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Abstract 

TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS) are two highly conserved 
ribonucleoproteins. Pathogenic mutations of the TDP-43 or the FUS gene are all linked to 
amyotrophic lateral sclerosis (ALS) that is characterized by progressive degeneration of 
motor neurons. To better understand the correlation of ALS disease genes with the selec-
tivity of chronic motor neuron degeneration, we examined the longitudinal expression of the 
TDP-43 and the FUS genes in C57BL6 mice and in Sprague-Dawley rats. TDP-43 and FUS were 
robustly and ubiquitously expressed in the postnatal mice and rats, but were markedly de-
creased in the adult rodents. In adulthood, TDP-43 and FUS proteins were even undetectable 
in peripheral organs including skeletal muscles, liver, and kidney, but were constantly ex-
pressed at substantial levels in the central nervous system. Motor neurons expressed the 
TDP-43 and the FUS genes at robust levels throughout rodent’s lifetime. Moreover, TDP-43 
and FUS were accumulated in the cytoplasm of motor neurons in aged animals. Our findings 
suggest that TDP-43 and FUS play an important role in development and that constant and 
robust expression of the genes in motor neurons may render the neurons vulnerable to 
pathogenic mutation of the TDP-43 or the FUS gene. To faithfully model the pathology of 
TDP-43- or FUS gene mutations in rodents, we must replicate the expression patterns of the 
TDP-43 and the FUS gene in animals.  
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1. Introduction 
TAR DNA-binding protein (TDP-43) is a highly 

conserved ribonucleoprotein [1, 2]. The primary 
transcript of the mammalian TDP-43 gene can be al-
ternatively spliced to generate 11 mRNA molecules, 
with the major molecule containing all six exons and 
encoding TDP-43 protein [1]. TDP-43 is a member of 
heterogeneous ribonucleoprotein (hnRNP) family, 
which is characterized by the ability to bind RNA and 
DNA sequences through a common nucleo-
tide-binding domain known as RNA recognition mo-

tif [3-5]. Deletion of the TDP-43 gene in mice causes an 
arrest to embryonic development [6-8], indicating that 
TDP-43 plays a critical role in development. While the 
physiologic functions of TDP-43 remain to be eluci-
dated, pathogenic mutation of the TDP-43 gene is 
definitely linked to amyotrophic lateral sclerosis 
(ALS) and to motor neuron disease associated with 
frontotemporal lobe degeneration [9-13], indicating 
that mutant forms of TDP-43 are neurotoxic. Indeed, 
overexpression of human TDP-43 with pathogenic 
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mutations causes neurodegeneration in drosophila, 
mice, and rats [14-19]. Interestingly, TDP-43 is hy-
per-phosphorylated, ubiquitinated, and aggregated in 
affected cells in sporadic ALS and in a subset of fron-
totemporal lobe degeneration (FTLD) [20, 21]. The 
TDP-43 proteinopathy implies that aberrant accumu-
lation and modification of normal TDP-43 is toxic to 
vulnerable neurons. This notion is supported by ac-
cumulating evidence. Clinical studies showed that 
variation in the 3’-untranslated region of the TDP-43 
gene is associated with increased expression of the 
TDP-43 gene in ALS and FTLD [22, 23]. Overexpres-
sion of the normal human TDP-43 gene can induce 
neurodegeneration in transgenic animals [15, 17, 19]. 
Previous studies collectively suggest that TDP-43 
plays important roles in development and incurs tox-
icity to vulnerable neurons when the TDP-43 gene is 
pathogenically mutated or is aberrantly increased in 
gene expression. 

Similar to TDP-43, fused in sarcoma (FUS) also is 
a conserved ribonucleoprotein and its mutant forms 
are also linked to ALS [24-29]. FUS is initially reported 
to translocate and fuse with one of several other genes 
to form chimeric oncogenes in leukemia and liposar-
coma [30, 31]. FUS mainly resides in the nucleus [32], 
but increasing evidence showed that FUS shuttles 
between the nucleus and the cytoplasm [33-36]. As a 
ribonucleoprotein, FUS participates in gene regula-
tion [34, 35, 37, 38]. Deletion of the FUS gene causes 
postnatal death in inbred mice [39, 40], suggesting an 
important role for FUS in cell survival. Like TDP-43 
proteinopathy, FUS-positive inclusion is a feature of 
sporadic ALS and FTLD [41, 42]. Findings in the FUS 
gene suggest an important role for FUS in develop-
ment and in neuron survival. 

Both TDP-43 and FUS are linked to ALS that is 
characterized by progressive degeneration of motor 
neurons [43-48]. While loss of the TDP-43 or the FUS 
gene causes arrest to development, point-mutations of 
the genes incur selectively chronic toxicity to motor 
neurons. To better understand why these two ALS 
genes incur chronic toxicity selective to motor neu-
rons, we examined expression of the TDP-43 and FUS 
genes in the mice and rats at varying ages. Our find-
ings demonstrated that expression of the TDP-43 and 
FUS genes was robust and ubiquitous during post-
natal development but was markedly decreased in 
adulthood. TDP-43 and FUS proteins were main-
tained at substantial levels in the motor neurons 
throughout rodent’s lifetime. Our results suggest that 
constant and robust expression of the TDP-43 and 
FUS genes in motor neurons may be related to the 
selectivity of the neurotoxicity. 

2. Materials and Methods 
Animal experiments 

Animal use followed NIH guidelines and animal 
use protocols were approved by the Institutional 
Animal Care and Use Committees at Thomas Jeffer-
son University. C57BL6/J mice and Sprague-Dawley 
rats were used in this study. At each defined age, 
three mice and rats were used for analyses. For pro-
tein and RNA extraction, anesthetized mice and rats 
were killed and their tissues were dissected, frozen in 
powdered dry ice, and stored in a -80°C freezer until 
analysis. For histology, anesthetized animals were 
transcardially perfused with 4% paraformaldehyde in 
phosphate buffer (pH 7.4) and their brains and lum-
bar spinal cords were dissected and fixed in the same 
fixative until further use. 
Immunohistochemistry 

Animal tissues were fixed 4% paraformalde-
hyde, cryopreserved in 30% sucrose, and cut into 
three series of consecutive sections (20 μm) at a 
Cryostat. Each set of tissue sections was immunos-
tained for TDP-43, FUS, or ChAT. For immunohisto-
chemistry, tissue sections were incubated with rabbit 
polyclonal antibody against TDP-43 (ProteinTech 
Group) or FUS (Bethyl Laboratories: A300-292A). For 
double-fluorescence labeling, cross sections of lumbar 
spinal cord were incubated with goat anti-ChAT 
(Millipore) plus rabbit anti-TDP-43 or rabbit anti-FUS 
antibodies. Immunohistochemistry for TDP-43 and 
FUS was done with biotinylated goat anti-rabbit IgG 
(1:500; Vector Laboratories) and perox-
idase-conjugated avidin-biotin complex (ABC kit; 
Vector Laboratories). After thorough washing, bound 
antibodies were visualized by addition of diamino-
benzidine (Vector Laboratories). Immunostained cells 
were observed under a Nikon microscope and were 
documented with a Nikon digital camera. Immunof-
luorescence staining for ChAT (green) and TDP-43 
(red) or FUS (red) was visualized and documented 
with a confocal microscope. 
Immunoblotting 

Animal tissues were mechanically homogenized 
in phosphate buffer (pH 7.4) supplied with protease 
inhibitors (Sigma) and tissue lysates were cleared of 
debris by centrifugation at 16,000 × g for 10 minutes. 
Protein content in cleared lysate was determined by 
BCA assay (BioRad). Total protein of 30 μg in each 
tissue lysate was resolved on 4-20% gradient 
SDS-PAGE and blotted onto GeneScreen Plus mem-
brane (Perkin Elmer). Rodent’s FUS protein is about 
68kDa and is much bigger than the other two proteins 
examined: TDP-43: 42kDa; GAPDH: 25kDa. Blotting 
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membranes were cut at the molecular marker of 
55kDa. The upper part of blotting membrane was 
used for detecting FUS immunoreactivity and the low 
part was used for detecting TDP-43 and GAPDH 
immunoreactivity. FUS immunoreactivity was de-
tected with a rabbit polyclonal antibody (Bethyl La-
boratories: A300-293A). TDP-43 immunoreactivity 
was detected with a polyclonal antibody purchased 
from ProteinTech Group (10782-2-AP). After TDP-43 
antibodies were stripped off blotting membrane, 
immunoreactivity to GAPDH was detected by incu-
bating the membrane with a mouse monoclonal an-
tibody to GAPDH (Abcam). GAPDH immunoreactiv-
ity was used as a loading standard. Immunoreactivity 
signal was developed with Super Signal kit (Pierce). 
Quantitative PCR 

Frozen lumbar spinal cord was cut into sections 
of 100 µm on a Cryostat and twenty consecutive sec-
tions were collected from each animal. Tissue sections 
were mounted on RNase-free heat-treated slides and 
stained with 1% toluidine blue in 70% ethanol for 5 
min at –20 °C, followed by several washes in 70% 
ethanol at –20 °C to remove excess dye. The ventral 
horn of spinal cord was dissected under microscope 
and collected in 1ml Trizol (Sigma) for each animal. 
Total RNA was extracted from pooled ventral horn 
and cleared of DNA contamination with RNA Easy 
kit and RNase-free DNase (Qiagen). One microgram 
of purified RNA from each sample was reversely 
transcribed to cDNA with oligo-dT primer (RT kit, 
Invitrogen). Relative levels of TDP-43 and FUS mRNA 
in individual samples were estimated by quantitative 
PCR with the following gene-specific primers: 
5’-GAGGATTTCCCAGTGGAGGT-3’ (forward) and 
5’-CCTTACACTGGTTGCATTCA-3’ (reverse) for the 
FUS gene; 5’-GCAATCTGGTCTATGTTGTC-3’ (for-
ward) and 5’-ACCCAACACTATGAGGTCAG-3’ 
(reverse) for the TDP-43 gene; and 
5’-TGGTTCGCTACTCCCTTGAC-3’ (forward) and 
5’-CTTGATGGCCTGGGCAGTT-3’ (reverse) for the 
L17 gene. The mRNA level of the L17 gene was used 
as an internal control for PCR quantification. 

The mRNA levels in each sample were estimated 
by quantitative PCR with SYBR green kit per manu-
facturer’s instruction (Qiagen). Primers were used at a 
concentration of 500 nM. Cycling conditions were 15 
min at 95°C followed by 40 cycles of 15 seconds at 
94°C, 30 seconds at 60°C, and 20 seconds at 72°C. 
Aliquots of the amplified products were separated on 
3% agarose gels to ensure amplification of the specific 
products at the predicted length. The threshold cycle 
number (Ct) for TDP-43 or FUS was normalized to the 
Ct for L17 and the relative mRNA levels of TDP-43 or 

FUS was determined and expressed as a ratio relative 
to the mRNA level in 10-day-old rats. 

3. Results 
TDP-43 and FUS are two ALS genes and their 

inactivation causes developmental arrest in inbred 
mouse strains [6-13, 24-29, 39, 40]. To better under-
stand the correlation of ALS disease genes with selec-
tive motor neuron degeneration, we examined the 
robustness of TDP-43 and FUS gene expression in 
laboratory mice during postnatal development and in 
adulthood. We chose C57BL6 mice because this strain 
is commonly used in laboratories and appears sensi-
tive to ALS disease gene [49-51]. In the postnatal mice, 
the TDP-43 and the FUS genes were robustly and 
ubiquitously expressed in all the tissues examined 
(Figure 1). As the mice grew, TDP-43 and FUS pro-
teins were globally and markedly decreased. By the 
age of 80 days, these two proteins were undetectable 
by immunoblotting in some peripheral organs in-
cluding skeletal muscle, liver, and kidney (Figure 
1C-D). In adulthood, TDP-43 and FUS were signifi-
cantly decreased in the lung though to a lesser extent 
than in the other peripheral organs (Figure 1D). In 
contrast, sustainable levels of TDP-43 and FUS pro-
teins were detected in mouse central nervous system 
(CNS) including brain, cerebellum, and spinal cord 
(Figure 1A). Substantial and constant levels of TDP-43 
and FUS proteins were detected in the CNS of the 
mice at the ages of 40, 80, or 300 days (Figure 1A), 
implying that TDP-43 and FUS proteins are critical to 
neuron survival. We examined three animals at each 
defined age and obtained similar results. Robust and 
global expression of the TDP-43 and FUS genes in 
postnatal mice suggests that these two genes play an 
important role in development. 

As motor neurons are the primary targets of ALS 
disease genes, we further examined whether motor 
neurons express TDP-43 and FUS at constant and 
substantial levels in adulthood. The intensity of 
TDP-43 and FUS immunostaining and the density of 
immunostained cells were much higher in postnatal 
mice by age of 10 or 30 days than in adult mice by age 
of 200 or 600 days (Figure 2A-B and Figure 3A-B). 
Groups of large cells in the ventral horn of spinal cord 
constantly expressed TDP-43 and FUS at substantial 
levels throughout mouse lifetime (Figures 1 and 2). To 
determine whether those large cells were motor neu-
rons, we used double-fluorescence labeling to identify 
TDP-43- and FUS-expressing cells in mouse spinal 
cords. Indeed, motor neurons identified by immu-
nostaining for ChAT (a marker of motor neurons) 
expressed TDP-43 and FUS at substantial and con-
stant levels in adult mice (Figures 2C and 3C). TDP-43 
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and FUS proteins mainly resided in the nuclei of mo-
tor neurons in young mice, but were accumulated in 
the cytoplasm of motor neurons in aged mice (Figures 
2C and 3C). By quantitative PCR analysis, we detected 
that the levels of TDP-43 and FUS mRNA remained 
constant in the ventral horn of spinal cord in mouse 

lifetime (Figure 4). Neurons in the primary motor 
cortex also expressed TDP-43 and FUS at substantial 
levels throughout mouse lifetime (Figure 5). Our 
findings suggest that aging is a factor contributing to 
cytoplasmic translocation of TDP-43 and FUS. 

 

Figure 1. Expression of TDP-43 and FUS is markedly decreased in adult mice. A-D, Immunoblotting showing 
that expression of TDP-43 and FUS was gradually but markedly reduced in mouse tissues during postnatal development. 
Tissues were dissected from C57BL6 mice at varying ages (day: d) and 30 μg of total proteins in each tissue lysate was 
resolved on gradient SDS-PAGE. Blotting membranes were probed sequentially with antibodies against FUS, TDP-43, and 
GAPDH.  
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Figure 2. Expression of TDP-43 in spinal motor neurons remains sustainable in mouse lifetime. A, B, Im-
munohistochemistry showing that large cells in the ventral horn of spinal cord expressed TDP-43 at sustainable levels while 
the population of TDP-43-expressing cells was markedly decreased in aged mice. Lumbar spinal cords were dissected from 
C57BL6 mice at varying ages and cut into transverse sections on a Cryostat. Tissue sections were immunostained with an 
antibody against TDP-43. Scale bars: A, 100 μm; B, 20 μm. C, Immunofluorescence staining showing that the motor neurons 
of lumbar spinal cord expressed TDP-43 at sustainable levels in mouse lifetime. 
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Figure 3. Expression of FUS in spinal motor neurons remains sustainable in mouse lifetime. A, B, Immuno-
histochemistry showing that large cells in the ventral horn of spinal cord expressed FUS protein at sustainable levels while 
the population of FUS-expressing cells was markedly decreased in aged mice. Lumbar spinal cords were dissected from 
C57BL6 mice at varying ages and cut into transverse sections on a Cryostat. Tissue sections were immunostained with an 
antibody against FUS. Scale bars: A, 100 μm; B, 20 μm. C, Immunofluorescence staining showing that the motor neurons of 
lumbar spinal cord expressed FUS at sustainable levels in mouse lifetime. 
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Figure 4. Sustainable levels of FUS and TDP-43 mRNA in the ventral horn of spinal cord. A, Regular PCR 
analysis showing that the mRNA levels of FUS and TDP-43 were sustainable in the ventral horn of spinal cord throughout 
mouse lifetime. Lumbar spinal cords were dissected from C57BL6 mice at varying ages and cut into transverse sections. The 
ventral horns were dissected from the tissue sections and pooled for RNA extraction. B, C, Quantitative PCR analysis 
showing that the FUS and TDP-43 genes were sustainably expressed in the ventral horn of spinal cord in mouse lifetime. The 
detection thresholds for FUS and TDP-43 were first normalized to those for L17 mRNA and were then calculated relative 
to those in the mice at the age of 10 days. Data were the means averaged from three mice at each defined age. 
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Figure 5. Expression of FUS and TDP-43 remains sustainable in the motor cortex in mouse lifetime. A-J, 
Immunohistochemistry showing that FUS (A-E) and TDP-43 (F-J) were constantly expressed in the primary motor cortex in 
mouse lifetime. 

 

 

Figure 6. Expression of FUS and TDP-43 remains sustainable in the motor neurons in rat’s lifetime. A, 
Immunoblotting showing that expression of FUS and TDP-43 in rat’s brain and spinal cord was markedly decreased during 
postnatal development. B-E, Immunohistochemistry showing that spinal motor neurons sustainably expressed FUS and 
TDP-43 while the population of FUS- and TDP-43-expressing cells was markedly decreased in aged rats. Lumbar spinal cords 
were dissected from SD rats at varying ages and cut into transverse sections on a Cryostat. Tissue sections were immu-
nostained with antibodies against FUS or TDP-43 and were counterstained with haematoxylin. Micrographs (B1-E1) showed 
the left halves of lumbar spinal cords and micrographs (B2-E2) showed the ventral horns of the corresponding lumbar spinal 
cords shown in B1-E1. 
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To validate our findings in the mice, we ex-
amined age-related expression of the TDP-43 and FUS 
genes in laboratory rats. Similar to the mice, Spra-
gue-Dawley rats robustly expressed TDP-43 and FUS 
proteins in the CNS at postnatal ages (Figure 6A). 
Expression of the TDP-43 and FUS genes was mar-
kedly decreased to a constant level in adulthood 
(Figure 6). While the density of TDP-43- and 
FUS-expressing cells was largely decreased in the 
spinal cord, large cells in the ventral horn constantly 
expressed TDP-43 and FUS at substantial levels 
throughout rat’s lifetime (Figure 6B-E). Our findings 
in the mice and in the rats consistently showed that 
motor neurons expressed TDP-43 and FUS at sub-
stantial levels in rodent’s lifetime while the number of 
TDP-43- and FUS-expressing cells was gradually and 
markedly decreased during development. 

4. Discussion 
Like other neurodegenerative diseases, ALS 

primarily affects a subset of neurons in the CNS 
[43-48]. It remains largely unknown why motor neu-
rons selectively degenerate in a chronic process in 
ALS. TDP-43 and FUS are identified as novel genes 
linked to ALS and their mutant forms segregate with 
some sporadic and familial ALS [9-13, 24-29]. We 
examined the longitudinal expression of the TDP-43 
and FUS genes in the mice and rats. TDP-43 and FUS 
were globally and robustly expressed during post-
natal development, but their expression was mar-
kedly decreased in adult animals and was even 
quiescent in some peripheral organs in adulthood. 
Strikingly, motor neurons expressed the TDP-43 and 
FUS genes at constant and substantial levels in ro-
dent’s lifetime. As aging, TDP-43 and FUS proteins 
were accumulating in the cytoplasm of motor neu-
rons. Our findings suggest that high load of TDP-43 
and FUS proteins in motor neurons may be correlated 
with selective degeneration of motor neurons in the 
TDP-43- or FUS-linked ALS. 

Lifetime-long robust expression of the TDP-43 
and FUS genes in motor neurons suggests that ho-
meostasis of TDP-43 and FUS proteins is critical to 
motor neuron survival. Lasting alternation in the 
functions of these genes may be harmful to motor 
neurons. Aggregation of hyper-phosphorylated and 
ubiquitinated TDP-43 is a hallmark of sporadic FTLD 
and sporadic and non-SOD1-linked familial ALS [20, 
21]. Formation of TDP-43 aggregates may reduce the 
availability of functional proteins, lead to generation 
of harmful intermediate products, or indicate an 
excess of functional or malfunctional TDP-43 proteins. 
Although the consequences of protein aggregation 
remain to be elucidated, TDP-43 inclusions definitely 

are pathology [20, 21]. Some disease genes are con-
stantly expressed in vulnerable neurons and an in-
crease in gene expression is sufficient to induce neu-
rodegeneration. Alpha-synuclein is linked to Parkin-
son’s disease, an age-related neurodegenerative dis-
ease that primarily results from degeneration of do-
paminergic neurons in the midbrain [52-54]. During 
the process of aging, dopaminergic neurons preserve 
a high level of alpha-synuclein protein and oxidative 
modification of alpha-synuclein increases the protein 
level [55]. As aging compromises cellular protection 
mechanisms, high load of disease protein may sensit-
ize the cells to internal or external risk factors. Intake 
of 1-methyl-4-phenyl-1, 2, 3, 4-tetrahydropyridine 
(MPTP) induces selective loss of dopaminergic neu-
rons in human and in animals [56, 57]. While overex-
pression of alpha-synuclein sensitizes dopaminergic 
neurons to MPTP toxicity in transgenic mice [58], de-
letion of the alpha-synuclein gene protects dopaminer-
gic cells against MPTP toxicity in the knockout mice 
[59-62]. Similar to alpha-synuclein [55], TDP-43 and 
FUS retain a high level in vulnerable neurons 
throughout a lifetime (Figures 1-6). Disturbance of 
TDP-43 and FUS homeostasis may incur toxicity to 
motor neurons. Increased expression of the TDP-43 
gene is observed in ALS patients [22, 23], and over-
expression of the human TDP-43 gene induces moto-
neuron degeneration in transgenic mice [15]. In-
creased expression of the TDP-43 gene indeed is 
neurotoxic [15, 63]. TDP-43 and FUS are two ribo-
nucleoproteins and are all linked to ALS. Increased 
expression of the FUS gene may also be harmful to 
motor neurons though convincing evidence is under 
search. 

On the other hand, reduction of functional 
TDP-43 and FUS proteins could be harmful to motor 
neurons. Large quantities of TDP-43 and FUS proteins 
may be ubiquitously required for cell differentiation 
and division during development, but may be re-
quired only for the survival of few cell types such as 
motor neurons in adulthood. Expression patterns of 
the TDP-43 and FUS genes may explain why deletion 
of the TDP-43 or the FUS gene causes arrest to mouse 
development [6-8, 39, 40]. As ribonucleoproteins, 
TDP-43 and FUS shuttle between the nucleus and the 
cytoplasm [33-36, 64]. Disturbance of protein traf-
ficking may result in accumulation of TDP-43 and 
FUS in a cellular compartment. Cellular stress or ag-
ing may induce aggregation of TDP-43 and FUS, re-
ducing the availability of functional proteins. In 
adulthood, reduction of TDP-43 or FUS protein may 
induce degeneration of vulnerable neurons or sensit-
ize the affected neurons to stress stimulation. Al-
though the natures of pathogenic mutations in the 
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TDP-43 and the FUS genes remain to be determined, 
pathogenic mutations may alter the function of the 
genes and induce chronic toxicity to vulnerable cells. 
Substantially constant expression of the TDP-43 and 
the FUS genes in motor neurons may render the cells 
vulnerable to pathogenic mutation of the genes. 

Taken together, ubiquitous, robust gene expres-
sion in postnatal rodents suggests an important role 
for TDP-43 and FUS in development. In adulthood, 
expression of these two genes was markedly reduced 
in the most tissues, but was maintained at substantial 
levels in the motor neurons, implying that TDP-43 
and FUS may continuously play a critical role in mo-
tor neurons. Such expression patterns may be related 
to the selective neurotoxicity of pathogenic mutations 
in the TDP-43 and the FUS genes. To faithfully re-
produce the pathology of TDP-43 or FUS gene muta-
tions in rodents, we must replicate the expression 
patterns of the genes in animals by using sophisti-
cated genetics approaches such as gene knockin. To 
avoid a disturbance of rodent’s development, tem-
poral or spatial gene deletion may be required to de-
termine the functions of TDP-43 and FUS in motor 
neurons. Our findings provide guidance to the de-
velopment of rodent models for TDP-43- or 
FUS-caused pathology. 
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