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AAbbssttrraacctt  Contiguous 14,535 and 14,536 nt near complete mitochondrial genome 
sequences respectively were obtained for Ostrinia nubilalis and Ostrinia 
furnicalis.  Mitochondrial gene order was identical to that observed from 
Bombyx.  Sequences comparatively showed 186 substitutions (1.3% sequence 
divergence), 170 CDS substitutions (131 at 3rd codon positions), and an excess 
of transition mutation likely resulting by purifying selection (dN/dS = ω ≅ 
0.15).  Overall substitution rates were significantly higher at 4-fold (5.2%) 
compared to 2-fold degenerate codons (2.6%).  These are the 3rd and 4th 
lepidopteran mitochondrial genome reference sequences in GenBank and 
useful for comparative mitochondrial studies. 
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1. Introduction 
Mitochondrial genomes of 16 insect species are completely sequenced and published with a majority from 

the order Diptera; D. yakuba [1], Ades gambiae [2], Anopheles quadrimaculatus [3], D. melanogaster [4], 
Ceratitis capitata [5], Cochliomiyia hominivorax [6], D. simulins [7], and Bactrocera oleae [8].  Complete 
sequences also have been published from a hymenopteran, Apis mellifera [9], an orthopteran, Locusta migratoria 
[10], a phthirapteran H. macropus [11], thysanuran, T. inaginis [12], a hemipteran Triatoma  dimidiata [13], 
coleopteran Crioceris duodecipunctata [14], and lepidopterans Bombyx mori and B. mandarina [15]. 

Larvae from corn borer species Ostrinia nubilalis and Ostrinia furnicalis (Lepidoptera: Crambidae) are pests 
of agricultural crop plants and cause major crop production losses [16, 17].  Ostrinia nubilalis and O. furnicalis 
are sister species [18, 19], with difference residing in female O. nubilalis and O. furnicalis emission of E- and Z- 
stereoisomers of ∆11- [20], and ∆12-tetradecenyl acetates [21], respectively.  The pheromone binding protein 
gene sequences showed little nucleotide variance between O. nubilalis and O. furnicalis [22], and 7 allozyme 
markers indicated a high similarity between Chinese populations of O. nubilalis and O. furnicalis suggesting 
recent speciation [18].  Similarly, mitochondrial cytochrome c oxidase subunit II (coxI) gene alignment estimated 
1.63% interspecies divergence [19].  The present study compares GenBank annotated mitochondrial genomes 
from O. nubilalis (accession AF442957) and O. furnicalis (AF467260). 
2. Materials and methods 
2.1 Samples and amplification 

A single bivoltine female Z-pheromone race O. nubilalis adult was collected from the Iowa State University 
Uthe Farm, Ames, Iowa, USA.  One adult multivoltine O. furnicalis female of indeterminate pheromone 
composition collected from Hengshui, Hebei Province, China was contributed by Dr. Wang Zhen-ying, Institute 
of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.  DNA extractions used Qiagen 
DNeasy kits (Qiagen, Valencia, CA). 

Primers combinations TY-J-1460 with TK-N-3785, J-11545 with N-12854, and N1-J-12585 with SR-N-
14588 [23] were used to PCR amplify fragments 2, 9, and 10 (Fig. 1).  Bombyx mori (GenBank:AF149768 and 
AY048187) and D. yakuba (GenBank: MIDYRRN) [1] mitochondrial genomes were aligned using AlignX 
software (Informax, San Francisco, CA) to identify regions of sequence similarity, from which regions PCR 
primers were designed to amplify remaining fragments using Primer3 [24].  All PCR reactions were performed in 
a 50 µl volume with 1.7 U of Tli polymerase (Promega Corp., Madison, WI), 100 ng of DNA, 5 µl 10X thermal 
polymerase buffer (Promega), 2.5 mM MgCl2, 200 µM dNTPs, and 20 pmol of each primer.  Fragments 1, and 3 
to 8 were amplified on a PTC-100 thermocycler (MJ Research, Watertown, MA) with denaturation at 95°C for 2 
m, followed by 40 cycles at 94°C for 30 s, 50 to 54 °C for 40 s, a 2.5 °C/s ramp for +15 °C, and 70 °C for 1.5 to 3 
m depending on fragment length.  Fragments 2, 9, and 10 were amplified by denaturing template at 95°C for 2 m, 
followed by 40 cycles at 94°C for 30 s, 44 °C for 1 m, a 2.0 °C/s ramp for +23 °C, and 70 °C for 3 m. 
2.2 DNA sequence and analysis 

PCR reaction products for fragments 1 to 10 were purified using Qiaquick PCR purification columns 
(Qiagen), and diluted to 2.5ng/µl/100 bp of product length.  Sequencing was performed in duplicate at the DNA 
sequencing core facility at Iowa State University, Ames, IA.  Overlapping fragments were assembled into a single 
contiguous sequence using Contig Express software (Informax).  Ostrinia nubilalis and O. furnicalis 
mitochondrial genome sequences were aligned with B. mori (GenBank AF149768, and GenBank AY048187) 
using AlignX software (Informax), and gene features were annotated using Vector NTI 7.0 (Informax).  
Contiguous mitochondrial DNA sequence of 14535 and 14536 nt were respectively submitted to GenBank for O. 
nubilalis (AF442957) and O. furnicalis (AF467260).  

Substitution rate and transition/transversion ratio for Ostrinia mitochondrial DNA sequences were calculated 
with MacClade 4.03 [25].  Twenty one tRNA gene structures were predicted with M-fold 3.1 [26], and viewed 
using RNAviz 2.0 [27].  Codon usage was evaluated by the Countcodon program version 4 
(http://www.kazusa.or.jp/codon/ countcodon.html).  Average per site rates of synonymous (dS) and 
nonsynonymous nucleotide substitution (dN) were calculated according to [28] using MEGA [29]. 
3. Results and discussion 
3.1 Ostrinia mitochondrial genomes 

Contiguous O. nubilalis (GenBank accession: AF442957) and O. furnicalis (AF467260) mitochondrial 
genomes were assembled from overlapping PCR product sequence (Fig. 1).  Each GenBank record includes 13 
open reading frames (ORFs), a large ribosomal RNA (rrnL) gene, 21 tRNAs, and part of trnM and small 
ribosomal RNA (rrnS) genes (Fig. 1).  Gene order and orientation were identical to Drosophila [1, 4], except for 
translocation of trnM to a position preceding trnI as was observed in Bombyx [15].  Major strand of O. nubilalis 
(41.3% A, 38.8% T, 8.0% G, and 11.8% C; 80.2% AT) and O. furnicalis (41.5% A, 38.9% T, 7.9% G, and 11.7% 
C; 80.4% AT) showed a bias toward A and T nucleotides that is typical of insect mitochondrial genomes [30]. 

The O. nubilalis and O. furnicalis mitochondrial genomes have 3731 codons; 3718 amino acid encoding and 
13 termination codons (Table 1).  Codons had a prevalence of A and T in 3rd positions and bias may reflect 
selection for optimal tRNA use [31], speed of genome replication, genome bias, or DNA repair efficacy (Table 2).  
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The O. nubilalis and O. furnicalis mitochondrial peptides comparatively showed 24 predicted amino acid changes 
(24 of 3718; 0.646%; peptide similarity ≅ 99.22%, and identity ≅ 99.78%) [32].  All ORFs were initiated by ATA 
or ATT codons, except cox1.  Initiation of coxI translation is ambiguous, but may occur by a TATTAG sequence 
in O. nubilalis and O. furnicalis, that is similar to TTTTAG in the B. mori.  Hexanucleotides, initiation signals 
TATCTA from Penaeus monodon [33], or ATTTAA from A. gambiae [2], A. quadrimaculatus [3] and C. capitata 
[5] have been proposed.  Alternatively, an ATAA tetranucleotide sequence was predicted to initiate cox1 
translation in Drosophila, L. migratoria [10], and Daphnia pulex [34].  Termination codons were either TAA or 
TAG in O. nubilalis and O. furnicalis, except for cox2 and atp6 that have incomplete stop codons T and TA, 
respectively.  Incomplete stop codons may become function after polycistronic transcript cleavage and 
polyadenylation mechanisms [35, 36]. 

Complete nucleotide sequence was obtained for 21 O. nubilalis and O. furnicalis mitochondrial tRNAs.  
Seven substitutions were observed, and 0.49% sequence divergence was estimated from 1429-shared sites.  
Insertion-deletion (indel) mutation occurred in loop structures of trnA, trnD, trnG, and trnT, and, except for trnR, 
did not affect predicted two-dimensional tRNA structures (Fig. 2).  Variable mitochondrial tRNA loops in Bombyx 
were assumed not to affect biological function [15].  The complete rrnL gene sequence was 1339 nt for O. 
nubilalis and O. furnicalis, and alignment comparatively showed a single C to T transition.  A partial rrnS 
sequence was obtained from O. nubilalis (434 nt) and O. furnicalis (435 nt), and comparatively showed a single 
nucleotide deletion. 
3.2 Nucleotide substitution pattern 

A 14543 nt consensus mitochondrial genome alignment identified 186 substitutions between O. nubilalis and 
O. furnicalis: 138 transition (ts) and 48 transversion (tv) mutations (ts:tv = κ ≅ 2.88).  This ratio deviated 
significantly from neutral expectation (1:2; χ2 = 141.447, d.f. = 1, P < 0.001), indicating evolutionary pressures 
are acting upon O. nubilalis and O. furnicalis mitochondrial genomes.  Excess transition mutation also was 
reported between D. melanogaster subgroup members (κ= 761/180 ≅ 4.23) and attributed to non-neutral 
evolutionary forces or population effects [7]. 

Additionally, mitochondrial protein coding sequences (CDS) comparatively showed 170 substitutions 
between O. nubilalis and O. furnicalis; 131 at 3rd codon positions.  The ratio of the rate of nonsynonymous 
changes at nonsynonymous sites (dN) to synonymous changes at synonymous sites (dS) in Ostrinia ORFs indicated 
a 7-fold excess of silent mutation (dN/dS = ω ≅ 0.15) [28].  High peptide similarity (≅ 99.22%) may reflect regency 
O. nubilalis and O. furnicalis speciation, but effects of purifying selection can be inferred since synonymous 
substitutions are very prevalent.  Alternatively, similar environmental selection after speciation could lead to 
peptide conservation co-occurring with a background of random genetic drift at neutral nucleotide positions.  The 
observed mutation rate at Ostrinia 4-fold degenerate codons (µ4-fold = 5.22%) was significantly higher than at 2-
fold degenerate codons (µ2-fold = 2.60%; χ2 = 35.157, d.f. = 1, P < 0.001).  Results suggest a greater susceptibility 
of 4-fold degenerate codons to synonymous substitution. 
3.3 Divergence time estimates 

The divergence time between O. nubilalis and O. furnicalis mitochondrial was estimated by assuming a 
linear rate of substitution in short-term evolution (molecular clock) [37] of 2% per million years [38].  Nucleotides 
in rRNA and tRNA may lack independence due to structural dependence, and purifying selection may act at 1st 
and 2nd codon positions.  The intergenic sequence (IGS) and 3rd codon positions only sites that are nearly neutral.  
IGS region and 3rd codon positions showed 3.54% nucleotide difference between O. nubilalis and O. furnicalis, 
indicating that speciation occurred 1.8 mya [38].  Alternatively, 3rd position and IGS region data give a pairwise 
genetic distance of 0.3284 ± 0.0348 using the Kimura-2-parameter model [39].  Estimates of 0.1 distance unit (D) 
per 1.0 myr [40] suggest divergence at 3.3 mya.  These molecular-based divergence time estimates are supported 
by highly similar morphology of O. nubilalis and O. furnicalis [41]. 
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Tables and Figures 
Table 1: Codon usage for 3718 amino acid residues and 13 nonsense codons among protein coding regions from 
each O. nubilalis (On) and O. furnicalis (Of) using the invertebrate mitochondrial genetic code. 

Codon On Of Codon On Of Codon On Of Codon On Of 
UUU-Phe 347      354 UCU-Ser 93       95 UAU-Tyr 175   170 UGU-Cys 29     30 
UUC-Phe 31        28 UCC-Ser 12       10 UAC-Tyr 12     16 UGC-Cys 2       1 
UUA-Leu 459      454 UCA-Ser 94       94 UAA-Ter *12   *12 UGA-Trp 89     89 
UUG-Leu 15        17 UCG-Ser 5         4 UAG-Ter 1       1 UGG-Trp 5       5 
            
CUU-Leu 20        22 CCU-Pro 60       60 CAU-His 55     58 CGU-Arg 14     14 
CUC-Leu 0          1 CCC-Pro 8         7 CAC-His 7       4 CGC-Arg 1       1 
CUA-Leu 32        32 CCA-Pro 55       52 CAA-Gln 61     61 CGA-Arg 33     33 
CUG-Leu 0          0 CCG-Pro 1         2 CAG-Gln 3      3 CGG-Arg 3       3 
            
AUU-Ile 449      455 ACU-Thr 71       72 AAU-Asn 232   234 AGU-Ser 23     25 
AUC-Ile 28        28 ACC-Thr 14       10 AAC-Asn 24     22 AGC-Ser 2       2 
AUA-Met 262      265 ACA-Thr 71       75 AAA-Lys 92     94 AGA-Ser 90     89 
AUG-Met 26        20 ACG-Thr 1         0 AAG-Lys 9       8 AGG-Ser 0       1 
            
GUU-Val 72        70 GCU-Ala 70       71 GAU-Asp 59     59 GGU-Gly 56     56 
GUC-Val 1          2 GCC-Ala 9         8 GAC-Asp 4       4 GGC-Gly 1       5 
GUA-Val 58        62 GCA-Ala 46       47 GAA-Glu 65     62 GGA-Gly 117   115 
GUG-Val 6          1 GCG-Ala 2         1 GAG-Glu 8     10 GGG-Gly 29     25 

* Includes stop codons from cox2 (T) and atp6 (TA), completed by adenylation. 
Table 2: Nucleotide frequencies partitioned among O. nubilalis (On) and O. furnicalis (Of) mitochondrial 
genome regions.  IGS = non-coding intergenic spacer regions. 
               Protein Coding Sequence     
  1st position 2nd position 3rd position    rrnL     rrnS   tRNAs    IGS 
% nt  On      Of  On      Of On      Of On      Of On      Of On      Of On     Of 
% AT 74.4    74.5 70.4    70.5 92.8   93.3 84.9  85.0 82.3   82.8 82.2   82.1 91.9   93.4 
% GC 25.6    25.5 29.6    29.5   7.2     6.7 15.1  15.0 17.7   17.2 17.8   17.9   8.1     7.6 
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Figure 1. Ostrinia mitochondrial genome map of sequenced regions.  Protein coding genes represented by arrows 
indicating direction with left-facing arrows on major strand.  The tRNA genes are labeled by single letter codes 
and * indicating coding sequence on minor strand.  Underscores indicate positions of ten overlapping PCR 
amplified genome fragments. 
 

 
 
 
Figure 2:  Predicted secondary structures for A) O. nubilalis and B) O. furnicalis trnR. 
 
 

 
 
 
 

 
 


