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The amiloride-sensitive epithelial sodium channel (ENaC), a plasma membrane protein mediates sodium 
reabsorption in epithelial tissues, including the distal nephron and colon. Syntaxin1A, a trafficking protein of 
the t-SNARE family has been reported to inhibit ENaC in the Xenopus oocyte expression and artificial lipid 
bilayer systems. The present report describes the regulation of the epithelial sodium channel by syntaxin1A in a 
human cell line that is physiologically relevant as it expresses both components and also responds to 
aldosterone stimulation. In order to evaluate the physiological significance of syntaxin1A interaction with 
natively expressed ENaC, we over-expressed HT-29 with syntaxin1A constructs comprising various motifs. 
Unexpectedly, we observed the augmentation of amiloride-sensitive currents with wild-type syntaxin1A 
full-length construct (1-288) in this cell line. Both γENaC and neutralizing syntaxin1A antibodies blocked native 
expression as amiloride-sensitive sodium currents were inhibited while munc18-1 antibody reversed this effect. 
The coiled-coiled domain H3 (194-266) of syntaxin1A inhibited, however the inclusion of the transmembrane 
domain to this motif (194-288) augmented amiloride sensitive currents. More so, data suggest that ENaC 
interacts with multiple syntaxin1A domains, which differentially regulate channel function. This functional 
modulation is the consequence of the physical enhancement of ENaC at the cell surface in cells over-expressed 
with syntaxin(s). Our data further suggest that syntaxin1A up-regulates ENaC function by multiple 
mechanisms that include PKA, PLC, PI3 and MAP Kinase (p42/44) signaling systems. We propose that 
syntaxin1A possesses distinct inhibitory and stimulatory domains that interact with ENaC subunits, which 
critically determines the overall ENaC functionality/regulation under distinct physiological conditions. 
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1. Introduction 
The regulation of sodium reabsorption and 

excretion in the kidney is central to the control of 
blood pressure and extra-cellular fluid volume. 
Regulation is chiefly mediated by the adrenal 
mineralocorticoid hormone, aldosterone, which 
effects the activity of the sodium channel. The 
molecular target for this regulation is the 
amiloride-sensitive epithelial sodium channel, a 
heteromultimer consisting of α,  β and γ  subunits 1. In 
aldosterone targeted epithelia, this amiloride-sensitive 
epithelial sodium channel (ENaC) represents the rate 
limiting step for sodium reabsorption 2, 3. Mutations in 
the human genes of β and γ subunits of ENaC cause a 
form of salt-sensitive hypertension described more 
effectively as Liddle’s syndrome 4-7. These mutations 
either introduce frame-shifts, premature stop codons, 
or truncations 8, 9. 

Several mechanisms are known to influence and 
tightly regulate Na+ entry through the apical 
membrane of epithelial cells. These mechanisms 
include changes in protein expression and the relative 
distribution of ENaC protein between intracellular 
vesicular pools and the plasma membrane 10, 11. 
Liddle’s syndrome mutations lead to both: an increase 
in channel density at the cell surface and an increase 

in open channel probability 12 . Another mechanism 
described for ENaC regulation is through a group of 
proteins that could directly interact with ENaC and 
regulate its function. These are syntaxins, plasma 
membrane localized t-SNARES that are hypothesized 
to mediate vesicle trafficking. We 13 and others 14-16 
have shown that SNAREs like syntaxin1A interact 
with and functionally regulate the amiloride-sensitive 
sodium channel (ENaC) in the Xenopus oocyte 
expression system and artificial lipid bilayer 17. 
Syntaxin1A also reportedly inhibits several other ion 
channels including Ca+2 channels 18, 19, CFTR chloride 
channels 20, 21, K+ channels 22 and GABA transporters 23 
in the Xenopus oocyte expression system.  

All these studies were performed in a system 
that lacks either ENaC or syntaxin de novo expression. 
In this communication, we are reporting that 
syntaxin1A over-expression up-regulates ENaC 
function in HT-29 colonic epithelial cells that natively 
express both ENaC 24, 25 and syntaxin1A. This 
up-regulation is the net result of the differential effect 
of multiple syntaxin motifs that involves a complex 
regulatory mechanism.  
2. Materials and Methods 
Materials and reagents 

HT-29 cells were purchased from American type 
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culture collection (ATCC), (Manassas, VA). 
Syntaxin1A constructs were a kind gift from Dr. Kevin 
Kirk, University of Alabama at Birmingham, 
(Birmingham, AL). ΔC syntaxin1A and Munc 
constructs were kindly donated by Dr. A. Naren, 
University of Tennessee at Memphis, (Memphis, TN). 
Munc18 antibodies were procured from Transduction 
Laboratories, (Lexington, KY). Horseradish 
peroxidase–conjugated (HRP-conjugated) secondary 
antibodies (anti-rabbit and anti-mouse) were from 
Pierce Chemical Co., (Rockford, IL). Goat anti-mouse 
IgG-Alexa 488 and Alexa 594 were purchased from 
Molecular Probes, (Eugene, OR). The anti-syntaxin1A 
monoclonal antibody (HPC-1), and other antibodies 
and reagents were obtained from Sigma Chemicals, 
(St. Louis, MO). In order to confirm our findings, 
ENaC antibodies available from various sources were 
used from time to time. The ENaC antibodies were 
raised by Research Genetics, (Huntsville, AL) and 
Genemed Synthesis, (San Francisco, CA). 
Alternatively, ENaC antibodies from other sources 
were also used to confirm the findings. αENaC 
antibody was a kind gift from Dr. Peter Smith, 
Department of Physiology and Biophysics, University 
of Alabama at Birmingham, (Birmingham, AL). The 
ENaC subunit specific antibodies were a generous gift 
by Dr. Bernard Rossier, University of Lausanne, 
(Lausanne, Switzerland). Lipofectamine was 
purchased from Invitrogen Life Technologies, 
(Carlsbad, CA). Chariot® protein delivery system was 
available from Active Motif, (Carlsbad, CA). RIPA 
buffer contained 50 mM Tris-Cl pH 7.4, 1% Triton 
X-100, 0.2% Sodium deoxycholate, and 0.2% Sodium 
dodecyl sulfate (SDS) with protease inhibitor.  
Cell line 

HT-29 cells were cultured in McCoy's 5a medium 
with 1.5 mM L-glutamine and 10% fetal bovine serum 
in 5% CO2 at 37°C. The cells were grown on Falcon 12 
or 24 well inserts for all experiments and maintained 
to determine the amiloride-sensitive component of the 
Isc 26, 27.  
Measurements of short circuit currents (Isc) 

Amiloride-sensitive currents were recorded 
two-ways. The Isc were recorded with EVOMTM 
epithelial voltohmeter using STX2 electrode World 
Precision Instruments, (Sarasota, FL) as described 
before 24. Alternatively, some of the measurements 
were made in a modified Ussing chamber (Trans-24 
mini perfusion chamber), Warner Instruments, 
(Hamden, CT). Apical and basolateral chambers were 
continuously bathed with medium and the Isc were 
measured with transepithelial voltage clamped at 0 
mV with a DVC-1000 dual voltage clamp. Voltage 
pulses (10 mV) were applied every 3 min to monitor 
the transepithelial resistance. After the initial 
measurements, 10 µM amiloride were added to the 
apical side, and sodium currents expressed as the 
amiloride-sensitive component of the Isc. 
Plasmids and transfection 

Fusion proteins were made as described 28. 
Oligonucleotide-directed mutagenesis was used to 
produce truncations and deletions. All the constructs 
were confirmed by nucleotide sequencing. 
Abbreviations and the description of syntaxin1A 

constructs: syn1A-TMD, full length syntaxin, amino 
acid (aa) 1-288; syn1A∆c, syntaxin1A construct lacking 
the transmembrane domain, aa 1-266, syn1AH3-TMD, 
the H3 domain of syntaxin1A including TMD (aa 
188-288); syn1AH3, the H3 domain of syntaxin1A (aa 
188-266); syn1A∆H3-TMD, truncated syntaxin1A 
lacking aa 188-266 (aa 1-194); syntaxin1A∆C, 
syntaxin1A lacking TMD (aa 1-266). The cells were 
transfected with plasmid DNA constructs in 
lipofectamine according to the manufacturer's 
protocol. The expression of each protein was 
confirmed by SDS-PAGE, Western blot analysis, and 
detection of the protein with concomitant antibody.  
Bacterially expressed fusion proteins 

GST-fusion proteins were produced in 
Escherichia coli DH5a. RIPA cell lysates were 
centrifuged at 6000 rpm for 30 min, and the clarified 
supernatant was mixed with glutathione-sepharose 
beads and rocked overnight at 4 °C. The beads were 
then washed three times with wash buffer (150 mM 
NaCl, 25 mM Tris-HCl, pH 7.5, 1 mM dithiothreitol) 
supplemented with the protease inhibitors leupeptin 
(10 µg/mL), aprotinin (1% v/v final concentration), 
and phenylmethylsulfonyl fluoride (1 mM final 
concentration) before use. The protein bound to the 
beads was then used for coprecipitation experiments. 
For activity assays and immunoprecipitation, the 
fusion proteins were eluted with 25 mM glutathione 
solution in 20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 
1 mM EDTA, pH 8.0, and 0.5% Nonidet P-40 (NET-N) 
supplemented with these same protease inhibitors. 
For Chariot® experiments, the GST- was released by 
thrombin cleavage and dialysis against PBS wash 
buffer. Both bound and eluted proteins were 
quantitated by comparing their band intensities with 
those of known amounts of bovine serum albumin on 
silver-stained polyacrylamide gels.  
Cell surface biotinylation, intracellular pool and ENaC 
detection 

The biotinylation of cell surface proteins was 
performed using the kit and according to the protocol 
described by the manufacturer Pierce Biotechnology 
Inc., (Rockford, IL). In short, the proteins in the intact 
cells were surface-labeled with cell impermeant 
Sulpho-NHS-SS-biotin (0.5 mg/mL) at 4°C for 30 min. 
After washing three times with ice-cold quenching 
buffer, the cells were solubilized on ice in the presence 
of protease inhibitors. Surface, biotinylated proteins 
were adsorbed on 50% streptavidin–agarose bead 
slurry by rotating for 2 hr at 4°C. After brief 
centrifugation, supernatants representing the 
intracellular pool were collected and processed 
accordingly. Proteins were quantified by BCA method, 
separated by SDS–PAGE, and transferred to 
nitrocellulose for immunoblotting. The blots were 
analyzed for ENaC expression by Western blot 
analysis using subunit specific ENaC antibodies. The 
blots were raised using ECL and the films were 
developed using autoradiography.  
Electrophoresis, immunoblotting and characterization of 
proteins 

The proteins were solubilized at 70°C for 15 min 
in Laemelli sample buffer and run through SDS-PAGE 
in 10% polyacrylamide gels. The proteins were 
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transferred electrophoretically to the PVDF 
membrane in Towbin buffer. After blocking with 5% 
non-fat dry milk in TBS-Tween (Tris-buffered saline, 
0.05% Tween-20, pH 7.4), the membranes were probed 
with polyclonal or mono-specific affinity purified 
anti-peptide antibodies. Blots were developed using 
enhanced chemiluminescence (ECL) and visualized 
by light-sensitive imaging film (Kodak). 
Quantification was carried out with densitometry.  
Pull down assay 

HT-29 cells were lysed in RIPA buffer and 
pooled lysates from 12 or 24 well plates were mixed at 
4°C for 15 min on a rotary mixer. The lysates were 
centrifuged at 15,000xg for 10 min at 4°C. GST and 
GST-syntaxin1AΔC were added to clear supernatant 
and incubated for 30-60 min on a rotary shaker, after 
which glutathione sepharose beads (20 μL of 50% 
slurry in lysis buffer) were added and continue to mix 
at 4°C for 3 hr. At the end of 3 hr, beads were spun at 
800xg for 2 min and the supernatant was discarded. 
The beads were washed 3 times with lysis buffer and 
the proteins were eluted with 20 μL of 5X sample 
buffer for 30 min at 37°C and subjected to Western 
blotting.   
Delivery of antibodies 

The Chariot® protein delivery system was 
utilized to target antibodies in HT-29 cells. Antibodies 
were complexed with the Chariot® reagent at a ratio 
of 1 ng IgG: 2 μL Chariot® in 100 μL PBS for 30 min. 
These IgG: Chariot® complexes were overlaid onto 
cultured cells in the presence of fresh serum free 
culture medium for 3 hr and amiloride-sensitive 
currents were recorded. 
Inhibitor studies 

The 60-70% confluent HT-29 cells were 
transiently expressed with syntaxin1A. Forty-eight 
hours later, the cells were exposed to different 
inhibitors. The following inhibitors (final conc. in 
parentheses) PI3 kinase inhibitor LY294002 (50 μM); 
MAP kinase inhibitor PD98059 (50 μM); protein kinase 
A inhibitor RpCPTcAMP (30 μM); phospholipase C 
(PLC) inhibitor U73122 (50 nM); and protein kinase C 
(PKC) activator phorbol myristate acetate PMA (200 
nM) were diluted into protein-free medium just prior 
to use. Inhibition or activation in intact cells was 
measured by incubating HT-29 cells with the 
indicated concentration of reagents or dimethyl 

sulfoxide carrier (0.1%, v/v) for 45 min at 37°C. The 
amiloride-sensitive currents were recorded as 
described before.  
Statistical analysis 

A paired test or analysis of variance for multiple 
comparisons was used for statistical analysis. A p 
value less than 0.05 was considered significant.   
3. Results 
Effect of syntaxin1A on amiloride-sensitive currents 

To test the hypothesis that syntaxin1A 
functionally modulates ENaC activity, 
amiloride-sensitive currents were recorded in HT-29 
cells over-expressing syntaxin1A constructs 
comprising of specific domains (Fig 1). We observed 
that basal currents were augmented by the expression 
of full-length syntaxin1A in HT-29 cells, though the 
truncated constructs enumerate differential effect on 
amiloride-sensitive currents. For example, a modest 
stimulation was recorded with the syntaxin construct 
having the H1-H2 domains (1-194), while the 
expression of cytosolic H3 domain (194-266) inhibited 
amiloride-sensitive basal currents. Surprisingly, the 
inclusion of the transmembrane domain (TMD) to the 
H3 motif (194-288) augmented currents. These data 
suggest that expression of both H1-H2 domains (1-194) 
or H3-TMD (194-288) stimulate basal 
amiloride-sensitive currents and the enhanced 
currents observed with full length syntaxin1A 
expression might represent the cumulative effect of 
H1-H2 with H3-TMD combined. Interestingly, the H3 
domain, which has dominant coiled-coiled domain 
and the TMD are reported to impart an inhibitory 
effect on ENaC function in Xenopus oocytes 16 and 
artificial-lipid bilayer system 17.  

Fig 1 - Syntaxin1A augments currents - 
HT-29 cells grown on cell inserts were 
transfected with wild-type syntaxin1A 
(Syn1A) and its truncated constructs. 
Inset- Structure of syntaxin1A. TMD 
represents the transmembrane domain. 48 
hours later the amiloride-sensitive 
currents were recorded as described in the 
text. The data represents a mean of five 
individual experiments. Experimental 
conditions that resulted in a significant 
change (p < 0.05) from the relevant 
control values (Bar one) are denoted by 
multiple asterisks. Three asterisks denote 
higher statistical significance.  

 
Dose-dependent stimulation of 

amiloride-sensitive currents 
Our preliminary observations were contrary to 

the expected results as our initial results in the oocyte 
expression system indicated an inhibition of sodium 
currents 13. In order to confirm our findings, we 
over-expressed syntaxin1A at different concentrations 
(0.1 - 4.0 μg) and recorded amiloride-sensitive 
currents. As evident from (Fig 2), we observed an 
augmentation of amiloride-sensitive currents in all 
doses from 0.1 to 4.0 μg/well. Surprisingly, the 
stimulation was least with the highest dose (4.0 μg) 
used in the study, suggesting that higher expression 
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might down-regulate channel function as a consequence of overdose.  

Fig 2 - Syntaxin1A up-regulates amiloride-sensitive currents in a dose-dependent manner - HT-29 cells grown on cell 
inserts were transfected with wild-type syntaxin1A (Syn1A) at different concentrations. 48 hours later amiloride-sensitive 
currents were recorded (A) as described in the text. (B) The protein extracts from the transfected cells were solubilized and 
analyzed by Western blot analysis. The blots were developed with syntaxin1A antibody. The data represents a mean of three 
individual experiments. Experimental conditions that resulted in a significant change (p < 0.05) from the relevant control 
values (Bar one) are denoted by multiple asterisks. Three asterisks denote higher statistical significance. 

 

 
Fig 3 - Syntaxin1A antibody inhibits amiloride-sensitive currents - The HT-29 cells were targeted with anti-syntaxin, or 
anti-ENaC antibodies or irrelevant IgG using the Chariot® protein delivery system. Antibodies were complexed with the 
Chariot® reagent at a ratio of 1 ng IgG: 2 μL Chariot® in 100 μL PBS for 30 min. Then the IgG: Chariot® complexes were 
overlaid onto cultured cells in the presence of fresh serum free culture medium for 3 hr and amiloride-sensitive currents were 
measured. Data represent a mean of three individual experiments. Experimental conditions that resulted in a significant 
change (p < 0.05) from the relevant control values (Bar one) are denoted by multiple asterisks.  

 
 

Effect of antibody delivery in the permeabilized cells 
In order to further substantiate our observations, 

we introduced syntaxin1A monoclonal antibody by 
permeabilizing the cells with the Chariot® delivery 
system and recorded amiloride-sensitive currents. 
HT-29 cells natively express the proteins against 
which neutralizing antibodies were introduced in 

these cells (data not shown). As indicated in (Fig 3), 
the ENaC activity was completely abolished by the 
introduction of syntaxin1A and not with syntaxin2. 
Moreover, the complete elimination of sodium 
currents in the presence of γENaC antibody suggests 
that amiloride-sensitive currents are the consequence 
of ENaC function in these cells. Moreover, the 
syntaxin2 antibody failed to impart any effect on 
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amiloride-sensitive currents while the antibody 
against syntaxin1A binding partner munc18-1 
produced up-regulation of ENaC currents suggesting 
that the effect of syntaxin1A is specific and also 
stimulatory in HT-29 colonic epithelial cells. This 
observation is further supported by the introduction 
of munc18-1 antibody in the cells. 

Fig 4 - ENaC interacts with different syntaxin1A 
domains - Endogenous ENaC interacts with syntaxin in 
HT-29 cells - GST-syntaxin proteins were used to pull down 
proteins bound to natively expressed ENaC in HT-29 cell 
lysates. The immune complex was adsorbed on glutathione 
beads and then separated by SDS-Polyacrylamide gel 
electrophoresis and transferred to PVDF membrane. The 
blots were probed with affinity purified subunit specific 
γENaC antibody. The data shows interaction of multiple 
syntaxin1A domains with ENaC and points to its 
involvement and physiological significance in the regulation 
of the amiloride-sensitive epithelial sodium channel in 
native cells.  

 
Pull down of ENaC with syntaxin1A 

In order to understand if the functional result in 
the form of amiloride-sensitive currents is corollary to 
the physical association between ENaC and syntaxin 

under physiologically defined HT-29 cells, we 
performed co-immunoprecipitation studies in HT-29 
cell lysates and also utilized pull down assay with 
GST-syntaxins as described in the experimental 
procedures (Fig 4). As expected, we observed that 
multiple syntaxin1A domains including H1-H3 
interact with ENaC. As expected, the maximum 
binding was observed with the H3 domain of 
syntaxin1A. These observations lend support to the 
proposal that syntaxin1A, a protein with multiple 
coiled-coiled and binding domains, is capable of 
interacting with other proteins with variable affinity 
but with variable efficacy.  
Biotinylation studies 

Our physical and functional observations 
implied that the modulation of amiloride-sensitive 
currents might be a consequence of net ENaC 
expression on the plasma membrane. In order to 
explore this possibility, we performed biotinylation 
studies on HT-29 cells transiently expressing 
syntaxin1A (Fig 5). We observed increased ENaC 
density at the plasma membrane in cells expressing 
full-length syntaxin1A. In addition to this, 
biotinylation experiments with multiple syntaxin 
constructs point to the moderate enhancement of 
αENaC expression in cells transfected with H3-TMD. 
However, ENaC density decreased considerably at the 
cell surface in cells expressed with H3 domain (Fig 5), 
otherwise it remained unaltered in other conditions.  

Fig 5 - Syntaxin1A domains modulate ENaC expression at the cell surface - HT-29 cells were transfected with wild-type 
syntaxin1A and its truncated constructs. Cell surface proteins were biotinylated with Sulpho-NHS-SS-biotin, pulled down 
with streptavidin-agarose separated by SDS-PAGE and transferred to PVDF membrane. The blots were probed with γENaC 
antibody (A). The protein was analyzed by densitometry (B). The data reflect increased expression of ENaC in HT-29 cells 
transfected with syntaxin1A, which is reflected in enhanced amiloride-sensitive currents reported in the text. Data represent 
three individual experiments each performed with different batches of HT-29 cells.  

 
Intracellular (cytosolic) pool 

In order to further confirm that the changes in 
the apical expression of ENaC coincide with the 
decrease/increase of internal or cytosolic ENaC pools, 
we used the unbiotinylated pool as internal ENaC 

proteins since it could not get exposed on the cell 
surface29. The analysis of the internal pool by Western 
blotting using γENaC antibody (Fig 6) suggested that 
the cytosolic ENaC concentration(s) follows the 
pattern opposite to the ENaC expression at the plasma 
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membrane. For example, we observed lower γENaC in 
the cytosolic pool as compared to the increased apical 
expression in the syntaxin1A transfected cells. This 
trend appears to continue in all the conditions tested 
(Fig 6) and when analyzed in conjunction with our 
data (Fig 5) suggests that the ENaC activity depends 
largely on the expressed channel at the plasma 
membrane.  

Fig 6 - Syntaxin1A domains modulate internal 
(cytosolic pool) of ENaC - HT-29 cells were transfected 
with wild-type syntaxin1A and its truncated constructs. 
Cell surface proteins biotinylated with 
Sulpho-NHS-SS-biotin were pulled out with 
streptavidin-agarose while the supernatant of the cell 
extract was separated by SDS-PAGE and transferred to 
PVDF membrane. The blots were probed with γENaC 
antibody (A). The protein was analyzed by densitometry 
(B). Data represent three individual experiments each 
performed with different batches of HT-29 cells. 

 
Inhibitor studies 

In order to define the molecular mechanism 
by which syntaxin1A stimulates 
amiloride-sensitive currents, we incubated HT-29 
cells with different kinase inhibitors and recorded 
ENaC mediated currents (Fig 7). The inhibitors of 
PKA (RpCPTcAMP), PI3 kinase (LY294002) and 
MAP kinase (42/44 kD) (PD98059), all inhibited 
basal amiloride-sensitive currents, which could be 
reversed if the cells are transfected with syntaxin1A. 
These observations point to the complex regulatory 
mechanism by which syntaxin1A augments 
amiloride-sensitive ENaC function. We provide data 
suggesting an important role for cAMP, PI3 kinase 
and MAP kinase signaling in syntaxin1A dependent 
exocytosis of ENaC in HT-29 cells.  
4. Discussion 

Syntaxin1A has been widely reported as an 
inhibitor of several ion channels, including ENaC. 
SNARE proteins are involved in the vesicle trafficking 
in both polarized and unpolarized systems 30, 31. 
Therefore, the inhibition of channel function by 
syntaxin, a t-SNARE, is puzzling. The reported 
inhibition of ENaC is based on observations in the cell 
systems which lack endogenous syntaxin1A 
expression and possibly other members of the SNARE 
family like VAMP and SNAP-23, which might be 
required to successfully assemble the SNARE complex 
with channel proteins into a proper assembly for 
delivery to the plasma membrane 32, 33. Additionally, 
all these experiments were performed with 
over-expressed syntaxin1A that might limit the 
availability of individual SNARE members. Thus, it is 
necessary to examine the role of syntaxin in a proper 
perspective. The information is currently unavailable 
in the cells, which express both ENaC and syntaxin1A. 
ENaC expression is well reported in both the proximal 
and distal colon 34-37 and HT-29 cells38. Our studies 
indicate that the colonic epithelial cell line HT-29 is an 
ideal cell system, which expresses the 
amiloride-sensitive epithelial sodium channel, 
responds to aldosterone stimulation 25 and natively 
expresses syntaxin1A (data not shown). Our lab has 
initially reported the inhibition of ENaC by 
syntaxin1A in the heterologous expression system of 

Xenopus oocytes 38 which lacks indigenous syntaxin1A. 
However, our experience with HT-29 colonic 
epithelial cells indicates that in a physiologically 
relevant cell system this trafficking protein acts 
otherwise, since in this cell line both ENaC and 
syntaxin1A are natively expressed. The major findings 

of our studies are (a) Syntaxin1A stimulates sodium 
channel activity; (b) ENaC interaction with 
syntaxin1A is not restricted to only the H3 domain; (c) 
Increased channel activity is a consequence of 
enhanced ENaC expression on the plasma membrane 
and (d) Syntaxin1A effect was dependent on multiple 
regulatory mechanisms comprising PKA, PI3 and 
MAP kinase. These data support the hypothesis that 
syntaxin1A is associated with ENaC trafficking under 
physiologically defined conditions.  

In order to explore the effect of syntaxin1A on 
ENaC in HT-29 cells, we over-expressed syntaxin1A 
and its major cytosolic domains and recorded 
amiloride-sensitive currents (Fig 1). We recorded 
considerable currents (2-3 μA/cm2) that could be 
stimulated by aldosterone (>2.5 fold) (not shown) as 
reported in other cell systems like A6 39, 40, MDCK 41 
and mpkCCDc14 42. Over-expression of syntaxin1A 
produced from 50% to 100% stimulation of 
amiloride-sensitive currents, while the expression of 
H3 domain showed the inhibition as reported in the 
Xenopus oocyte system 16. However, inclusion of the 
transmembrane domain reversed the inhibitory effect 
observed otherwise with the H3 domain. These 
observations support the notion that syntaxin1A 
stimulates ENaC activity in HT-29 cells, since the 
transmembrane domain is reportedly required for the 
inhibitory effect of syntaxin1A in ENaC 16 and other 
ion channels 43-45. Additionally, our data support that 
over-expression of syntaxin1A construct that lacks 
H3-TMD domains (1-194) had a slight stimulatory 
effect on amiloride-sensitive currents (30-40%). Our 
data further suggest (Fig 1) that H1-H2 (1-194) further 
also augments currents. Thus, our data establishes 
that syntaxin1A up-regulates basal ENaC function by 
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a mechanism that requires the presence of 
transmembrane domain, since this motif is required in 
attaching the syntaxin to the plasma membrane 18, 46. 
We further confirmed that syntaxin1A 
over-expression augments ENaC function by 
performing the dose-dependent expression (Fig 2). 

Though these observations need to be examined 
carefully in the context of over-expressed proteins 
competing with endogenous syntaxin1A expression, 
these observations establish a definitive role for this 
t-SNARE in ENaC regulation in the epithelial cell 
system.  

Fig 7 - Syntaxin1A stimulates amiloride-sensitive channel (ENaC) activity by multiple signaling modules - HT-29 
cells (60-70% confluent) on cell inserts were transfected with wild-type syntaxin1A (Syn1A) and incubated in the presence 
of indicated inhibitors; PD98059 (PD; 50 μM) or LY294002 (LY; 50 μM), RpCPTcAMP (RpcAMP; 30 μM) and PMA (200 
nM) 48 hours later. The inhibition or activation in intact cells was measured with the indicated concentration of reagents or 
dimethyl sulfoxide carrier (0.1%, v/v) for 45 min at 37°C. The amiloride-sensitive currents were recorded as described in the 
text. The data represents a mean of three individual experiments. Experimental conditions that resulted in a significant 
change (p < 0.05) from the relevant control values (Bar one) are denoted by multiple asterisks. Three asterisks denote higher 
statistical significance. 

 
 
 
The fact that syntaxin1A stimulates ENaC in 

HT-29 cells was further confirmed by introducing 
neutralizing antibodies in the cells (Fig 3). We used 
the Chariot® delivery system 47 to introduce the 
antibodies in growing cells and recorded the complete 
inhibition of amiloride-sensitive currents using the 
syntaxin1A monoclonal antibody. A similar 
observation was made for the affinity purified γENaC 
subunit specific antibody. Anti-syntaxin2 as expected 
served as the control and showed no discernible effect 
on amiloride-sensitive currents. Since we neutralized 
natively expressed proteins, the data further support 
that syntaxin1A up-regulates ENaC in HT-29 colonic 
epithelial cells. Consistent with our observation, 
anti-munc18-1 augmented ENaC currents further 
supporting our data that syntaxin1A stimulates 
amiloride-sensitive currents in HT-29 cells. It should 

be noted that munc18-1, due to its high affinity 
binding 48, 49 for syntaxin1A reverses its regulatory 
effects 50 in a variety of cell systems. 

In order to establish the physical protein-protein 
interaction between syntaxin1A and ENaC, we 
utilized in vitro pull down assay by incubating each 
purified ENaC subunit with GST-syntaxin1A. To test 
for a direct physical interaction between ENaC and 
syntaxin1A, we expressed major cytosolic domains of 
syntaxin1A (Fig 4). These fusion proteins were 
purified and tested for binding to the recombinant 
cytosolic domain of syntaxin1A (syntaxin1AΔC, 
where C refers to deletion of the C-terminal 
membrane anchor). We tested the functional relevance 
of the binding of syntaxin1A to ENaC in two ways: (i) 
by introducing reagents into cell by the Chariot® 
delivery system 51, 52 for performing neutralization 
experiments and (ii) introducing a peptide for 
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performing blocking experiments. In the peptide 
blocking experiments, we observed that ENaC is 
acutely inhibited by syntaxin1A by introducing 
soluble GST-syntaxin fusion proteins (Data not 
shown). However, in HT-29 cells, introduction of 
γENaC acutely blocked the stimulatory effect of 
syntaxin1A over-expression suggesting that both 
proteins interact with each other confirming results 
published by other groups 16, 17.  

In order to evaluate the domain-dependent 
modulation of ENaC at the protein level, we utilized 
various GST-syntaxin1A proteins to pull down ENaC 
from HT-29 RIPA lysates. The interaction between the 
H3 domain and ENaC has previously been 
documented 16, 17. GST-proteins on glutathione beads 
were solubilized and analyzed by Western blot 
analysis. The detection of blots with anti-αENaC 
revealed that besides H3 (194-266) or H3-TMD 
(194-288), the H1-H2 (1-194) domain of syntaxin1A 
also interacts with the epithelial sodium channel (Fig 
4). More so, the binding affinity was low for 1-194 
(H1-H2 domain) than 194-266 (H3) or 194-288 
(H3-TMD) suggesting that the interaction between 
ENaC and syntaxin1A is complex and at multiple 
levels. We, however, at this time do not have any 
evidence to support the direct protein-protein 
interactions between ENaC and syntaxin1A.  

These observations led us to believe that the 
augmentation of ENaC currents might be related to 
increased apical expression of the channel in the cells 
over-expressed with syntaxin1A. This is quite logical 
considering the confirmed role of syntaxin in 
exocytosis and fusion 53. In order to accomplish this 
objective, we initiated two sets of experiments, which 
could detect changes in apical expression. We first 
used cell impermeant Sulpho-NHS-SS-biotin to label 
cell surface proteins and then pull down biotinylated 
proteins with streptavidin-agarose (Pierce). The 
bound proteins were solubilized in SDS-buffer, 
separated by electrophoresis and transferred to PVDF 
membrane. The blots were probed with α  or γENaC 
subunit specific antibody (Fig 5). In continuity with 
our previous observations, we detected increased 
ENaC density or enhanced apical expression of 
channel protein in transfected cells compared to 
control or untransfected cells. At the same time we 
detected lower internal or cytosolic ENaC pools from 
the similar set of conditions outlined above (Fig 6). 
Likewise, the immunofluorescence and confocal 
microscopic observations (data not shown) supported 
the increased expression of ENaC in syntaxin1A 
transfected HT-29 cells. However, it is possible that 
the molecular mechanism of the syntaxin1A effect is 
more complex than anticipated. Our efforts to 
delineate a definite mechanism supported the 
participation of several key signaling molecules (Fig 7) 
and thus suggest a complicated scenario. It is beyond 
the scope of this study to describe a detailed 
molecular mechanism of the syntaxin1A effect. Yet, 
the mechanism is diverse and may also include 
changes in open channel probability or gating 54-56. 
Previous studies have supported aldosterone induced 
translocation of αENaC in rat kidney, 57, 58 and other 
cell lines 59.  

We have provided evidence for an interaction 
between the multiple domains of syntaxin1A, a 

possibility proposed for the CFTR-syntaxin model 43. 
The biotinylation observations indicate the enhanced 
expression of ENaC in HT-29 cells over-expressed 
with syntaxin1A constructs that augment 
amiloride-sensitive currents. The differential effect of 
syntaxin1A in the heterologous expression system and 
in the cells endogenously expressing syntaxin1A on 
ENaC channel regulation is not mutually exclusive. 
Our data further point to a possibility that the 
syntaxin1A expression leads to the redistribution of 
the channel protein. In T84 colonic epithelial cells, 
which has a considerable syntaxin1A expression, the 
inclusion of syntaxin1AΔC stimulates CFTR currents 
50. Our data suggest that the role of syntaxin in the 
epithelial cell system is in line with its expected 
function, which is essentially trafficking. Since, this 
cell line expresses all the components of SNARE 
machinery, syntaxin1A effect on ENaC function is 
stimulatory and supports its primary function in 
exocytosis 30, 60. Our results also raise the possibility 
that the over-expression of syntaxin might result in its 
binding with other molecules (e.g. CFTR and other ion 
channels) 18, 19, 22, 61, 62 and may limit the availability of 
other SNARE molecules for participation in 
membrane fusion reactions in certain cell types and 
intracellular compartments 63, 64. SNAP-25 and 
syntaxin1A independently inhibits the L-type Ca+2 
channel. However, when both are present, they 
actually exhibit stimulatory effects on this calcium 
channel 65. This observation is indicative of the 
positive regulation conferred on the ion channel by a 
multi-SNARE protein complex. We believe that 
syntaxin1A possess distinct inhibitory and 
stimulatory domains that interact with and regulate 
ENaC function. The inclusion of the membrane 
binding or transmembrane domain (TMD) reverses 
the effect of the H3 domain since TMD is involved in 
hooking up the channel proteins to the plasma 
membrane which appears to effect (increase) the 
channel expression at the cell surface. This increase is 
reflected in the enhanced channel function. A recent 
report with H+ATPase suggests that the H3 portion 
itself has three distinct motifs which characteristically 
binds to H (+)-ATPase (aa 235-264), and SNAP-23 and 
VAMP (aa 190-234) to an equivalent degree as 
full-length syntaxin 66. Additionally, we propose 
syntaxin1A as an important constituent of ENaC 
function associated with aldosterone stimulation. It 
would be interesting to know if syntaxin1A physically 
and functionally interacts with disease-associated 
mutants of ENaC. Whether or not syntaxin1A also 
limits the function of wild- type in renal cortical 
collecting ducts remains to be determined. If so, 
maneuvers that could potentially neutralize the 
modulatory effect of syntaxin1A on ENaC will be of 
great therapeutic interest.  
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