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Abstract 

Quantitative or complex traits are determined by the combined effects of many loci, and are 
affected by genetic networks or molecular pathways. In the present study, we genotyped a 
total of 138 mutations, mainly single nucleotide polymorphisms derived from 71 functional 
genes on a Wagyu x Limousin reference population. Two hundred forty six F2 animals were 
measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. A total of 2,280 
single marker-trait association runs with 120 tagged mutations selected based on the 
HAPLOVIEW analysis revealed 144 significant associations (P < 0.05), but 50 of them were 
removed from the analysis due to the small number of animals (< 9) in one genotype group 
or absence of one genotype among three genotypes. The remaining 94 single-trait 
associations were then placed into three groups of quantitative trait modes (QTMs) with 
additive, dominant and overdominant effects. All significant markers and their QTMs 
associated with each of these 19 traits were involved in a linear regression model analysis, 
which confirmed single-gene associations for 4 traits, but revealed two-gene networks for 8 
traits and three-gene networks for 5 traits. Such genetic networks involving both genotypes 
and QTMs resulted in high correlations between predicted and actual values of performance, 
thus providing evidence that the classical Mendelian principles of inheritance can be applied 
in understanding genetic complexity of complex phenotypes. Our present study also indi-
cated that carcass, eating quality and fatty acid composition traits rarely share genetic net-
works. Therefore, marker-assisted selection for improvement of one category of these traits 
would not interfere with improvement of another. 
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Introduction 
The beef industry is a major component of the 

U.S. agricultural economy. Statistics show that the 
United States has the largest fed-cattle industry in the 
world, and is the world's number one producer of 
beef for domestic and export use 
(http://www.ers.usda.gov). Basically, cattle are 
raised in all 50 states and the industry has huge im-

pact on economic development in nearly every 
county in the nation. Beef is one of the preferred pro-
tein sources in American diets and demand continues 
to grow. However, the U.S. beef industry has also 
been facing some challenges. For example, the ten 
greatest quality challenges identified by National 
Beef Quality Audit of 2005 include insufficient mar-
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bling and low quality grades, lack of uniformity in 
cattle, inadequate meat tenderness, high yield grades, 
low cutability, heavy carcass weights, injection-site 
lesion, inadequate flavour, inadequate muscling and 
excess fat cover (http://www.bifconference.com/bif 
2006/pdfs/Morgan.pdf). All of these areas need to be 
addressed by beef producers in order to provide 
consumers with a high quality, acceptable product. 

Eating healthy foods is a popular topic of our 
everyday life, and doing so aids in the maintenance 
of a healthy body weight, enhances general wellbeing 
and reduces the risk of a number of diseases such as 
obesity, heart disease, stroke, cancer and diabetes. 
Evidence has shown that a diet high in saturated fats 
tends to increase blood cholesterol levels while diets 
high in unsaturated fats tend to lower blood choles-
terol levels. Heart diseases are favorably affected by 
the consumption of certain unsaturated fatty acids 
because they lower plasma total cholesterol and 
low-density lipoproteins or “bad” cholesterol levels. 
Unfortunately, since biohydrogenation occurs in the 
rumen, beef contains more saturated fatty acids than 
meat of monogastric animals [1]. Therefore, these 
challenges require the beef industry to deliver prod-
ucts that meet consumer needs and satisfaction in 
terms of both nutrition and health. 

Wagyu cattle were developed in Japan by 
crossing native Asian breeds with British and Euro-
pean breeds in the late 1800s. Breeding stock was 
closed to outside bloodlines in 1910. Generally 
speaking, meat from Japanese Wagyu contains more 
intramuscular fat (marbling) and has more unsatu-
rated fat than meat from other breeds of cattle. Spe-
cifically, meat from Wagyu contained 4.5% intra-
muscular fat compared to 3.1% in meat from Lim-
ousin cattle and the melting point of Wagyu fat was 
40.2oC compared to 37.8oC for fat from Limousin [2]. 
In addition, Wagyu fat has considerably less satu-
rated and more unsaturated fatty acids resulting in 
much higher unsaturated/saturated ratios (1.9) com-
pared to fat from other breeds (1.0) [3]. These data 
indicate that the Japanese Black (Wagyu) has a ge-
netic predisposition to produce lipids with higher 
unsaturated fat concentrations than other breeds. 

Identification and utilization of candidate genes 

for economically important traits is one of the most 
important long-term goals to improve production 
efficiency, product quality and animal health in the 
United States livestock industry. In the past, three 
ways were used to choose candidate genes as targets 
[4]. The physiological approach is to choose genes 
with known biological functions and actions involved 
in the development or physiology of the trait of in-
terest. The positional cloning approach considers 
genes that are located in the neighborhood of previ-
ously identified QTL regions. The third approach is 
the comparative transfer approach, which takes loci 
where polymorphisms are known to have a pheno-
typic effect in one species and explores them as can-
didates for similar variation in other species. Cer-
tainly, the current advance of bovine genome se-
quencing and annotation will further help us select 
the candidate genes. The objective of the present 
study is, therefore, to take advantage of bovine 
gene/genome annotations and various candidate 
gene selection approaches to discover genetic net-
works associated with carcass traits, eating quality 
and fatty acid composition in beef cattle. We hy-
pothesize that these economically important traits or 
complex phenotypes result from combined effects of 
many loci. In particular, detection of gene-gene com-
binations on complex traits would help understand 
their genetic complexity, thus providing molecular 
tools for the beef industry to address the challenges 
they have been facing. 

Materials and Methods 
Gene selection. All three approaches described 

above, including the physiological approach, the po-
sitional cloning approach and the comparative trans-
fer approach were used to target various gene fami-
lies for discovery of gene networks associated with 
economically important traits in beef cattle. A total of 
71 genes that had mutations detected and genotyped 
successfully in our beef reference population (see 
Animals, Phenotypes and Statistical Analysis) are 
illustrated in Figure 1. In a broad sense, most of these 
genes can be classified into five gene families.  
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Figure 1. Gene locations, genetic markers, haplotypes and single marker-trait associations with 19 economically important 
traits in a Wagyu x Limousin reference population. Pairwise linkage disequilibrium relationship for both within-gene (with 
blocks) and between-gene mutations (without blocks) are illustrated based on r2 measurements. Blue block: r2 ranges from 
0% to 100%; Green block: r2 varies from 0% to 80%; Gold block: r2 ≥ 80%; Rose block: r2 varies from 50% to 100%; and Red 
block: r2 ≤ 40% between different pairs of markers within a gene. Markers with additive, dominant and overdominant QTMs 
are presented in pink, green and black color, respectively. BMS: beef marbling scores; CHOL: cholesterol/100 g dry meat; 
CLA: conjugated linoleic acid/100 g dry meat; CW: carcass weight; KPH: percentage of kidney, pelvic and heart fat; MUFA: 
relative amount of monounsaturated fatty acids; PUFA: relative amount of poly unsaturated fatty acids; ∆9 desaturase activity 
- R1 = 14:1 to 14:0, R2 = 16:1 to 16:0 and R3 = 18:1 to 18:0; REA: ribeye area; SFA: relative amounts of saturated fatty acids; 
SFCS: shear force of cooked steak; SFD: subcutaneous fat depth; TPCT: taste panel connective tissue content; TPFE: taste 
panel flavor evaluation; TPJN: taste panel juiciness; TPMP: taste panel myofibrillar tenderness and TPOP: taste panel overall 
tenderness rating. Markers with asterisk are those admitted into the genetic networks by the linear regression model 
analysis.  

 
The first family involves nuclear encoded mito-

chondrial genes, such as aldehyde dehydrogenase 4 
family, member A1 (ALDH4A1), amyloid beta (A4) 
precursor protein (APP), ATP synthase, H+ trans-
porting, mitochondrial F1 complex, O subunit 
(ATP5O), BCL2-antagonist/killer 1 (BAK1), chromo-
some 21 open reading frame 2 (C21orf2), collagen, 
type VI, alpha 1 (COL6A1), C-reactive protein, 
pentraxin-related (CRP), enhancer of yellow 2 ho-
molog (Drosophila) (ENY2), fatty acid binding pro-
tein 3 (FABP3) [5], fatty acid binding protein 4 
(FABP4) [6], mitochondrial fission regulator 1 
(MTFR1), mitochondrial ribosomal protein L39 
(MRPL39), polymerase (RNA) mitochondrial (DNA 
directed) (POLRMT), Poly (A) polymerase associated 
domain containing 1 (PAPD1) [7], RAB2A, member 
RAS oncogene family (RAB2A), regulator of cal-
cineurin 1 (RCAN1), single-minded homolog 2 (Dro-
sophila) (SIM2), superkiller viralicidic activity 2-like 
(S. cerevisiae) (SKIV2L), transcription factor A, mito-
chondrial (TFAM) [8], transcription factor B1, mito-
chondrial (TFB1M), transcription factor B2, mito-
chondrial (TFB2M), tumor necrosis factor (TNF su-
perfamily, member 2) (TNF), ubiquinol-cytochrome c 
reductase core protein I (UQCRC1) [9] and uncou-
pling protein 1 (UCP1). 

The second family is related to the long chain 
fatty acids uptake gene complex, including solute 
carrier family 2, member 2 (SLC2A2), solute carrier 
family 25, member 27 (SLC25A27) and solute carrier 
family 27, member 1 (SLC27A1), member 2 (SLC27A2) 
and member 4 (SLC27A4).  

The third family deals with the sau-
vagine/corticotropin-releasing factor/urotensin I 
family and related families, such as corticotropin re-
leasing hormone (CRH) [10], CRH receptor 1 
(CRHR1), CRH receptor 2 (CRHR2) [11], urocortin 3 
(UCN3), urotensin 2 (UTS2) and urotensin 2 receptor 
(UTS2R) [12].  

The fourth family targets the lipogene-

sis/lipolysis enzymes, such as acetyl-Coenzyme A 
acetyltransferase 2 (ACAT2), acyl-CoA synthetase 
long-chain family member 5 (ACSL5), 
7-dehydrocholesterol reductase (DHCR7), diacyl-
glycerol O-acyltransferase homolog 1 (DGAT1) [5], 
fibronectin type III domain containing 3B (FNDC3B), 
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 
(soluble) (HMGCS1), 3-hydroxymethyl-3-methylglu-
taryl-Coenzyme A lyase (HMGCL), lipase, hor-
mone-sensitive (LIPE), patatin-like phospholipase 
domain containing 2 (PNPLA2), stearoyl-CoA de-
saturase (delta-9-desaturase) (SCD1) [13] and sterol 
O-acyltransferase 1 (SOAT1).  

The fifth family focuses on calpain/calpasatin or 
related genes, such as calpain 1 (CAPN1), calpain 3 
(CAPN3), calpain 5 (CAPN5), calpain 7 (CAPN7), cal-
pain 8 (CAPN8), calpain 9 (CAPN9), calpain 11 
(CAPN11), calpain 12 (CAPN12), calpain 14 
(CAPN14), calpain, small subunit 1 (CAPNS1), cal-
pastatin (CAST) [14], dermatopontin (DPT), neu-
romedin U (NMU), troponin I type 2 (skeletal, fast) 
(TNNI2) and troponin T type 1 (skeletal, slow) 
(TNNT1).  

In addition, ankyrin repeat and SOCS 
box-containing 3 (ASB3), chromodomain helicase 
DNA binding protein 9 (CHD9), dopey family mem-
ber 2 (DOPEY2), epidermal growth factor receptor 
pathway substrate 15 (EPS15), growth hormone 1 
(GH1), histone cluster 1, H1t (HIST1H1T), leptin 
(LEP), proteasome (prosome, macropain) assembly 
chaperone 1 (PSMG1), thyroglobulin (TG) and tRNA 
nucleotidyl transferase, CCA-adding, 1 (TRNT1) were 
also investigated in the present study. 

Gene annotation, mutation detection and geno-
typing. A comparative annotation procedure was 
used to retrieve both cDNA and genomic DNA se-
quences for the candidate genes described above. We 
used cDNA sequences of the human orthologs as ref-
erences for BLAST searches to retrieve the ortholo-
gous cDNA sequences against the GenBank database 
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“nr” or the orthologous ESTs sequences against the 
GenBank database “est_others” with a species option 
limited to Bos taurus. The cDNA sequences in the “nr” 
database represent three categories: cDNA sequences 
derived from a full-length cDNA library, known gene 
cDNA sequences or annotated cDNA sequences 
compiled by the GenBank staff. We collected the 
longest cDNA sequence retrieved from the “nr” da-
tabase or a cDNA sequence assembled from several 
ESTs retrieved from the “est_others” database to 
form a primary cDNA sequence for each cattle gene. 
This sequence was then used to perform a spe-
cies-specific BLAST search against the “est_others” 
database in order to expand the primary sequence to 
a full-length cDNA sequence. At the end, we used the 
full-length cDNA sequence to search for genomic 
DNA contigs in the 7.15X bovine genome sequence 
database (see the Bovine Genome Resources at NCBI). 
The cDNA sequences and genomic DNA sequences 
were aligned to determine the genomic organizations 
of all genes investigated in the present study.  

The online oligonucleotide design tool Primer3 
(http://frodo.wi.mit.edu/) was used to design prim-
ers for all genes. Primers met the following criteria: 
18-25 bp in length, >50% in GC content and optimal 
Tm of either 60oC or 65oC. We mainly targeted the 
promoter region and the 3’untranslated region (UTR) 
of each gene to maximize the chance for mutation 
detection. The sizes of the amplified products for 
most amplicons ranged from 400 – 600 bp, which is a 
sufficient length for accurate sequencing analysis. 
PCR reactions were performed using 25 ng of bovine 
genomic DNA as template in a final volume of 10 μL 
containing 12.5 ng of each primer, 200 μM dNTPs, 1.5 
- 3 mM MgCl2, 50 mM KCl, 20 mM Tris-HCl and 0.2U 
of Platinum Taq polymerase (Invitrogen, Carlsbad, 
CA). The PCR conditions were carried out as follows: 
94oC for 2 min, 32 cycles of 94oC for 30 sec, 61oC for 30 
sec and 72oC for 30 sec, followed by a further 5 min 
extension at 72oC. PCR products were examined by 
electrophoresis through a 1.5% agarose gel with 1X 
TBE buffer to determine the quality and quantity for 
DNA sequencing. Sequencing was performed on ABI 
3730 sequencer in the Laboratory for Biotechnology 
and Bioanalysis (Washington State University). Mu-
tations were identified using six Wagyu–Limousin F1 
animals (see animals below) and 138 of them were 
successfully genotyped on all animals using a Se-
quenom iPLEX assay service provided by the Chil-
dren's Hospital Oakland Research Institute, Oakland, 
California. 

Animals, phenotypes and statistical analysis. A 
Wagyu–Limousin F2 reference population was used 
in the present study, including 6 F1 bull, 113 F1 dams 

and 246 F2 progeny. We focused on a total of 19 
phenotypic measurements, which can be classified 
into three categories: carcass measurements, 
including carcass weight (CW), ribeye area (REA), 
subcutaneous fat depth (SFD), percentage of kidney, 
pelvic and heart fat (KPH) and beef marbling scores 
(BMS); eating quality, including shear force of cooked 
steak (SFCS), taste panel myofibrillar tenderness 
(TPMT), taste panel connective tissue (TPCT) content, 
taste panel overall tenderness (TPOT) rating, taste 
panel juiciness (TPJN), taste panel flavor evaluation 
(TPFE); and fatty acid composition including three 
indexes of Δ9 desaturase activity - R1 = 14:1 to 14:0, 
R2 = 16:1 to 16:0 and R3 = 18:1 to 18:0, relative 
amounts of saturated (SFA), monounsaturated 
(MUFA) and poly unsaturated fatty acids (PUFA), 
conjugated linoleic acid/100 g dry meat (CLA) and 
cholesterol/100 g dry meat (CHOL). 
Development/management of the Wagyu–Limousin 
reference population and measurement/definition of 
these phenotypes were described previously 
[8,15-18].  

The HAPLOVIEW program [19] was used to 
determine the linkage disequilibrium (LD) of 138 
markers located on 22 bovine chromosomes, thus 
leading to selection of tag mutations for association 
analysis. The association between genotypes and 
traits was evaluated using the general linear model 
(GLM) procedure of SPSS (version 16.0) (The 
Predictive Analytic Company, Chicago, USA). The 
model was:  

yijklm = µ+sexi+yearj+b×age+snpk+sirel+eijklm 

where yijklm is phenotypic observation of a quan-
titative trait for animal m, sexi is the effect of the i-th 
sex category (i=1,2), yearj is the effect of the j-th har-
vest year (j=1,2), age is a covariate for age in days of 
the animal at harvest, snpk represents the effects of 
each genotype at the k-th SNP locus, and sirel is ran-
dom effect of the l-th sire producing animal m, and 
eijklm is a residual term pertaining to animal m. In the 
model, we assumed that ( )2~ 0,l ssire N σA  where 

2
sσ  is the variance of sire effects, and A is an addi-

tive genetic relationship matrix among the sires, and 

( )2~ 0,ijklm ee N σ  where 2
eσ  is the residual vari-

ance. If the effects of sire, sex, year, or age were not 
significant (P>0.05) after initial analysis, they were 
removed from the model for final analysis. 

All single marker-trait associations that reached 
a significance level of P<0.05 were initially included 
in further analysis. We discarded significant markers 
when there were 9 or fewer animals in one genotype 
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group or there were only two genotypes rather than 
three. Based on the pairwise significance tests among 
three genotypes, we classified the remaining signifi-
cant associations into three quantitative trait modes 
(QTMs): 1) additive mode when PAa ≈ (PAA + Paa)/2; 2) 
dominant mode when PAa ≈ either PAA or Paa; and 3) 
overdominant mode when PAa > or < both PAA and 
Paa, where PAa = least square means of heterozygous 
animals, PAA = least square means of homozygous 
animals with higher performance and Paa = least 
square means of homozygous animals with lower 
performance. We then integrated these markers along 
with their QTMs into a linear regression analysis us-
ing the linear regression procedure (SPSS for 
Windows, version 16.0) in order to identify gene-gene 
combinations, i.e., gene-networks related to carcass 
traits, eating quality and fatty acid composition in 
beef.  

Results 
Gene locations, mutations and LD analysis. 

Based on the current bovine genome assembly 
(Btau_4.0), all genes are located on Bos taurus 
autosomes (BTA), but are unevenly distributed 
(Figure 1). Four chromosomes - BTA6, BTA15, BTA17 
and BTA20 each had only one gene, while eight 
chromosomes – BTA3, BTA4, BTA9, BTA10, BTA13, 
BTA22, BTA26 and BTA28 each had 2 genes. Three 
genes were located on each of these four 
chromosomes – BTA2, BTA7, BTA11 and BTA19. 
BTA1 had the largest number of genes (12), followed 
by BTA14 with 7, BTA23 with 6, BTA16 and BTA18 
each with 5, and BTA29 with 4, repectively (Figure 1). 
Four genes - ACAT2, CAPN9, PNPLA2 and TNNI2 are 
located on BTA9, BTA28, BTA29 and BTA29, 
respectively, but specific locations on the 
chromosomes are unknown at this time.  

Among a total of 138 genetic polymorphisms 
genotyped, 134 were single nucleotide 
polymorphisms (SNPs) and 4 were other types of 
mutations, such as insertion/deletion (I/D) and 
multiple nucleotide length polymorphism (MNLP) 
[20]. These 134 SNPs include 55 C/T transitions, 39 
A/G transitions, 15 C/G transversions, 15 A/C 
transversions, 7 G/T transversions and 3 A/T 
transversions, respectively (Figure 1). Thirty-six 
genes each had one marker, while 35 genes each had 
two or more mutations. At the chromosomal level, 
the number of mutations ranged from one on BTA17 
and BTA20 to 22 mutations on BTA1 (Figure 1). 

Haplotype analysis could not be performed on 
two genes - UCP1 on BTA17 and HMGCS1 on BTA20, 
because each had only one marker (Figure 1). For the 
35 genes that each had two or more markers, LD 

relationship was estimated between any pair of 
within-gene markers. Generally speaking, the results 
can be roughly classified into five categories (Figure 
1). CRH, CRHR2, PAPD1, RCAN1, TNF and UQCRC1 
genes belong to the most variable LD group. With 4 – 
7 mutations genotyped in each of these six genes, the 
r2 value between any pair of within-gene markers 
ranged from as low as 0% to as high as 80 – 100% 
(highlighted in blocks with a blue color). The highly 
variable LD group includes only two genes: CAPN5 
and UCN3 with a r2 value of 0% to 50 – 80% 
(highlighted in blocks with a sea green color). The 
complete LD group involves APP, ASB3, ATP5O, 
CRP, SLC27A1, TFB1M and UTS2R with a r2 value of 
≥95% between any pair of markers within a gene 
(highlighted in blocks with a gold color). Four genes – 
FABP4, POLRMT, SCD1 and TFAM had a r2 value of 
50% - 100% for LD relationships between any pair of 
markers examined, which can be designated as a high 
LD group (highlighted in blocks with a rose color). 
However, for the remaining 16 genes – APP, ASB3, 
ATP5O, CAPN1, CAPN11, CAPN12, CRP, DHCR7, 
HIST1H1C, LIPE, PNPLA2, SLC27A1, TFB1M, TNNI2, 
TNNT1 and UTS2R, the within-gene markers 
apparently segregated in the reference population 
due to low r2 values (less than 40%) (highlighted in 
blocks with a red color). 

Overall, few high LD relationships exist between 
any pair of markers derived from different genes. 
Only five pairs of between-gene markers reached a r2 
value of ≥30% and they are 
RCAN1#1A/G-ATP5O#2C/T (30%) on BTA1, 
ACAT2#1A/G-TFB1M#G/T (38%) on BTA9, 
CRHR1#1A/G-UTS2R#1C/T (33%) on BTA19, 
SLC25A27#1C/T-TNF#1A/G or TNF#3A/G or 
TNF#4C/T (36%) (as these three TNF markers are 
completely linked) on BTA23 and TNF#1A/G or 
TNF#3A/G or TNF#4C/T – HIST1H1C#1A/G (48% - 
50%) on BTA23, respectively (Figure 1). Based on the 
current bovine genome assembly (Btau_4.0), the 
physical distance is 0.39 Mb for the pair on BTA1, 4.4 
Mb for the pair on BTA19, 6.9 Mb for the first pair on 
BTA23 and 4.5 Mb for the second pair on BTA23. The 
distance between ACAT2#1A/G and TFB1B#2G/T is 
unknown because the former gene is unasigned to a 
specific location on BTA19. However, based on their 
LD relationship, these genes should not be far apart 
on the bovine chromosome. On human chromosome 
6, these two genes are just 4.4 Mb apart. Therefore, 
LD analysis on a pair of markers derived from 
different genes might provide information on their 
chromosome assignments. 

Single marker-trait assoctions. Haplotype 
analysis described above also helped us select a total 
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of 120 tagged markers for association analysis. As 
such, the GLM procedure was performed on 19 
phenoytpes described above, resulting in a total of 
2,280 single marker-trait association runs. Among 
them, 144 associations reached a significance level at 
P < 0.05, but 50 were removed from the final analysis 
due to the small number of animals (< 9) in one 
genotype group or absence of one genotype among 
three genotypes. The remaining 94 significant 
associations are shown in Figure 1, including 6 for 
CW, 4 for REA, 5 for SFD, 5 for KPH, 6 for BMS, 2 for 
SFCS, 6 for TPMT, 3 for TPCT, 5 for TPOT, 5 for 
TPJN, 4 for TPFE, 5 for R1, 2 for R2, 8 for R3, 9 for SFA, 
7 for MUFA, 3 for PUFA, 6 for CLA and 3 for CHOL. 

These 94 significant associations involved 46 
markers from 35 genes, including 18 markers 
associated with one trait, 13 with two traits, 12 with 
three phenotypes, one with 4 traits and 2 with five 
traits, respectively (Figure 1). The QTM analysis 
further placed them into three groups: 32 with 
additive, 33 with dominant and 29 with 
overdominant effects. Interestingly enough, each 
group accounts for one-third of the total associations 
(χ2 = 0.194, P = 0.9078). When a marker is associated 
with multiple phenotypes, it might have the same or 
different QTMs on different traits. For example, 
RCAN1#4A/C had an additive effect on both CW 

and TPCT; TFB1M#1C/G was dominantly associated 
with TPMT, TPOT and TPJN; and ASB3#2C/T 
showed an overdominant effect on three traits - R3, 
SFA and MUFA. However, RCAN1#6C/T affected 
different traits with the different modes - additive on 
CW, dominant on KPH and overdominant on PUFA 
(Figure 1).  

Regression analysis of multiple markers on 
single trait. Multiple significant markers and their 
QTMs associated with each single trait were involved 
in a linear regression model analysis to determine 
gene combinations or networks for a specific trait. 
The regression analysis confirmed single-gene 
associations for TPCT, R2, CLA and CHOL (Figure 2), 
but revealed two-gene networks for CW, REA, KPH, 
BMS, TPFE, R1, R3 and SFA (Figure 3) and three-gene 
networks for SFD, TPMT, TPOT, TPJN and MUFA 
(Figure 4), respectively. In fact, all 17 gene 
associations/networks were orchestrated by a total of 
20 genes, including BAK1, CAPN1, CAPN12, CAPN14, 
CRHR1, CRHR2, CRP, FABP3, MTFR1, PNPLA2, 
RAB2A, RCAN1, SCD1, SLC2A2, SLC27A2, TFAM, 
TFB1M, UCN3, UTS2R and UQCRC1 (Figure 5). 
Several markers significantly affected both SFCS and 
PUFA, but gene networks were not identified by 
regression analysis.  

 

Figure 2. Single marker-trait associations confirmed by the linear regression analysis. A: RCAN1 on TPCT; B: UTS2R on 
R2; C: RAB2A on CLA and D: UQCRC1 on CHOL. 
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Figure 3. Genetic networks with two genes established by the linear regression analysis for economically important traits 
in beef cattle. The numbers in arrows represent substitution effects of one type of genotypes or allele for another one. Each 
combined genotype(s) between different genes has two means of performance: predicted (top) and actual (bottom). “-“ 
means no animals were identified with the combined genotype (s) in the population. 
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Figure 4. Genetic networks with three genes 
established by the linear regression analysis for 
economically important traits in beef cattle. The 
numbers in arrows represent substitution effects of 
one type of genotypes or allele for another one. 
Each combined genotype(s) among different genes 
has two means of performance: predicted (top or 
left side) and actual (bottom or right side). “-“ 
means no animals were identified with the com-
bined genotype (s) in the population. 

 
 
In the single-gene associations, 

RCAN1#4A/C on BTA1 had an additive 
effect on TPCT. Similarly, UTS2R#2I/D on 
BTA19 had an additive effect on R2. In 
comparison, RAB2A#1A/T on BTA14 showed 
a significant impact on CLA and 
UQCRC1#3A/G on BTA22 significantly 
affected CLA and CHOL, respectively in a 
dominant mode (Figure 2). As for the two- 
and three-gene networks, two networks for 
SFD and SFA involved additive-additive 
combinations only, five networks for CW, 
REA, TPMT, TPOT and R1 had 
dominant-dominant combinations only, while 
six networks for KPH, BMS, TPJN, TPFE, R3 
and MUFA showed additive-dominant 
combinations between/among genes in the 
networks (Figures 3 - 4). These multiple-gene 
networks determined by regression analysis 
recognize both genotype and QTM 
combinations between/among different genes 
on traits, resulting in high correlations (0.86 – 
0.99, P<0.05) between predicted and actual 
values of performance (Figures 3 – 4).  

As indicated above, these 17 
economically important traits in beef cattle 
can be classified into three categories: carcass 
measurements, eating quality and fatty acid 
composition. As summarized in Figure 5, ten 
genes were involved in carcass 
measurements: UCN3 and RCAN1 for CW, 
FABP3 and PNPLA2 for REA, CRP and 
SLC27A2 for KPH, CRP and CRHR1 for BMS 
and TFAM, BAK1 and CAPN14 for SFD. Only 
RCAN1 is common to two traits: CW and 
BMS. However, among seven genes 
associated with the gene networks for eating 
quality, TFB1M affected three traits - TPMT, 
TPOT and TPJN; both SLC2A2 and CRHR1 
played an important role in two traits - TPMT 
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and TPOT; CRHR2 was also involved in two traits – 
TPJN and TPFE, and RCAN1, MTFR1 and CAPN1 
each affected one trait only, i.e., TPCT, TPJN and 
TPFE (Figure 5). Seven traits related to fatty acid 
composition were affected by gene-networks, 
composed of only five genes. SCD1 was a critical 
deteminant for R1, R3, SFA and MUFA; UTS2R 
contributed to R2, SFA and MUFA; and UQCRC1 
significantly impacted R3, MUFA and CHOL. 

CAPN12 influenced R1, while RAB2A affected CLA 
(Figure 5). Only two genes affected traits in different 
phenotype categories. Specifically. different 
mutations in RCAN1 affected both CW in carcass 
measurements and TPCT in eating quality, while the 
same mutation in CRHR1 was associated with BMS in 
carcass measurements and TPMT and TPOT in eating 
quality (Figure 1). 

 

 

Figure 5. Phenotypic classifications and their associated gene networks. 

 

Discussion 
Understanding the molecular basis of quantita-

tive genetic variation is a principal goal for biomedi-
cine in human [21] and genetic improvement in agri-
culture species [22]. However, identification of the 
candidate genes that are responsible for variation in 
continuous traits or quantitative traits has been a 
challenge in modern genetics. In the present study, 
we took advantage of the bovine genome sequencing, 
whole genome assembly and protein coding gene 
annotation by targeting several gene families for can-
didate selection. Among a total of 71 genes investi-
gated, single marker-trait association analysis re-
vealed 35 genes, while the multiple marker-trait re-
gression analysis further confirmed 20 genes that sig-
nificantly affect carcass measurements, eating quality 
and fatty acid composition in a Wagyu x Limousin F2 
reference population. Therefore, our gene fam-

ily-based approach is a very powerful means of op-
timizing the selection of candidate genes, thus facili-
tating delineation of genetic variation that underlies 
complex phenotypes [23]. 

More importantly, our gene family-based can-
didate approach might help overcome some QTL 
mapping drawbacks faced by the conventional ge-
nome scan approach, whole genome association 
study and expression QTL detection. Typically, the 
conventional genome scan approach uses relatively 
few markers, thus resulting in low resolution of QTL 
maps, which might leave many QTL uncovered or 
missed. For example, Alexander and coworkers [15] 
used the same Wagyu x Limousin cross for a 
whole-genome scan to identify QTL affecting palat-
ability and fatty acid composition of beef. The au-
thors found seven QTL on five chromosomes for 
these phenotypes, but none of these QTL regions can 
be linked to genes encoding major enzymes involved 
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in fatty acid metabolism, such as fatty acid synthase 
(FASN), acetyl-CoA carboxylase alpha (ACACA), 
solute carrier family 2 (facilitated glucose transporter) 
member 4 (SLC2A4), stearoyl-CoA desaturase (SCD) 
and genes encoding the subunits of fatty acid elon-
gase. However, in the present study we targeted 
three SNPs in the bovine SCD1 gene and found it is 
indeed involved in at least four gene networks asso-
ciated with fatty acid composition, such as R1, R2, SFA 
and MUFA (Figure 5).  

The currently developed BovineSNP50 Bead-
Chip consists of more than 50K evenly spaced SNPs 
identified in the bovine genome. No doubt, such a 
SNP chip provides an important resource and tool for 
high-resolution studies of differences between breeds 
and for relating associated traits to the genome. Re-
cently, a subset of these SNPs was genotyped on a 
total of 1,546 Holstein Friesian bulls for LD analysis 
[24]. Interestingly, the authors found that for associa-
tion mapping in Holstein-Friesian cattle, at least one 
SNP is required for each 40 Kb. This means that 
75,000 SNPs would be required for low power asso-
ciation mapping, while for a high power association 
study, up to 300,000 SNPs are needed [24]. Our ex-
perience here shows that it is relatively easy to in-
crease the marker density in a particular genome re-
gion by targeting members of gene families. These 
markers can also be put in a high throughput format 
for genotyping. We found that markers within a gene 
might show a wide range of LD. In addition, the LD 
was rarely extended to any neighboring genes; even 
though their physical distance is just 0.39 Mb apart, 
for example, between RCAN1#1A/G-ATP5O#2C/G 
on BTA1 (Figure 1). Therefore, a gene family-based 
candidate approach would add value to the 
chip-based whole genome association studies by in-
creasing marker density in a particular genome re-
gion, which would help understand gene networks 
and their associative effects on economically impor-
tant traits of interest.  

Evidence has shown that variants affecting gene 
expression (expression QTL, eQTL) have a substantial 
role in understanding genetic basis of complex phe-
notypes [25]. The goal of eQTL is to identify variation 
within a gene (‘cis-acting’) or elsewhere in the ge-
nome (‘trans-acting’) that causes expression differ-
ences [26]. However, this process requires a combina-
tion of genomic experiments with expression profil-
ing, which is usually costly for a laboratory to carry 
out on a large reference population. In addition, the 
integration of QTL studies with gene expression pro-
files can be a challenge too, because many genes 
could be differentially expressed in a QTL region that 
spans several tens of centiMorgans and harbors hun-

dreds of genes. In the present study, we targeted 
non-coding regions, such as promoter, 5’ and 3’ un-
translated regions of genes for mutation detections, 
which were used for their networks associated with 
different complex traits. Therefore, these mutations 
involved in the gene networks might well represent 
the quantitative heritable variation potentially related 
to the cis- and trans-acting regulatory factors, thus 
providing a foundation to pursue e-QTL studies for 
these complex phenotypes.  

The linear regression procedure showed several 
unique features in construction of gene networks as-
sociated with quantitative traits. First, the procedure 
was able to determine a leading marker within a gene 
for its association with a particular trait of interest. 
For example, single marker-trait association identi-
fied four SNPs in the RCAN1 gene significantly asso-
ciated with CW, but only one was identified by the 
linear regression procedure for the gene network 
(Figures 1 and 3). The same case was also seen with 
markers in the SCD1 gene (Figures 1 and 4). Second, 
none of the overdominant markers significantly in-
fluenced any gene networks. Practically, overdomi-
nant effects are rarely used in a selection program. 
Third, the linear regression procedure allowed the 
integration of QTMs in the gene networks, which im-
proves the correlation between the predicted and ac-
tual network values. For example, when only addi-
tive effects were considered for both UCN3 and 
RCAN1 on CW, the correlation coefficient was only 
0.86 (data not shown). However, when the dominant 
effects were included in the linear regression model 
for both genes, the correlation increased to 0.98 
(P=0.000) (Figure 3).  

Among 20 genes involved in gene-networks as-
sociated with 17 phenotypic measurements, 10 had 
pleiotropic effects because each of them influences 
multiple phenotypic traits. Some of these pleiotropic 
effects seem obvious when one measurement is 
related to another measurement. For example, TPMT 
and TPOT, subjective measures of myofibrillar 
tenderness and overall tenderness, which are highly 
related, were influenced by the same gene network 
comprised of CRHR1, SLC2A2 and TFB1M genes. R1, 
R2 and R3 are calculated based on fatty acid 
composition, which are basic components of SFA and 
MUFA in total, so it is not surprising that three genes 
– SCD1, UQCRC1 and UTS2R were associated with 3 
to 4 of these traits (Figure 5). It is understandable that 
RCAN1 had a pleiotropic effect on both CW and BMS 
because a previous study in humans described an 
association of the chromosome region with over-
weight and obese [27]. As well, the pleiotropic effect 
of CRHR1 on BMS, TPMT and TPOT might be due to 
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the fact that BMS acounts for ~20% of the variation in 
beef tenderness [28]. Therefore, CRHR1 may be the 
first gene described that is related to both meat 
marbling and tenderness. The pleiotropic effect of 
RCAN1 on CW, BMS and TPCT as well as UTS2R on 
R2, SFA and MUFA resulted from different SNPs, 
indicating that one gene might be involved in 
different pathways through its different cis-acting 
mechanisms. However, how TFB1M affects 
tenderness and juiciness and how CRHR2 impacts 
both juiciness and meat flavor remains unknown. In 
particular, the chemistry underlying beef flavor is 
complex, with an excess of 140 components identified 
in cooked beef volatiles [29]. 

It appears that the nuclear-encoded mitochon-
drial genes are promising candidates to aid in under-
standing of economically important traits in beef cat-
tle. Among a total of 17 traits influenced by gene 
networks in the present study, only four – TPFE, R1, 
R2 and SFA were not affected by nuclear-encoded 
mitochondrial genes. In other words, nine nu-
clear-encoded mitochondrial genes: BAK1, CRP, 
FABP3, MTFR1, RAB2A, RCAN1, TFAM, TFB1M and 
UQCRC1 participated in 13 gene networks (Figure 5). 
Both BAK1 and CRP function to induce apoptosis 
[30-31]. In particular, BAK1 plays a key role in block-
ing mitochondrial fusion to induce fragmentation, 
contributing to mitochondrial injury. FABP3 is con-
fined to the mitochondrial matrix [32]. In addition to 
its participation in the uptake, intracellular metabo-
lism and/or transport of long-chain fatty acids, 
FABP3 is also responsible in the modulation of cell 
growth and proliferation. MTFR1 promotes mito-
chondrial fission with a sequence specific mechanism 
[33]. RAB2A is a member of the Rab protein family 
and is involved in the maturation of pre-Golgi inter-
mediates [34]. RCAN1 is located in the minimal can-
didate region for the Down syndrome phenotype 
(DSCR1). The protein encoded by this gene interacts 
with calcineurin A and inhibits cal-
cineurin-dependent signaling pathways, possibly af-
fecting central nervous system development. The 
Drosophila homolog of DSCR1 was found to be a 
regulator of mitochondrial function [35]. TFAM and 
TFB1M are members of the basal mtDNA transcrip-
tion machinery that plays an essential role in mainte-
nance and biogenesis of mtDNA [36]. UQCRC1 en-
codes a subunit of mitochondrial respiratory complex 
III, which operates through a Q-cycle mechanism that 
couples electron transfer to generation of the proton 
gradient that drives ATP synthesis [37]. 

Tenderness is an important aspect of beef palat-
ability that contributes significantly to consumer sat-
isfaction. Basically, consumers want tender beef and 

are willing to pay for it. For example, among 1,036 
consumers surveyed, 89% of them indicated that they 
would definitely or probably buy a product described 
as Tender Select, i.e., the only steak guaranteed ten-
der and lean [38]. Warner-Bratzler shear force is ac-
cepted as an accurate method of measuring the ten-
derness of meat [39]. To date, several genetic markers 
have been developed at CAST and CAPN1 for asso-
ciation with the Warner-Bratzler shear force and thus 
used for improvement of beef tenderness [40-41]. 
Unfortunately, we did not observe any significant 
associations of these two genes with either shear force 
of cooked steak or taste panel tenderness rating in the 
Wagyu x Limousin population. Instead, we found a 
three-gene network with CRHR1, SLCA2 and TFB1M 
that affected both TPMT and TPOT (Figures 4 and 5), 
but not SFCS. These data indicate that genetic back-
ground might differ between the mechanical and 
taste assessments of meat tenderness. Although the 
Warner-Bratzler shear force and tenderness sensory 
rating are highly correlated (for example, r = -0.72), 
Destefanis and colleagues [42] found that consumers 
have difficulties in discriminating category 1 War-
ner-Bratzler shear (WBs > 62.59 N) from category 2 
(WBs: 52.78–62.59 N) and a greater inclination to dis-
tinguish category 5 (WBs < 32.96 N). Therefore, which 
assessment: mechanical or taste sensory should be 
used for improving meat tenderness need to be fur-
ther weighted or adjusted in order to meet consumer 
satisfaction.  

Overall, our present study indicated that three 
categories of phenotypes – carcass measurements, 
eating quality and fatty acid composition are not ge-
netically well connected as they do not share a lot of 
gene networks (Figure 5). Exceptions are only two: 
RCAN1 is associated with CW, BMS and TPCT, while 
CRHR1 is involved in BMS and two phenotypes of 
tenderness (TPMT and TPOT). Therefore, 
marker-assisted selection for improvement of one 
category of these traits would not interfere with im-
provement of another. The same principal can be also 
applied to five traits – CW, REA, SFD, KPH and BMS 
in carcass measurement as only RCAN1 links both 
CW and BMS (Figure 5). It has been well known that 
traditional selection with low selection intensity and 
long generation interval in beef cattle has resulted in 
very little improvement in such economically impor-
tant traits. Therefore, our present work provides a 
unique set of closely associated markers for genomic 
improvement of carcass, meat quality and healthful 
products in beef cattle.  
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