1 Supplementary Materials

2

Colchicine Blocks Abdominal Aortic Aneurysm Development by Maintaining Vascular Smooth Muscle Cell Homeostasis

Min Chen,¹* Dafeng Yang,²* Yangzhao Zhou,² Chongzhe Yang,³ Wenhui Lin,¹ Jie Li,¹ Jitao Liu,¹
Jiamin Ye,¹ Yuan Liu,¹ Wenhui Huang,¹ Wentao Ma,¹ Wei Li,⁴ Jiyan Chen,¹ Ying Zhang,¹ GuoPing Shi,⁵ Jianfang Luo,^{1†} Jie Li,^{3†} Songyuan Luo^{6, 7†}

- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key
 Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital,
 Southern Medical University, Guangzhou, China
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- 3) Department of Geriatrics, National Key Clinic Specialty, Guangzhou First People's Hospital,
 School of Medicine, South China University of Technology, Guangzhou, China
- Department of Cardiology, Guangdong Provincial People's Hospital Zhuhai Hospital, Zhuhai,
 China
- 19 5) Department of Medicine, Brigham and Women's Hospital and Harvard Medical School,
 20 Boston, Massachusetts, USA
- 21 6) Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key
 22 Laboratory of Hypertension, Guangdong Provincial People's Hospital, Southern Medical
 23 University, Guangzhou, China
- 24 7) Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital,
 25 Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
 26
- 27 *These authors contributed equally to this work.

 $CD31^+$ microvessel numbers. H) Immunofluorescent staining of α -SMA (green) and TUNEL

- 34 (red) to detect lesion media SMC apoptosis and adventitia apoptotic cells. Arrows indicate
 35 TUNEL-positive cells. I) Immunofluorescent staining of α-SMA (green) and Ki67 (red) to detect
- TUNEL-positive cells. I) Immunofluorescent staining of α-SMA (green) and Ki67 (red) to detect
 lesion media proliferating SMCs and adventitial proliferating cells. Arrows indicate Ki67-positive
- lesion media proliferating SMCs and adventitial proliferating cells. Arrows indicate Ki67-positive
 proliferated cells. All representative images are shown to the left. Scale: 100 µm (**D**-**G**) and 200
- μ m (**H**, **I**). Data are mean ± SEM, n=11-15 per group. *P<0.05, **P<0.01, ***P<0.001,
- *****P*<0.0001, χ^2 test (**A**), long-rank test (**B**), or Student's *t* test (**C-I**).

43

44

45

46

47

Figure S2. Colchicine increases KLF4 expression, but decreases VCAM-1 expression in endothelial cells of AAA lesion. Immunofluorescent staining of CD31 (green) and VCAM-1 (red) (A) or KLF4 (red) (B) to detect endothelial VCAM-1 or KLF4 expression in peri-aortic CaPO₄ injury-induced AAA lesions. Immunofluorescent staining of CD31 (green) and VCAM-1 (red) (C) or KLF4 (red) (D) to detect endothelial VCAM-1 or KLF4 expression in subcutaneous Ang-II infusion-induced AAA lesions. Immunofluorescent staining of CD31 (green) and VCAM-1 (red)

48 (E) or KLF4 (red) (F) to detect endothelial VCAM-1 or KLF4 expression in control siRNA or si-49 SOST treated AAA lesions induced by peri-aortic CaPO₄ injury. Arrows indicate VCAM-1 or 50 KLF4 positive endothelial cells. All representative images are shown to the left. Scale: 100 µm 51 (A-F). Data are mean \pm SEM, n=8-15 per group. *P<0.05, **P<0.01, ***P<0.001, Student's t test (A-F).

52 53

Figure S3. Colchicine does not affect body weight gain, systolic and diastolic blood pressure in 56 Ang-II infusion mice. A) Body weight gain before and after AAA induction. B) Systolic blood 57 pressure before and after AAA induction. C) Diastolic blood pressure before and after AAA

- 58 induction. Data are mean \pm SEM, n=11-15 per group.
- 59

61 Figure S4. Colchicine does not affect lipid metabolism, liver and kidney function in CaPO₄-62 injure- and Ang-II infusion-induced AAA in mice. A) ELISA analysis of plasma total cholesterol 63 (TCHO), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c) and low-density 64 lipoprotein cholesterol (LDL-c) levels in Ang-II infusion-induced AAA mice received saline or 65 colchicine. B/C) ELISA analysis of plasma aspartate aminotransferase (AST), alanine 66 aminotransferase (ALT) and creatinine (Cr) levels in CaPO₄ injury-induced (B) or Ang-II 67 infusion-induced (C) AAA mice received saline or colchicine. Data are mean \pm SEM, n=11-15 68 per group.

69

Figure S5. Colchicine does not influence neutrophil activation, but increases lesion vascular

72 SMC tubulin depolymerization in Ang-II infusion-induced AAA mice. A) ELISA analysis of

73 plasma NET levels from saline and colchicine-treated mice. **B**) Immunofluorescent staining of 74 Lv6G (green) and α -tubulin (red) to detect lesion neutrophil accumulation and tubulin

- Ly6G (green) and α-tubulin (red) to detect lesion neutrophil accumulation and tubulin
 depolymerization. Arrows indicate Ly6G-positive neutrophils. C) ELISA analysis of plasma GDF
- 75 depositive neurophils. C) ELISA analysis of plasma GDF 76 15 levels from saline and colchicine-treated mice. D) Immunofluorescent staining of α -SMA
- 77 (green) and α -tubulin (red) to detect tubulin depolymerization in vascular SMCs. Arrows indicate
- 78 a-SMA-positive SMCs. E) Immunofluorescent staining of CD68 (green) and a-tubulin (red) to

79 detect tubulin depolymerization in macrophages. Arrows indicate CD68-positive macrophages.

80 Scale in B/D/E: $100 \,\mu\text{m}$, inset: 25 μm . Data are mean \pm SEM, n=11-15 mice per group. *P<0.05,

81 ***P*<0.01, Student's *t* test.

Figure S6. Colchicine does not affect AAA lesion P-selectin and L-selection expression in

- CaPO₄-injury- and Ang-II infusion-induced AAA lesions. A/B) RT-PCR analysis of AAA lesion
 P-selectin and L-selectin expression from CaPO₄-injury-induced AAA (A) or Ang-II infusioninduced AAA (B) in mice treated with saline or colchicine. Data are mean ± SEM, n=11-15 mice
 per group.
- 88

89 90

Figure S7. Colchicine inhibits lesion SMC phenotypic switching in Ang-II infusion-induced
mouse AAA lesions. A) Immunofluorescent staining of media α-SMA (green) and TAGLN (red)
double positive SMCs (arrows). B) Immunofluorescent staining of media α-SMA (green) and
KLF4 (red) double positive SMCs (arrows). C) Immunofluorescent staining of media α-SMA
(green) and CD68 (red) double positive SMCs (arrows). Representative images are shown to the

- 95 left (A-C), Scale: 100 μ m. D) ELISA analysis of plasma TNF- α , IL-1 β and IL-6 from saline and
- 96 colchicine-treated mice. E) Real-time PCR analysis of lesion ACTA2, TAGLN, MYOCD,
- 97 MYH11, CNN1, KLF4, MMP2, MMP9, IL-6 TNF-α and IL-1β from saline and colchicine-
- 98 treated mice. Data are mean \pm SEM, n=11-15 per group. ***P*<0.01, ****P*<0.001, *****P*<0.0001,
- 99 Student's *t* test.

Figure S8. Colchicine maintains lesion SMC homeostasis before SMC apoptosis in Ang-II infusion-induced AAA mice at day 7. A) Body weight gain before and after AAA induction. B) Systolic and diastolic blood pressure before and after AAA induction. C-F) Immunofluorescent staining of media α -SMA (green) and TAGLN (red) double positive SMCs (arrows) (C), α -SMA (green) and KLF4 (red) double positive SMCs (arrows) (**D**), α-SMA (green) and CD68 (red) double positive SMCs (arrows) (E), and α-SMA (green) and TUNEL (red) double positive SMCs (arrows) (F). Representative images are shown to the left (C-F). Scale: 200 μm. Inset: 100 μm. Data are mean \pm SEM, n=5 mice per group. *P<0.05, **P<0.01, ***P<0.001, Student's t test.

113 114 Figure S9. Colchicine inhibits β-catenin nuclear translocation in lesion SMCs from Ang-II

infusion-induced AAA. Immunofluorescent staining of media α -SMA (green) and β -catenin (red)

- 116 double positive SMCs. Representative images are shown to the left. Arrows indicate β-catenin
- 117 accumulated in the nuclear of media α -SMA-positive SMCs. Scale: 100 μ m. Data are mean \pm
- 118 SEM, n=11-15 mice per group. ****P<0.0001, Student's *t* test.
- 119

1 Figure S10. Colchicine increases SOST expression in SMCs. A) Immunoblot analysis of SOST

in AAA lesions from saline and colchicine-treated peri-aortic CaPO₄-injured mice, n=8 per group.

- **B)** Human aortic SMCs were treated with PDGF-BB (20 ng/ml) with or without colchicine (1
- nM) for 24 hours and harvested for immunoblot analysis of SOST, n=4. C) Immunofluorescent
- 125 staining of α -SMA (green) and SOST (red) in AAA lesions from saline- and colchicine-treated
- 126 CaPO₄-injured mice. Scale: 100 μ m. Arrows indicate α -SMA positive SMCs, n=12 per group.
- 127 Data are mean \pm SEM. ***P*<0.01, ****P*<0.001, *****P*<0.0001, Student's *t* test (A and C) or two-
- 128 way ANOVA followed by Bonferroni post hoc test (**B**).
- 129

- 130
- **Figure S11.** The efficiency of SOST knockdown in pluronic F-127 gel transplanted AAA lesions.
- 132 RT-PCR analysis of lesion SOST expression. Data are mean \pm SEM, n=8 per group. ***P*<0.01,
- 133 Student's *t* test.
- 134
- 135

Figure S12. Knockdown of SOST abrogates the protective effects of colchicine on cultured human aortic SMCs in response to PDGF-BB stimulation-induced phenotypic switching. Human aortic SMCs were transfected with 100 nM of SOST siRNA (Si-SOST) or control siRNA (Si-NC) for 24 hours then treated with PDGF-BB (20 ng/ml) or PDGF-BB together with colchicine (1

- nM) for another 24 hours and harvested for immunoblot analysis of SOST, β -catenin, p-GSK3 β ,
- GSK3 β , TAGLN, α -SMA, KLF4, and CD68. Data are mean \pm SEM, n=4. *P<0.05, **P<0.01,
- ***P<0.001, ****P<0.0001, two-way ANOVA followed by Bonferroni post hoc test.

147

Figure S13. Colchicine inhibits AAA lesion m6A methylation in Ang-II infusion-induced AAA in mice. A) Immunostaining of AAA lesion m6A methylation. Scale: 100µm. B) Dot blot analysis of m6A methylation in AAA lesions. MB, Methylene blue staining. C) Immunofluorescent staining of α -SMA (green) and METTL14 (red) to detect METTL14 expression in lesion media SMCs. Scale: 100 μ m. Arrows indicate α -SMA and METTL14 double positive cells. Data are mean \pm SEM, n=11-15 mice per group. ***P<0.001, ****P<0.0001, Student's t test.

Figure S14. Proposed mechanism of colchicine activity in preventing AAA development via maintaining vascular SMC homeostasis.

Supplementary Table S1. Primers for MeRIP qPCR.

Ipplementary Gene name Iman-SOST Iman-YTHDC1	Fable S2. Primers for RT-PCR.	
Gene name Juman-SOST Juman-YTHDC1	Forward	
Iuman-SOST Iuman-YTHDC1	FULWARD	Reverse
Iuman-YTHDC1	ACACAGCCTTCCGTGTAGTG	GGTTCATGGTCTTGTTGTTGTTCTCC
	AACTGGTTTCTAAGCCACTGAGC	GGAGGCACTACTTGATAGACGA
luman-GAPDH	GGAGCGAGATCCCTCCAAAAT	GGCTGTTGTCATACTTCTCATGC
/mu-ACTA2	GTCCCAGACATCAGGGAGTAA	TCGGATACTTCAGCGTCAGGA
/mu-CNN1	TCTGCACATTTTAACCGAGGTC	GCCAGCTTGTTCTTTACTTCAG
Amu-KLF4	GIGUCUGACIAAUCGIIG	GIUGIIGAAUICUICGGIUI
	GATGGGCTCTCTCCAGATCAG	GGCTGCATCATTCTTGTCACTT
/mu-MMP2	CAAGTTCCCCGGCGATGTC	TTCTGGTCAAGGTCACCTGTC
1mu-MMP9	CTGGACAGCCAGACACTAAAG	CTCGCGGCAAGTCTTCAGAG
/mu-L-Selectin	TACATTGCCCAAAAGCCCTTAT	CATCGTTCCATTTCCCAGAGTC
Imu-P-Selectin	GAAAGGGCTGATTGTGACCCC	AGTAGTTCCGCACTGGGTACA
/mu-TAGLN	CAACAAGGGTCCATCCTACGG	ATCTGGGCGGCCTACATCA
Amu-TNF-α		GCIACGACGIGGGCIACAG
/Imu-IL-Ip /mu-IL-6		TTGGTCCTTAGCCACTCCTTC
Amu-β-actin	GGCTGTATTCCCCTCCATCG	CCAGTTGGTAACAATGCCATGT
Supplementary 7	Fable S3. Baseline characteristics of	bealthy donor subjects and AA
Supplementary 7	Sable S3. Baseline characteristics of	healthy donor subjects and AA.
Supplementary	State State Age 65	healthy donor subjects and AA
Supplementary	Age 65 62	healthy donor subjects and AA Sex Female
Supplementary T Healthy donor-1 Healthy donor-2	Age 65 63	healthy donor subjects and AA. Sex Female Male
Supplementary Healthy donor-1 Healthy donor-2 Healthy donor-3	Age 65 63 59	healthy donor subjects and AA. Sex Female Male Male
Supplementary Healthy donor-1 Healthy donor-2 Healthy donor-3 AAA Patient-1	Age 65 63 59 66	healthy donor subjects and AA. Sex Female Male Male Male
Supplementary T Healthy donor-1 Healthy donor-2 Healthy donor-3 AAA Patient-1 AAA Patient-2	Fable S3. Baseline characteristics of Age 65 63 59 66 69	healthy donor subjects and AA. Sex Female Male Male Male Male Male
Supplementary T Healthy donor-1 Healthy donor-2 Healthy donor-3 AAA Patient-1 AAA Patient-2 AAA Patient-3	Age656359666973	healthy donor subjects and AA Sex Female Male Male Male Male Female
Supplementary 7 Healthy donor-1 Healthy donor-2 Healthy donor-3 AAA Patient-1 AAA Patient-2 AAA Patient-3 AAA Patient-4	Age65635966697368	healthy donor subjects and AA Sex Female Male Male Male Male Female Male Female Male
Supplementary 7 Healthy donor-1 Healthy donor-2 Healthy donor-3 AAA Patient-1 AAA Patient-2 AAA Patient-3 AAA Patient-4 AAA Patient-5	Age 65 63 59 66 69 73 68 69	healthy donor subjects and AA Sex Female Male Male Male Male Female Male Female Female
Supplementary T Healthy donor-1 Healthy donor-2 Healthy donor-3 AAA Patient-1 AAA Patient-2 AAA Patient-3 AAA Patient-4	Age 65 63 59 66 69 73 68	healthy donor subjects and AA Sex Female Male Male Male Male Female Male

Supplementary Table S4. Baseline characteristics of control subjects and AAA patients.

	Control subjects	AAA patients	
Characteristics	(n=36)	(n=36)	P value
Age, (year)	71.9±8.5	70.4±6.7	0.074
Male sex, no. (%)	30 (83.3)	29 (80.6)	0.761
Body Mass Index (kg/m ²)	24.42±6.19	23.61±2.93	0.100
SBP (mmHg)	148 ± 14	148±15	0.970
DBP (mmHg)	85±8	85±10	0.178
Current smoking, no. (%)	16 (44.4)	18 (50.0)	0.639
Hypertension, no. (%)	20 (55.6)	25 (69.4)	0.227
Diabetes, no. (%)	8 (22.2)	4 (11.1)	0.209
PAD, no. (%)	8 (22.2)	4 (11.1)	0.209
History of stoke, no. (%)	1 (2.8)	5 (13.9)	0.09
Stain, no. (%)	11 (30.6)	14 (39.8)	0.461
Renin-angiotensin inhibitor, no. (%)	32(88.9)	29 (80.6)	0.329
Antithrombotic agent or anticoagulant	, 36 (100.0)	36 (100)	1.000
no. (%)			
Beta blockers, no. (%)	36 (100.0)	35 (97.2)	0.317

Values are mean ± SEM or number (percentage). SBP, systolic blood pressure; DBP, diastolic

blood pressure; PAD, peripheral arterial disease. Statistical analyses were performed using Student's *t* test (age, body mass index, SBP, DBP) or χ^2 test (sex, smoking and hypertension). 205