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Heterologous expression of Vitreoscilla hemoglobin (VHb) has been reported to improve cell growth, protein 
synthesis, metabolite productivity and nitric oxide detoxification. Although it has been proposed that such 
phenomenon is attributed to the enhancement of respiration and energy metabolism by facilitating oxygen 
delivery, the mechanism of VHb action remains to be elucidated. In the present study, changes of protein 
expression profile in Escherichia coli as a consequence of VHb production was investigated by two-dimensional 
gel electrophoresis (2-DE) in conjunction with peptide mass fingerprinting. Total protein extracts derived from 
cells expressing native green fluorescent protein (GFPuv) and chimeric VHbGFPuv grown in Luria-Bertani broth 
were prepared by sonic disintegration. One hundred microgram of proteins was individually electrophoresed in 
IEF-agarose rod gels followed by gradient SDS-PAGE gels. Protein spots were excised from the gels, digested to 
peptide fragments by trypsin, and analyzed using matrix-assisted laser desorption ionization–time of flight 
(MALDI-TOF) mass spectrometry. Results revealed that expression of VHbGFPuv caused an entire 
disappearance of tryptophanase as well as down-regulated proteins involved in various metabolic pathways, e.g. 
glycerol kinase, isocitrate dehydrogenase, aldehyde dehydrogenase, and D-glucose-D-galactose binding protein. 
Phenotypic assay of cellular indole production confirmed the differentially expressed tryptophanase enzymes in 
which cells expressing chimeric VHbGFP demonstrated a complete indole-negative reaction. Supplementation of 
δ-aminolevulinic acid (ALA) to the culture medium enhanced expression of glyceraldehyde-3-phosphate 
dehydrogenase and glycerol kinase. Our findings herein shed light on the functional roles of VHb on cellular 
carbon and nitrogen consumptions as well as regulation of other metabolic pathway intermediates, possibly by 
autoregulation of the catabolite repressor regulons. 

Key words: Vitreoscilla hemoglobin (VHb), Two-dimensional gel electrophoresis (2-DE), Proteomic, Catabolic regulation, 
Peptide Mass Fingerprinting (PMF), Mass spectrometry 

1. Introduction 
Vitreoscilla hemoglobin (VHb) is an oxygen 

binding protein produced by the obligate aerobic 
bacterium Vitreoscilla stercoraria. It is comprised of two 
identical subunits of relative molecular mass of 15.7 
kDa and two protoheme IX per molecule. Expression 
of VHb in various organisms (e.g. bacteria, yeasts, 
fungi, and plant cells), particularly under hypoxic 
conditions, is known to improve growth, enhance 
protein secretion, increase metabolic productivity and 
stress resistance, mediate ATP synthesis and detoxify 
the deleterious effects of nitric oxide. Much attention 
has currently been dedicated to the use of VHb for 
various cell-based biotechnological processes 
including metabolic engineering, production of 
valuable metabolites, and fermentation (for recent 

review please see [1]).  
Because of the diverse functions of VHb in 

various organisms, many investigations have been 
conducted to elucidate their cellular mechanisms and 
biological reactivities. The physiological function of 
VHb is postulated to act as terminal oxidases as to 
facilitate efficient delivery of oxygen under 
microaerobic conditions. Expression of VHb in 
Escherichia coli triggers increased ATP production, 
improved growth rate and final cell density, and 
enhanced foreign protein production. A plausible 
explanation is that the presence of VHb within the 
respiratory membrane promotes the oxygen flux to 
one or two terminal oxidases: aerobic terminal oxidase 
(Cyo) and microaerobic terminal oxidase (Cyd) [2]. 
Such effect is expected to cause an increase in 
proton-pumping efficiency and concomitantly lead to 
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a remarkable generation of ATP [3]. An increased 
production of translational components (the active 70S 
ribosomes and tRNA levels) can be detected using 
asymmetrical flow field-flow fractionation (AFFFF), 
suggesting another important role of VHb on the 
protein synthesis machinery [4, 5]. Recently, it has 
been established that the prosthetic heme group of 
VHb possesses peroxidase-like activity like that of 
mammalian hemoglobins [6, 7]. These findings 
support the hypothesis that VHb not only acts as an 
oxygen carrier but possesses other important 
functional roles. However, the underlying mechanism 
of VHb on cellular catabolic regulation is not yet 
entirely understood. 

In the present study, two-dimensional gel 
electrophoresis (2-DE) combined with peptide mass 
fingerprinting was used to investigate changes of 
protein expression profile in E. coli cells with VHb 
expression. Experimentation was initiated by fusing 
VHb with green fluorescent protein (GFP). GFPuv was 
selected as a reporter molecule to confirm vgb gene 
expression, which is under the control of lac promoter, 
because of the following reasons: i) its autofluo-
rescence property is 18 times brighter than wt GFP, 
which can easily be detected by standard long wave 
UV, ii) this variant provides a high translational 
efficiency and high protein solubility when expressed 
in E. coli, iii) it is a small monomeric protein with 
molecular size of approximately 30 kDa, which makes 
protein fusion manageable, and iv) the location of 
fusion protein (VHbGFP) on the 2D gels can easily be 
discriminated from other high abundant proteins. 
Using 2-DE, protein expression profiles of cells 
harboring chimeric VHbGFP can potentially be 
scrutinized with cells expressing native GFP and cells 
bearing the control plasmid. Spots of proteins are then 
identified by MALDI-TOF mass spectrometry. In some 
circumstances, supplementation of δ-aminolevulinic 
acid (ALA; a precursor in the heme biosynthetic 
pathway formed in three steps enzymatic reaction of 
the five-carbon skeleton of glutamate; C5 pathway) to 
the culture medium has been performed for 
comparison. Plausible explanations on the novel role 
of VHb on cellular catabolic regulation have been 
proposed.  

2. Materials and methods 
Bacterial strains and plasmid 

Escherichia coli (E. coli) strain TG1 (lac-pro), Sup E, 
thi l, hsd D5/F’ tra D36, pro A+ B+, lacI, lacZ, M15; (ung+, 
dut+) was used as host for transformation and gene 
expression. Plasmids pGFPuv (Clontech Laboratories, 
USA) and pVHb [6] were used for construction of 
chimeric genes. Cells harboring pUC19 were used as 

control. 
Enzymes, chemicals and reagent kits 

High Fidelity Taq DNA polymerase, restriction 
endonucleases and T4 DNA ligase were purchased 
from Roche (Mannheim, Germany). Molecular weight 
marker (λ/EcoRI + HindIII) was obtained from New 
England Biolabs, USA. Purification of plasmid DNA 
was performed with NucleoSpin Plasmid kit 
(Macherey-Nagel, Germany). Purified DNA was 
extracted from agarose via NucleoSpin Extract II kit 
(Macherey-Nagel, Germany). The oligonucleotides 
were synthesized by the Bioservice Unit, Thailand. All 
chemicals were of analytical grade and commercially 
available. 
Construction of chimeric gene encoding Vitreoscilla 
hemoglobin-green fluorescent protein 

DNA fragment (438 bp) encoding the Vitreoscilla 
hemoglobin was obtained by PCR amplification using 
plasmid pVHb as template and the two primers (sense: 
5′-ATAACTCTGCAGCATGTTAGACCAGCAAACCA
T -3′, antisense: 5′-ATTAATGGTACCAATTCAACCG 
CTTGAGCGTACA -3′). Since the primers contained 5′ 
overhang of PstI site in the sense and KpnI site in the 
antisense, therefore, the PCR products were digested 
with these enzymes and subsequently inserted into the 
pGFPuv. These resulted in an in-frame fusion of the 
VHb encoding gene at the 5′-end of the gfpuv gene. 
Cloning procedures were performed according to the 
standard protocol as previously described [8]. The 
newly constructed plasmid, designated as pVHbGFP, 
was verified for correct insertion by restriction 
endonucleases digestion and further confirmed by 
DNA sequencing. 
Analysis of excitation and emission spectra of 
chimeric protein 

 The chimeric VHbGFP was partially purified by 
50% ammonium sulfate precipitation followed by 
DEAE ion exchange column chromatography. 
Fractions possessing green fluorescence were collected 
and subjected to fluorescence spectra scanning using 
Perkin-Elmer spectrofluorometer FP6300 at ambient 
temperature. To obtain the fluorescence emission 
spectra of VHb and GFP, excitation wavelengths were 
fixed at 313 and 400 nm, respectively. The excitation 
spectra were further scanned upon setting the 
emission wavelengths at 630 and 509 nm. 
Preparation of protein samples for proteomic 
analysis 

 Cells carrying pUC19, pGFPuv and pVHbGFP 
were grown at 37ºC for overnight in 5 ml Luria-Bertani 
(LB) broth (10 g/L tryptone, 5 g/L NaCl and 5 g/L 
yeast extract, pH 7.2) supplemented with 100 μg/ml 
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Ampicillin. Cells were subcultured and further 
incubated at 37ºC for 6 hours to mid-exponential 
phase. Cells were then inoculated in 50 ml LB/Amp 
and incubated at 37ºC for 16 hours. In some 
circumstances, cells were incubated in the medium 
supplemented with 75 μM δ-aminolevulinic acid 
(ALA) for comparison. Cells were collected by 
centrifugation at 9,000 rpm for 10 min at 4ºC and 
washed for 3 times using 40 mM Tris, pH 8.0. Pellet 
was then resuspended in 1 ml of Tris buffer and mixed 
with 250 μl of lysis solution (7 M urea, 2 M thiourea, 
4% CHAPS; freshly prepared by supplementation with 
10 mg/ml dithiothreitol (DTT) and 10 μl/ml protease 
inhibitor cocktail). Cells were disrupted on ice by sonic 
disintegration at power 7 for 30 sec using Branson 
sonifier (model 450) equipped with a microtip. Whole 
cell lysates were collected by centrifugation at 15,000 
rpm for 60 min at 4ºC. Protein concentrations were 
quantified by Bradford’s method [9] using bovine 
serum albumin as a standard. The protein solution was 
mixed with 1 M acrylamide (at 1:10 of total volume) 
and kept at room temperature for 10 min. 
Two-dimensional electrophoresis (2-DE)  

The 2DE was carried out using IEF disc gel (Atto 
Corporation, model AE-6541, Japan) and mPAGE 
(Atto Corporation, model AE-6531, Japan) according to 
manufacturer’s recommendations with minor 
modifications as follows. One hundred micrograms of 
samples were carefully applied on top of the 
precasting IEF agarose rod gels (Atto Corporation; pH 
ranges 3-10 and 5-8). Approximately 150 μl of upper 
electrode buffer (0.2 M NaOH) was filled into the 
column. Separation of proteins was carried out at 300 
volts for 3.5 hours. Proteins in agarose gels were 
subsequently fixed in 1D gel solidified solution (2.5 g% 
Trichloroacetic acid) for 3 min. The gels were rinsed 
several times with distilled water and kept for 
overnight at 4ºC. The gels were soaked in SDS 
equilibration buffer (50 mM Tris-Cl, pH 8.8 containing 
6 M urea, 30% (v/v) glycerol, 2% SDS and bromphenol 
blue) for 10 min at room temperature. The gels were 
thoroughly rinsed with SDS electrophoresis buffer and 
immediately placed onto the precasting gradient 
(5-20%) SDS-PAGE gel (Atto Corporation). Standard 
protein markers were spotted onto 3 mm2 Whatman 
filter paper and laid down in close contact with the 
SDS-PAGE gels. The rod gels were mounted onto the 
SDS-PAGE gels by applying one hundred microliter of 
pre-warmed agarose gel (1% of low melting agarose 
gel). Initially, separation of protein was conducted at 
10 mA for 10 min and continued at 40 mA for 90 min. 
The gels were further stained with colloidal Coomassie 
blue for 2-3 hours. Excess dye was removed by rinsing 

several times with deionized distilled water. Gels were 
visualized with the Canoscan LiDE20 scanner (Canon, 
USA). 
Mass spectrometry and peptide mass fingerprinting 
(PMF) analysis 

 Protein spots were manually excised from the 
gels. Gel pieces from each spot were transferred to a 
polypropylene 96 well microtitre plate and then 
soaked in 50% methanol and 5% acetic acid for 
overnight. Tryptic digestion using sequencing grade of 
modified trypsin (Promega, UK) and protein 
extraction were performed on a Spot Handling 
Workstation (GE Health Care, USA) using the preset 
protocols from the manufacture. 

 Protein identification was mainly based on 
peptide fingerprint map obtained from the 
MALDI-TOF mass spectrometer (Model ReflexIV, 
Bruker Daltonics, Germany). Briefly, the extracted 
peptides were mixed with solution of 10 mg/ml 
α-cyano-4-hydroxycinnamic acid (LaserBio Labs, 
France) in 66% acetonitrile and 0.1% trifluoroacetic 
acid (TFA) and then spotted onto a 96-well target plate. 
The mass spectra were acquired in the positive ion 
reflector delayed extraction mode using approximately 
200 laser shots. Peak lists were generated using the 
XMASS software (Bruker Daltonics). The BioTool 2.0 
software (Bruker Daltonics) integrated with the 
MASCOT 2.2 search engine (MatrixScience, 
http://www.matrixscience.com/) was used for the 
identification of protein spots by querying the 
trypsin-digested peptide fragment data. The reference 
database used for the identification of target proteins 
was NCBInr with 5470121 sequences and 1894087724 
residues. The searching criteria exploited on complete 
carbamidomethylation of cysteine and partial 
methionine oxidation. One missed cleavage per 
peptide was allowed and an initial mass tolerance of 
±1 Da was used in all searches. Search result scores 
which is greater than 80 was considered to be of 
significant difference (p<0.05). The accuracy of the 
experimental to theoretical pI and molecular weight of 
proteins were also taken into consideration. 
Indole assay 

 Cells were inoculated into the tryptophan broth 
(10 g/L peptone from meat, 1 g/L DL-tryptophan, 5 
g/L sodium chloride, pH 7.2) and grown at 37ºC for 24 
hours. Kovac’s Indole reagent was then added to the 
broth and the presence of indole ring (pink color) on 
the surface of broth was observed. For comparison, 
cells were cultured in LB broth [10, 11] and assay of 
indole production was performed in a similar manner. 
Results were taken from two independent 
experiments.  
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3. Results 
Genetic construction of chimeric Vitreoscilla 
hemoglobin-green fluorescent protein 

 Construction of the chimeric Vitreoscilla 
hemoglobin and green fluorescent protein, designated 
as VHbGFP, was carried out successfully. VHbGFP 
was found to possess dual characteristics in which 
supplementation of ALA (heme precursor) to the 
culture medium gave rise to red pigment and strong 
greenish fluorescence under normal light exposure 
and UV irradiation, respectively (Fig. 1). Results from 
excitation and emission maxima scanning confirmed 
successful construction of the protein fusion. As 
depicted in Fig. 2, the chimeric VHbGFP exhibited two 
excitation maximum peaks at 313 and 400 nm, which 
represented the combined characteristics of VHb and 
GFPuv, respectively. Likewise, the emission maxima 
were found to be at 509 and 630 nm, respectively. This 
indicated that the red pigments (originated from the 
‘heme’ structure of VHb [12]) did not interfere with the 
fluorescence excitation and emission spectra of GFP. 
However, it should be noted that the chimeric 
VHbGFP displayed a relative fluorescence emission (at 
630 nm) of approximately 5 times higher than that of 
the native VHb. However, a marked decrease in the 
green fluorescence emission (at 509 nm) of up to 20-30 
times was detected as compared to that of the native 
GFP. 

 
 
 

TG1/pUC19 TG1/pGFPuv TG1/pVHbGFP

UV irradiation

Normal light

TG1 host TG1/pVHbGFP

+ ALA

TG1/pUC19 TG1/pGFPuv TG1/pVHbGFP

UV irradiation

Normal light

TG1 host TG1/pVHbGFP

+ ALA

 
Fig. 1. Total amount of Escherichia coli TG1 host and 
engineered cells harboring different kinds of plasmid grown in 
50 ml LB/Amp broth in the presence and absence of 75 μM 
δ-aminolevulinic (ALA) at 37°C for 16 hours observed under 
normal light and UV irradiation. 
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Fig. 2. Excitation (A) and fluorescence emission (B) spectra of 
chimeric VHbGFP (solid line), native VHb (dot line) and native 
GFPuv (dash line). 

 
Proteomic analysis of whole cell lysate of E. coli 
expressing chimeric VHbGFP 

 Fig. 3 demonstrated two complete maps of 
protein expression profiles of control cells harboring 
pUC19 at different ranges of pH (3-10 and 5-8). Protein 
spots were then identified by mass spectrometry and 
the results are summarized in Table 1. In some 
locations, several spots of protein were picked up in 
order to differentiate the co-migration of proteins. 
Spots number 5 and 7 identified as molecular 
chaperones DnaK and GroEL, respectively were 
usually located as markers in several proteomic 
studies [13, 14]. High abundant proteins were 
analyzed to be glycerol kinase (no. 11), tryptophanase 
(no. 12 and 26), translational elongation factor Tu (no. 
15), outer membrane porin protein C (no. 18) and 
beta-lactamase (no. 23 and 36). Expression of GFPuv in 
E. coli resulted in minor changes of protein profiles 
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(Figs. 4 A and C). GFPuv with a size of about 30 kDa 
and a pI of 5.8 was represented as a high abundant 
protein (no. 50, 62 and 63). The presence of GFPuv was 
found to mediate the down-regulation of glycerol 
kinase (no. 40) and isocitrate dehydrogenase (no. 44). 
Importantly, the presence of GFPuv somehow 
rendered the tryptophanase to be of two isoforms (no. 
42, 43, 52-54). This is in contrast to those observed in 
the case of VHbGFP (Figs. 4 B and D) where the major 
band of tryptophanase was found to be completely 
disappeared from the gel. Changes of protein profiles 
as a consequence of VHbGFP are illustrated in detail in 
Fig. 5. It seemed that the presence of GFP and VHbGFP 
up-regulated the main cellular chaperones, e.g. DnaK 
and GroEL. On the contrary, glycerol kinase, isocitrate 
dehydrogenase, aldehyde dehydrogenase and 
D-galactose-D-glucose binding protein (GGBP) were 
remarkably down-regulated. Disappearance of 
tryptophanase was found only upon expression of 
VHb protein. As expected, VHbGFP was found to be 
located at approximately 45 kDa (no. 70a and 70b) 
since the molecular weights of GFP and VHb 
monomer were of 30 kDa and 15 kDa in size, 
respectively. Experimental results indicated that this 
protein was the major protein present in the gel. 
However, identification of protein in this area revealed 
that the VHbGFP co-migrated with elongation factor 
(no. 71, 72 and 85) and showed none of the 

tryptophanase isoform. This confirmed the notion that 
tryptophanase was the major target responsible for 
expression of bacterial hemoglobin. 

Effect of δ-aminolevulinic acid (ALA) on protein 
expression profiles 

 The next question to address was whether 
supplementation of ALA rendered changes of protein 
expression profile. Results revealed that none of the 
tryptophanase was observed while glycerol kinase and 
glyceraldehyde-3-phosphate dehydrogenase were 
remarkably up-regulated (Fig. 6). Transformation of 
outer membrane porin protein C isoform from higher 
to lower pI values was also taken into account (as 
indicated by arrow). 
Phenotypic changes of E. coli expressing chimeric 
VHbGFP 

 To further confirm the differentially expressed 
tryptophanase, an assay of indole (a major product of 
tryptophan degradation by tryptophanase) production 
was performed on the different cell types. As 
illustrated in Fig. 7, our results clearly demonstrated 
that only cells expressing chimeric VHbGFP showed 
strong indole-negative reaction comparable to that of 
Klebsiella pneumoniae. Results from both tryptophan 
broth (Top panel) and LB broth (Bottom panel) were in 
good agreement. 

Table 1 Proteins of Escherichia coli TG1 host and engineered cells expressing GFPuv and chimeric VHbGFP identified by Mass 
spectrometry and peptide mass fingerprinting (PMF) analysis. 

Spot No. Accession No. Description Calculated 
pI value 

Nominal 
mass (Mr) 

Protein 
score 

Sequence 
Coverage 

(%) 
1, 37 gi|75236921 Aconitase B 5.21 93996 170, 145 55, 64 
2, 38 gi|15830005 2-oxoglutarate dehydrogenase 

decarboxylase component 
6.04 105566 81, 92 43, 59 

3 gi|75197115 Polyribonucleotide 
nucleotidyltransferase 

5.11 77110 90 62 

4 gi|15803853 Elongation factor EF-2 5.24 77704 102 55 
5 gi|15799694 Molecular chaperone DnaK 4.83 69130 155 70 
6 gi|15830002 Succinate dehydrogenase catalytic 

subunit 
5.85 65008 99 42 

7 gi|15834378 Chaperonin GroEL 4.85 57464 214 68 
8 gi|38704234 Aspartate ammonia-lyase 5.19 52950 82 44 

9, 10 gi|15801728 Aldehyde dehydrogenase 5.07 52377 147, 86 63, 53 
11, 40, 65 gi|442946 Glycerol kinase 5.36 56349 Range  

84-123 
52 

12, 26, 42, 
43, 52, 53, 54 

gi|41936 Tryptophanase 5.88 53098 Range  
80-143 

Range  
41-60 

13, 27, 44, 66 gi|33383669 Isocitrate dehydrogenase 5.33 43192 Range 
101-127 

Range  
35-55 

14, 28, 29, 
45, 55, 56 

gi|16975437 Enolase, chain A 5.32 45552 Range  
80-127 

Range  
54-64 

15, 16, 46 gi|124532037 Translation elongation factor Tu 5.01 40514 Range 
103-122 

68 

17 gi|14277926 Transaldolase B, chain A,  5.18 35193 95 44 
18, 75, 76 gi|16130152 Outer membrane porin protein C 4.58 40343 Range 

141-176 
Range  
69-77 

19 gi|15802193 Glyceraldehyde-3-phosphate 
dehydrogenase 

6.61 35681 101 53 

20, 47, 77 gi|9507742 Outer membrane protease precursor 
[Plasmid F] 

5.91 35477 Range  
98-129 

Range  
61-72 
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Spot No. Accession No. Description Calculated 

pI value 
Nominal 
mass (Mr) 

Protein 
score 

Sequence 
Coverage 

(%) 
21 gi|15800433 Succinyl-CoA synthetase alpha 

subunit 
6.32 30044 83 60 

22, 34, 79, 92 gi|75196144 Fructose/tagatose bisphosphate 
aldolase 

5.87 31021 Range  
80-96 

Range  
62-65 

23, 35, 36, 
51, 61, 80, 93 

gi|145306442 Beta-lactamase 5.35 31247 Range 
147-197 

Range  
49-80 

24a gi|1000056  Ribose-binding protein complexed 
with Beta-D-Ribose 

5.99 28457 
 

101 70 

24b gi|26246721 Phosphoglyceromutase 6.27 29204 97 62 
25 gi|75209666 Glutathione S-transferase 5.22 24328 91 61 
30 gi|226907 Malate dehydrogenase 5.61 32417 93 55 

31, 32, 89, 90 gi|15800816 Outer membrane protein 3a 5.99 37292 Range 
80-88 

Range  
42-45 

33, 60 gi|230520 D-Galactose-D-Glucose Binding 
Protein (GGBP) 

5.25 33347 111, 189 62, 70 

39, 64 gi|15829780 Heat shock protein 90 5.09 71378 220, 80 49, 42 
41 gi|15804332 ATP synthase subunit B 4.90 50351 86 44 

48, 78, 91 gi|2293126 Beta-lactamase 5.93 31730 Range 
138-180 

Range  
68-75 

49, 50, 62, 
63, 67, 68, 
69, 73, 81, 
83, 84, 86 

gi|1490529 GFPuv 5.8 26893 Range  
99-121 

Range  
53-60 

57, 85 gi|26249935 Elongation factor Tu 5.25 44993 112, 108 65, 68 
58, 88 gi|75237909 Malate/lactate dehydrogenases 5.61 32502 97, 150 68, 68 

59 gi|13399487 L-Asparaginase 5.66 34671 84 54 
70a gi|1490529  GFPuv 5.8 26893 85 65 
70b gi|114816 Bacterial hemoglobin (Soluble 

cytochrome O) 
5.31 15821 81 50 

71, 72 gi|1942721 Chain A, Elongation Factor Complex 
Ef-TuEF-Ts 

5.22 42321 106, 102 58, 65 

74, 87 gi|15833050 Fructose-bisphosphate aldolase 5.52 39351 107, 122 42, 48 
82 gi|26250698 ATP-dependent protease 

ATP-binding subunit 
5.24 49664 92 41 

Note: Protein scores greater than 80 are significant (p<0.05). Protein scores and sequences coverage of multiple protein spots were given as the 
range of values. 

 
 
 

 
Fig. 3. Protein expression profiles of control E. coli cells bearing pUC19 plasmid separated under pH ranges of 3-10 (A) or 5-8 (B) 
and stained with colloidal Coomassie blue. (Numbers of protein spot denoted as identified protein represented in Table 1) 
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Fig. 4. Protein expression profiles of E. coli expressing native GFPuv (A, C) and chimeric VHbGFP (B, D) separated under pH 
ranges of 3-10 and 5-8, respectively and stained with colloidal Coomassie blue. (Numbers of protein spot denoted as identified 
protein represented in Table 1) 

 
 

 
Fig. 5. Zoomed 2D gels of protein profiles of crude proteins from control cells (A, D), cells expressing native GFPuv (B, E), and 
cells expressing chimeric VHbGFP (C, F) located at the same regions under pH ranges of 3-10 and 5-8, respectively. 
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Fig. 6. Protein expression profiles of E. coli expressing chimeric VHbGFP grown in the presence of 75 μM δ-aminolevulinic (ALA) 
separated under pH ranges of 3-10 and 5-8, respectively and stained with colloidal Coomassie blue. 

 
 

+ -TG1/pUC19 TG1/pGFPuv TG1/pVHbGFP

+ -TG1/pUC19 TG1/pGFPuv TG1/pVHbGFP Reagent C.

+ -TG1/pUC19 TG1/pGFPuv TG1/pVHbGFP

+ -TG1/pUC19 TG1/pGFPuv TG1/pVHbGFP Reagent C.

 
Fig. 7. Biochemical assay of indole production in E. coli expressing chimeric VHbGFP cultured in tryptophan broth (Top panel) and 
LB broth (Bottom panel). Positive (+) and negative (-) controls were tested using Escherichia coli ATCC 25922 and Klebsiella 
pneumoniae ATCC 700603, respectively. 

 

4. Discussion 
 Using two-dimensional gel electrophoresis in 

conjunction with peptide mass fingerprinting analysis, 
novel functional roles of Vitreoscilla hemoglobin on 
cellular catabolic regulation has been explored for the 
first time. Intracellular expression of VHb triggered a 
complete disappearance of tryptrophanase (Fig. 5 C), 
an enzyme involved in tryptophan, cysteine and serine 

catabolism. Confirmation of differentially expressed 
tryptophanase by indole assay revealed a pertinent 
indole-negative reaction by the VHb-expressing cells 
(Fig. 7). Our results coincided with the statement that 
expression of VHb perturbs the carbon flux of pentose 
phosphate metabolism, which may in turn affect key 
cellular enzymes and exert effects on the synthesis of 
aromatic amino acids [15]. More importantly, it has 
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previously been reported that tryptophanase, 
aldehyde dehydrogenase and citrate synthase are 
drastically induced as a consequence of heme 
depletion [16]. In this study, parallel results revealed 
the complete loss of tryptophanase and 
down-regulation of aldehyde dehydrogenase (Fig. 5). 
Our presumptive evidence lends support to the notion 
that VHb potentially mediates alterations in 
intracellular carbon and nitrogen consumptions. This 
infers the relationship of ATP generation for metal ions 
transportation [17]. 

Detailed explanations for the aforementioned 
observation suggest that the tryptophanase and 
aldehyde dehydrogenase are under the control of 
catabolite repressor protein (Crp), a primary 
transcriptional regulator of carbon metabolism [18, 19]. 
It is known that the regulatory response of Crp is 
controlled by either stress signals for the utilization of 
alternative carbon sources or by cyclic-AMP under 
energy-deficient conditions [20]. Furthermore, there 
are also transcriptional regulatory connections 
between carbon and iron metabolism whereby Crp can 
modulate the transcription of fur gene (encoding the 
ferric uptake regulator; Fur) [21]. This autoregulation 
between Crp and Fur regulons is believed to be the 
underlying mechanism in maintaining intracellular 
Fur levels below a certain limit since iron is required 
for aerobic Krebs cycle and electron flow. Such 
evidences discern the relationship between iron 
regulation and metabolic status of cells. It is expected 
that VHb plays a role in the electron transport chain of 
oxidative phosphorylation during energy conservation 
in the same fashion as other heme-containing 
derivatives (e.g. the prosthetic group of cytochromes 
and tetrapyrroles). Therefore, it can be speculated that 
excessive intracellular heme production [22] due to the 
appearance of bacterial hemoglobin may in turn 
regulate Crp and other metabolic pathway 
intermediates. 

 Effects of VHb on regulation of metabolic 
pathway intermediates are summarized as follows. 
Changes of other metabolic-regulated proteins 
including glycerol kinase, isocitrate dehydrogenase, 
and D-galactose-D-glucose binding protein (GGBP) 
have been observed (Fig. 5). Glycerol kinase is a key 
enzyme involved in the regulation of glycerol uptake 
and lipolysis processes. Our findings revealed marked 
decrease of this enzyme subsequently leading to rapid 
accumulation of free glycerol. This coincides with the 
complete loss of tryptophanase and a decrease in 
aldehyde dehydrogenase since glycerol is established 
as a potent inhibitor and catabolic repressor [23, 24]. 
More supportive evidences have been reported on the 
inhibition and induction of glycerol kinase by fructose 

1,6-biphosphate, L-alphaglycerol-3-phosphate and 
2,4-dinitrophenol [25]. Reduction of isocitrate 
dehydrogenase may also be taken into consideration 
for retaining glycerol contents [24] and phospho-
rylating processes on the branch point between the 
glyoxylate pathway and the Krebs cycle [25]. 
Overexpression of intracellular VHb rapidly 
metabolizes huge amounts of carbon sources for 
energy production resulting in the consumption of 
GGBP [26]. 

Addition of ALA regains a remarkable amount of 
the glycerol kinase as well as the glyceralde-
hyde-3-phosphate dehydrogenase (an enzyme impli-
cated in the glycolysis pathway) (Fig. 6). This 
controversial effect compared to the above mentioned 
remark may be attributable to the imbalance between 
the intermediates (involved in heme biosynthetic 
pathway) and overproduction of bacterial globin 
chains, subsequently leading to metabolic adaptation 
of the engineered cells. These observations coincide 
with the finding in Staphylococcus aureus that interrup-
tion of electron transport chain due to deficiency of 
heme causes an induction of proteins involved in the 
glycolytic pathway and other cluster of enzymes (e.g. 
glyceraldehyde-3-phosphate dehydrogenase, enolase, 
phosphoglycerate kinase, lactate dehydrogenase, alco-
hol dehydrogenase, and pyruvate formate lyase) [27]. 
It has been reported that supplementation of ALA in 
Pseudomonas cultures leads to an increased flux of 
heme pathway and excretion of high levels of por-
phyrins [28]. Further investigations, particularly on the 
equilibrium of heme contents and exogenous supple-
mentation with iron salts and other catabolic activa-
tion/repression molecules are now taken into 
consideration as ongoing research in our laboratory. 
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