. Investigators have re-
ported infrequent alteration of the SMAD4 gene or its 
protein product in these cancers. For example, the 
LOH of 18q have been reported in these cancers, but 
SMAD4 did not appear to be the target of inactivation 
[94]. Intragenic mutations of SMAD4 were also rarely 
observed, particularly in liver and prostate cancers 
[95-99]. Most prostate cancers become resistant to the 
antiproliferative effects of TGF-β without defined 
mutations or deletions of the members of the Smad 
signaling pathway [100]. Tissue-specific ablation of 
Smad4 in hepatocytes and bile duct epithelial cells 
causes neither discernable defects on liver develop-
ment nor tumor formation [101]. Smad4 deletion in 
mammary epithelium gradually induced 
well-differentiated squamous cell carcinomas in all 
the mutant mice but with a long latency, and en-
hanced canonical Wnt signaling likely contributes to 
Smad4 loss–associated epithelial transdifferentiation 
during carcinogenesis [102]. These data revealed that, 
at least in prostatic epithelium and hepatocytes, the 
absence of Smad4 alone cannot drive the initiation of 
tumorigenesis, but may require the participation of 
other cancer-related genes, for example, a combined 
loss with Pten [101]. 

Non-cell autonomous effect of 
Smad4-mediated TGF-β signaling in sup-
pressing tumorigenesis 

The reasons for non-phenotype of some tis-
sue-specific Smad4 knockout mice are unclear, but 
may be interpreted as an outcome in which the ma-
lignant phenotype is held in check by the appropriate 
microenvironment [2]. In addition to genetically 
damaged cells, tumorigenesis is induced by an in situ 
tumor-favoring microenvironment normally com-
prising a complicated network of signals derived 
from many cell types.  

It is being increasingly recognized that the 
neighboring cells in the microenvironment of the tu-
mor may be the source of mutation, and thus the 
original cause of the tumor [14]. Compelling evi-
dences have been derived from stromal cell-specific 
knockout mouse models. Conditional inactivation of 
the Tgfbr2 gene in mouse fibroblasts unexpectedly 
resulted in intraepithelial neoplasia in the prostate 
and invasive squamous cell carcinoma of the fores-
tomach, and both were associated with an increased 

abundance of stromal cells [103]. These 
Tgfbr2-deficient fibroblasts also promoted growth and 
invasion of co-transplanted mammary carcinoma 
cells [104,105]. Disruption of TGF-β signalling in T 
cells through transgenic expression of a dominant 
negative Tgfbr2 was shown to accelerate dextran sul-
fate sodium/azoxymethane-induced colon carcino-
genesis [106]. A convincing study reveals that 
Smad4-mediated TGF-β signaling exerts a non-cell 
autonomous effect in tumorigenesis. Selective loss of 
Smad4-dependent TGF-β signaling in mouse T cells 
results in spontaneous epithelial cancers throughout 
the gastrointestinal tract, while no tumorigenesis is 
observed in 2 mouse models with the deletion of the 
Smad4 gene restricted to the epithelial lineage. In ad-
dition, all heterozygotes of conditional mice showed a 
haploinsufficiency for Smad4 in T cell lineage during 
tumorigenesis, supporting the hypothesis that a 
compromised TGF-β signaling in T cell contributes to 
the etiology of human FJP [107]. Our recent study has 
also suggested that epithelial tumorigenesis could 
largely be accounted to the wrong message sent by 
neighboring mesenchymal cells. Human keratocystic 
odontogenic tumors (KCOT) are benign uni- or mul-
ticystic intraosseous tumours of odontogenic origin 
with a high recurrence rate as well as a potential for 
aggressive behavior. Human KCOT usually harbor 
PTCH1 or PTCH2 mutations in the tumor squamous 
epithelium. However, odontoblast-specific Smad4 
knockout mice surprisingly exhibited 100% pene-
trance of odontogenic keratocysts resembling human 
KCOTs. The integrity of Smad4 remains unchanged 
within the KCOT entities. Further analysis revealed 
that the deletion of Smad4 in odontoblasts, which 
changed the fate of odontoblasts, could also alter the 
fate of the neighboring Hertwig’s epithelial root 
sheath (HERS) and epithelial rests of Malassez 
(ERM), which are genetically normal, thus leading to 
the formation of KCOT [108]. In these knockout mod-
els, tumor-promotion effects are mediated by the al-
teration of paracrine signals released by genetically 
manipulated cells into the microenvironment. Re-
duced expression of BMPs by Smad4-deficient odon-
toblasts may account for the ceaseless expansion of 
ERMs. Similarly, KCOTs that emerge from 
Smad4-deficient ERMs, which fail to receive 
TGF-β/BMP signals from odontoblasts, are fre-
quently observed in the keratinocyte-specific Smad4 
knockout mice [108]. Therefore, the aforementioned 
mouse models have introduced a heuristic notion that 
in addition to the accumulation of somatic mutations 
in epithelial cells, genetic defects in stromal cells also 
contribute considerably to the development of 
epithelial tumors. 
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Conclusion and perspective 
In vivo studies have revealed important physio-

logical functions of Smad4-mediated TGF-β signaling 
in suppressing tumorigenesis via either 
cell-autonomous or non-cell autonomous mechanism. 
However, different experiments have apparently 
conflicting conclusions. These may largely be due to 
the fact that TGF-β has numerous and opposite ef-
fects on cells and the surrounding microenvironment; 
Smad4-mediated cellular responses to TGF-β signal-
ing vary with extracellular matrix, ligand concentra-
tion, and cell type specific cofactors at different de-
velopmental stages. Investigating new components 
that could modify the Smad4-mediated TGF-β path-
ways and new targets that participate in the con-
text-dependent effects of TGF-β signaling constitute 
the next step of the challenge. Increasing data have 
implicated that micro RNAs (miRNAs) play roles in 
TGF-β/Smad-pathway-induced tumor-suppressive 
effects [109,110]. Undoubtedly, miRNAs will be re-
ceiving more attention as the components of the 
TGF-β signaling pathway, and these might facilitate 
comprehensive understanding of the mechanisms 
underlying the function of TGF-β signaling in the 
suppression of tumorigenesis. Better understanding 
of the precise mechanisms that enable TGF-β and 
their downstream effectors to function in different 
cell types may facilitate the development of success-
ful therapies targeting TGF-β signaling in the fight 
against cancers. 
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