
Int. J. Biol. Sci. 2010, 6 

 

 

http://www.biolsci.org 

730 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  BBiioollooggiiccaall  SScciieenncceess  
2010; 6(7):730-755 

© Ivyspring International Publisher. All rights reserved 
Review 

Viral Oncogenes, Noncoding RNAs, and RNA Splicing in Human Tumor   

Viruses 

Zhi-Ming Zheng  

Tumor Virus RNA Biology Laboratory, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer 
Institute, National Institutes of Health, Bethesda, MD 20892, USA  

 Corresponding author: zhengt@exchange.nih.gov 

Received: 2010.10.31; Accepted: 2010.11.27; Published: 2010.12.01 

Abstract 

Viral oncogenes are responsible for oncogenesis resulting from persistent virus infection. 
Although different human tumor viruses express different viral oncogenes and induce dif-
ferent tumors, their oncoproteins often target similar sets of cellular tumor suppressors or 
signal pathways to immortalize and/or transform infected cells. Expression of the viral E6 and 
E7 oncogenes in papillomavirus, E1A and E1B oncogenes in adenovirus, large T and small t 
antigen in polyomavirus, and Tax oncogene in HTLV-1 are regulated by alternative RNA 
splicing. However, this regulation is only partially understood. DNA tumor viruses also en-
code noncoding RNAs, including viral microRNAs, that disturb normal cell functions. Among 
the determined viral microRNA precursors, EBV encodes 25 from two major clusters (BART 
and BHRF1), KSHV encodes 12 from a latent region, human polyomavirus MCV produce only 
one microRNA from the late region antisense to early transcripts, but HPVs appears to 
produce no viral microRNAs. 

Key words: Human papillomaviruses, Epstein-Barr virus, Kaposi sarcoma-associated herpesvirus, 
adenovirus, polyomavirus, human T-cell leukemia virus, viral noncoding RNA, viral microRNA, 
RNA splicing 

A BRIEF HISTORY 

  In 1909, a farmer brought Dr. Francis Peyton 
Rous, a junior faculty member then at Rockefeller 
University, a hen that had a breast tumor. Rous per-
formed an autopsy, extracted tumor cells, and injected 
the cells into other hens, which then developed sar-
coma [1]. This was the first experimental proof of an 
infectious etiologic agent of cancer, and the chicken 
sarcoma-inducing RNA virus was subsequently 
named the Rous sarcoma virus. After a half-century 
debate on whether viruses truly cause cancer, Rous 
was eventually awarded the Nobel Prize in Medicine 
and Physiology in 1966 for his discovery of tu-
mor-inducing viruses. It is now estimated that 
20%-25% of human cancers worldwide have a known 
viral etiology [2]. 

 Early pioneering efforts on tumor-inducing vi-
ruses were mainly focused on avian and small-animal 
retroviruses, a group of RNA viruses containing an 
RNA-dependent DNA polymerase (reverse tran-
scriptase), and it was thought that there were no sim-
ilar viruses in humans. Demonstration in 1980 of the 
first human retrovirus, human T-cell leukemia virus 
type 1 (HTLV-1), which causes adult T-cell leukemia, 
was therefore a landmark achievement [3-5]. Later, 
HTLV-2, which is far less pathogenic than HTLV-1, 
was isolated from a hairy T-cell leukemia [6], but soon 
was demonstrated not to be the agent of the malig-
nant hematological disease. HTLV-3 [7] and -4 [8] 
have been discovered recently as new members of the 
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HTLV family in central Africa, but their association 
with human diseases remains unclear [9].  

 Another line of investigation was to determine 
whether human DNA viruses play an etiological role 
in human cancers similar to the role of animal DNA 
viruses, several of which can easily transform rodent 
cells in culture and induce tumors when injected into 
animals. This effort initially led to associate herpes 
simplex virus type 2 (HSV2) with the development of 
cervical cancer [10,11], but subsequently human pa-
pillomaviruses (HPVs) were proven to be the causa-
tive agent in the development of cervical cancer [12]. 
Dr. Harald zur Hausen of Germany won the Nobel 

Prize in 2008 for his discovery in 1983 that HPVs 
cause cervical cancer.  

HUMAN DNA AND RNA TUMOR 
VIRUSES 

 Tumor viruses can be classified into two groups 
based on their genetic material, as summarized in 
Table 1. Cancer-causing DNA tumor viruses and 
RNA-containing retroviruses have been extensively 
investigated, and this review will be focused more on 
human DNA and RNA tumor viruses, instead of oth-
er animal tumor viruses. 

 

Table 1. Human oncogenic viruses. 

 
 

 

1. Human DNA tumor viruses 

HPVs 

 High-risk or oncogenic HPVs are etiological 
agents of cervical cancer. Among the high-risk HPVs, 
HPV16 and HPV18 are the principal causes of cervical 
cancer as well as several other tumor types [13]. A 
characteristic of infection by these HPVs is that the 
viral genomes are commonly integrated into the can-
cer cell genome. Two principal viral oncoproteins 
involved in cervical carcinogenesis are E6 and E7, 
which destabilize, respectively, two cellular tumor 
suppressors, p53 and pRb [14]. HPVs are transmitted 
primarily through sexual contact, and, as human 
cancer viruses, have been the best studied of the tu-
mor viruses. The US Food and Drug Administration 
(FDA) in June 2006 approved Gardasil, the first cancer 
vaccine, for use in females 9-26 years of age to prevent 
cervical cancer, precancerous genital lesions, and ge-

nital warts caused by HPV6, HPV11, HPV16, and 
HPV18 [15]. 

Epstein-Barr virus (EBV) 

 EBV primarily causes infectious mononucleosis, 
but also contributes to the pathogenesis of four hu-
man tumors: the African form of Burkitt lymphoma, 
B-cell lymphomas in individuals with immunosup-
pression, nasopharyngeal carcinoma (NPC) in sou-
theastern Asia, and some kinds of Hodgkin disease. 
EBV infects B lymphocytes, but does not replicate 
within the B cells; instead, it transforms them into 
lymphoblasts, which have an indefinite life span, 
rendering these cells immortal. EBV encodes a viral 
oncogene, LMP1 (latent membrane protein-1 or 
BNLF1). LMP1 is expressed in EBV-associated lym-
phoma and is essential for B-cell transformation and 
for disruption of cellular signal transduction [16-18]. 
Although the EBV nuclear antigen 1 (EBNA1) is one 
of the earliest viral proteins expressed after infection 
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and is the only latent protein consistently expressed in 
viral-associated tumors, recent results indicate that 
EBNA1 is not a viral oncoprotein [19,20]. BARF1 
(BamHI-A reading frame-1) is also an early gene but is 
expressed as a latent gene in most NPCs [21]. Recent 
studies have suggested that BARF1 may have an im-
portant role in NPC oncogenesis [22,23].  

Kaposi sarcoma-associated herpesvirus (KSHV) 

 KSHV or human herpesvirus 8 (HHV8) infection 
is associated with all forms of Kaposi sarcoma, pri-
mary effusion lymphoma or body cavity–based B-cell 
lymphoma, and multicentric Castleman disease. 
KSHV encodes a viral G protein–coupled receptor 
(vGPCR) that presumably functions as a viral onco-
gene in immortalization of human endothelial cells 
and induction of angioproliferative tumors [24,25]. 
KSHV vGPCR is not a split gene and thus has no RNA 
splicing in its expression. 

Human polyomaviruses 

 The most important member in this family is 
simian virus 40 (SV40), one of the most common latent 
viruses of rhesus monkeys. For decades, SV40 which 
does not infect human has attracted the interest of 
many investigators in the field of cancer research be-
cause of its characteristic tumor antigens (T antigens) 
that can cause malignant cell transformation. Al-
though two human polyomaviruses, BK virus and JC 
virus, have been described as oncogenic in rodents 
and nonhuman primates, whether these two viruses 
have any roles in human cancer is not clear. Recently, 
a new human polyomavirus, Merkel cell polyomavi-
rus (MCV), was discovered in ~80% of Merkel cell 
carcinomas (MCCs) [26]. An established MCC cell line 
contains monoclonal MCV DNA integration. The in-
tegrated MCV DNA encodes a mutant T antigen that 
prevents autoactivation of integrated virus replication 
[27]. Interestingly, MCV and two new human polyo-
maviruses, polyomavirus-6 (HPyV6) and HPyV7, 
appear to inhabit healthy human skin with 40% de-
tection rate by a rolling cycle amplification technique 
[28] and approximately 88% of adult subjects without 
MCC were MCV seropositive [29].  

Human adenoviruses 

 Human adenoviruses are a group of small DNA 
viruses that commonly cause respiratory infections. 
Human adenoviruses have not been linked to any 
human cancer, but some serotypes, such as adenovi-
rus types 2, 5, 12, 18, and 31, are capable of trans-
forming rodent cells in culture and inducing tumors 
in hamsters or rats. Two viral oncogenes, E1A and 
E1B, have been identified as responsible for the ade-
novirus tumorigenicity and thus have served as use-

ful tools for studying many important cellular 
processes in tumor biology [30].  

Hepatitis B virus (HBV) 

 HBV is endemic in Southeast Asia and 
sub-Saharan Africa. Epidemiological observations 
and experimental evidence in animal models have 
established a clear association between HBV infection 
and liver cancer. Although the precise role of HBV in 
causing liver cancer is not yet understood, some 
compelling evidence suggests that the HBx gene 
could be a viral oncogene [31], as its protein product 
can disrupt signal transduction and deregulates cell 
growth [32]. Recent studies indicate that HBx func-
tions through the inhibition of proteasome activities 
to enhance HBV replication in vivo [33]. HBx also 
binds to and enhances the enzymatic activity of 
phosphatidylinositol 3-kinase class III, an enzyme 
critical for the initiation of autophagy [34]. HBx is not 
a split gene and thus there is no RNA splicing in its 
expression. 

2. Human RNA tumor viruses 

HTLV-1 

 HTLV-1–associated adult T-cell leuke-
mia/lymphoma is endemic in the southern islands of 
Japan, the Caribbean basin, and South Africa. HTLV-1 
infects CD4+ T lymphocytes, and infected T cells can 
be transmitted via sexual intercourse, blood transfu-
sion, or breast feeding. Only about 1 percent of in-
fected individuals will develop leukemia, and then 
only after a period of 20 to 30 years of asymptomatic 
infection [35]. 

 All members of the HTLV family differ from 
other oncogenic retroviruses in that they do not con-
tain viral homologues of cellular proto-oncogenes and 
do not integrate into specific sites of the human ge-
nome to disrupt proto-oncogenes. Although the me-
chanism of transformation is not clear, the viral on-
coprotein Tax, which promotes transcription and cell 
cycle progression, may be involved in setting up an 
autocrine (self-stimulating) loop that causes conti-
nuous proliferation of infected T cells [36]. 

Xenotropic murine leukemia virus–related virus (XMRV) 

in human prostate cancer 

 Recently, Dong et al claimed that they discov-
ered XMRV as a new human retrovirus associated 
with prostate cancer. XMRV was isolated from pros-
tate cancer tissue from patients homozygous for re-
duced enzyme activity of RNase L due to a single 
amino acid substitution and is susceptible to inhibi-
tion by interferon [37]. XMRV infection might be also 
associated with chronic fatigue syndrome [38-40]. 
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XPR1 (xenotropic and polytropic retrovirus receptor 
1) is the receptor for XMRV infection [41]. However, 
recent reports from other groups appear controversial 
for a possible role of XMRV in prostate cancer and in 
chronic fatigue syndrome [42-47].  

Hepatitis C virus (HCV) 

 HCV belongs to the flavivirus family. Its 
plus-strand RNA genome carries a long open reading 
frame (ORF) encoding a polyprotein precursor of 3010 
amino acids, which can be cleaved into ten different 
proteins (three structural and seven nonstructural). 
Although HCV oncogenesis is not well understood, 
persistent HCV infection is a prerequisite for the de-
velopment of HCV-associated liver cancer [48]. There 
are no oncogenes in the viral genome, but liv-
er-specific miR-122 is required for HCV replication 
[49].  

VIRAL ONCOGENES AND THEIR 
FUNCTIONS 

E6 and E7 oncogenes in high-risk HPVs 

 HPV E6 and E7 from high-risk HPV types have 
the capacity to immortalize and transform keratino-
cytes and epithelial cells. Low-risk or non-oncogenic 
HPV E6 and E7, however, lack such biological activity 
[50-56]. Biochemically, high-risk E6 but not low-risk 
E6 interacts with E6AP and the tumor suppressor 
protein p53 to induce ubiquitination-mediated de-
gradation of p53[57-59]. An E6 F47R mutant is defec-
tive for polyubiquitination and degradation of p53 
[60,61]. High-risk E7 and not low-risk E7 interacts 
with the pRb tumor suppressor protein via the 
LXCXE motif in the E7 CR2 domain to promote cell 
cycle progression [58,59,62-64]. Thus, interaction with 
cellular tumor suppressor proteins and perturbation 
of normal cell cycle control by high-risk E6 and E7 are 
believed to be the most important influence for ma-
lignant conversion [65-67]. In this regard, E6 from 
HPV16 (16E6), a high-risk type, binds E6AP more 
strongly and drives the degradation of p53 more effi-
ciently than 18E6 [59]. In contrast, low-risk 11E6 has 
minimal binding affinity for E6AP [68] and influences 
the degradation of p53 only weakly in vivo [69]. Un-
der hypoxic conditions, high-risk E6 also inactivates 
the CYLD tumor suppressor through interactions 
with CYLD deubiquitinase to allow unrestricted ac-
tivation of NF-κB [70]. 

 The full-length oncoprotein E6 is a basic nuclear 
protein (~18 kDa) composed of ~150 amino acid (aa) 
residues. Similar to E6 proteins encoded by other pa-
pillomaviruses, the 16E6 which has been extensively 
analyzed, contains four zinc-binding motifs 
(Cys-X-X-Cys) and forms two Cys/Cys fingers that 

bind zinc directly [71]. 16E6 also contains a PDZ do-
main–binding motif at its C-terminal extremity [72,73] 
and three nuclear localization signals (NLSs) [74] (Fig. 
1A). Besides the ability to immortalize and transform 
cells and induce p53 degradation, 16E6 is known to be 
functionally involved in regulating gene transcription 
[75,76]. In addition to its effect on p53, 16E6 can inte-
ract with other transcription factors and coactivators, 
including p300/CBP [77,78], IRF-3 [79], and c-Myc 
[80]. The 16E6–cMyc interaction induces transcription 
of h-TERT to promote cell immortalization [81,82]. In 
addition, 16E6 is an RNA binding protein and inte-
racts with cellular splicing factors and RNA via its 
C-terminal NLS3 to regulate splicing of E6E7 bici-
stronic RNAs [83]. The multifunctional activity of 
16E6 is not restricted to the nucleus, because it can act 
as a regulator of signal transduction through inte-
racting with cytoplasmic E6BP (Erc55) [84], E6TP 
[85-87], paxillin [88], TNFR1 [89], protein tyrosine 
phosphatase H1 [90], and PDZ proteins such as 
SAP97/hDlg [91,92] and MAGI-1 [73]. Other E6 
partner proteins have been summarized recently in a 
detailed review [14]. Taken together, these interac-
tions suggest that 16E6 and presumably other 
high-risk E6s can be regarded as multifaceted viral 
proteins with characteristic and distinct activities in 
the nucleus and cytoplasm of the cells they infect. 

 The full-length oncoprotein E7 is a nuclear pro-
tein containing ~100 aa residues. The N-terminus of 
E7 contains sequence similarity to a portion of CR1 
and the entire CR2 of adenovirus E1A and related 
sequences in SV40 T antigen. Oncogenic E7 binds pRB 
and the related pocket proteins p107 and p130 with 
high affinity via the LXCXE motif in CR2 (Fig. 1B), 
whereas low-risk or non-oncogenic E7 binds pRB with 
much lower efficiency. Oncogenic E7 induces the de-
gradation of pRB by interacting with the cullin 2 
ubiquitin ligase complex [93]. The C-terminus of E7 
may be involved in zinc-binding [94]. E7 contains a 
nuclear localization signal in the N-terminal domain 
(aa 1-37) [95]. In addition to its cellular transformation 
activities, oncogenic E7 also plays a role in the viral 
life cycle [96] and affects many other cellular activities 
in HPV-infected cells. E7 dysregulates the cell cycle by 
stabilizing p21 [97,98] and upregulating p16 expres-
sion [99]. Oncogenic E7 induces mitotic defects and 
aneuploidy by inducing centrosome abnormalities 
through its association with the centrosomal regulator 
γ-tubulin; this inhibits γ-tubulin recruitment to the 
centrosome [100] and leads to chromosomal instabil-
ity. More recently, HPV16 E7 expression was shown 
to complement the requirement of RKO colorectal 
cancer cells for CDK6, ERBB3, FYN, AAK1, and 
TSSK2 for cell survival [101]. As both high-risk and 
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low-risk HPV E7s interact with p300 [102], PCAF 
[103], steroid receptor coactivator 1 [104], and p600 
[105], these interactions do not appear to be sufficient 

to mediate the transformation function of HPV E7. 
Other E7 partner proteins have been summarized in 
two recent reviews [14,106].  

 

 

Figure 1. Schematic structures of oncoproteins E6 and E7. A. Protein structure and functions of HPV16 E6. Four 

zinc-binding motifs are shown as grey boxes. The F47 position in E6 appears to be responsible for p53 destabilization [61]. 

Nuclear localization signals (NLS) [74] and the PDZ-binding domain in the protein are indicated by underlines. B. Protein 

structure and functions of HPV16 E7. Relative locations of the regions with sequence motifs similar to a portion of con-

served region 1 (CR1) and the entire CR2 of adenovirus E1A are shown with the pRB-binding site LXCXE in the CR2. Grey 

boxes indicate zinc-binding motifs. CKII, casein kinase II phosphorylation sites. Arrows in this figure and the following figures 

for individual proteins indicate functions of the protein, not its domains or motifs. 
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E1A and E1B in human adenoviruses  

 The adenovirus genome encodes two viral on-
cogenes, E1A and E1B, positioned side-by-side in the 
left 11.2% of the genome. After an adenovirus infects a 
human cell, the first viral proteins that are synthe-

sized are products of the E1A region. The full-length 
E1A protein (289R) is a nuclear protein consisting of 
289 aa residues and has four conserved regions: CR1 
at the N-terminus, CR2 and CR3 in the middle, and 
CR4 at the C-terminus (Fig. 2A).  

 

 

Figure 2. Schematic structures of adenovirus E1A protein and mRNAs. A. Structure of E1A protein (full-length 289R 

variant) and its biological functions. Four conserved regions (CR1-CR4) in E1A and mapped domains in E1A are diagramed 

[30]. B. RNA structure and alternative spliced species of E1A pre-mRNA. A bidirectional splicing enhancer (BSE) is shown in 

exon 2 in green, and cellular splicing factors or regulators that control selection of each splice site are indicated by arrows. 

The panel is modified from reference [269], with permission. Dotted lines indicate splicing directions. 
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The expression of a functional full-length E1A is 
necessary for the transactivation of the other adeno-
virus early genes, including E1B. E1A also expresses a 
truncated form or small E1A with 243 aa residues that 
lacks a CR3 region due to alternative RNA splicing 
and thus lacks the transactivation activity. Both E1A 
proteins (289R and 243R) are most abundant during 
early viral infection and display similar functions in 
the induction of cellular DNA synthesis, inactivation 
of pRB (equivalent to the HPV E7 oncoprotein), sti-
mulation of cellular transformation, and promotion of 
apoptosis through protein-protein interactions. E1A 
CR2 binds pRB and the related pocket proteins p107 
and p130 with high affinity, and together with a low-
er-affinity binding region within CR1 displaces pRB 
proteins from E2F transcription factors, resulting in 
derepression of cell cycle genes. The N-terminus and 
residues in CR1 which are required for E1A trans-
forming activity bind to p300/CBP, PCAF, GCN5, and 
p400 to regulate chromatin structure. Recent studies 
have shown that the E1A–p300/CBP interaction re-
duces acetylation of cellular histone H3 lysine 18 
(H3K18), because CBP and p300 are required for ace-
tylation at H3K18 [107]. E1A binds transiently and in 
a time-dependent manner to promoters of a large 
number of genes involved in cell cycle and growth, 
antiviral activity, and development and differentia-
tion, but this temporal order of E1A binding requires 
its interactions with p300/CBP and pRB proteins 
[108].  

 The E1B gene encodes two major proteins, 19K 
(176R) and 55K (496R), which are both independently 
capable of promoting cell transformation and uncon-
trolled cell growth in cooperation with E1A. Both 
proteins are translated from the same mRNA of ~2.28 
kb, but the ORF of E1B-55K is accessed by an internal 
initiation site and uses an alternative ORF [109]. Thus, 
E1B-55K has no sequence homology to the E1B-19K 
protein. The major roles of E1B-19K and E1B-55K in 
viral infection are suppression of host cell apoptosis 
and, in rodent cells, promotion of complete transfor-
mation in cooperation with E1A. Functional motifs of 
E1B-55K have been mapped as shown in Fig. 3A. Ex-
pression of E1A alone is not sufficient for efficiently 
transforming primary cells or inducing lung carcino-
genesis in transgenic E1A mice, but E1B-19K and 
E1B-55K can individually cooperate with E1A to 
produce a fully transformed tumorigenic phenotype 
and to induce lung carcinogenesis in transgenic mice 
expressing both E1A and E1B transgenes [110]. This is 
at least in part a consequence of (1) E1B-19K inhibition 
of the co-oligomerization of the Bcl-2 family proteins 
BAK and BAX, leading to blockade of cas-
pase-mediated apoptosis, and (2) the interaction of 

E1B-55K with p53 [111] for p53 degradation and thus 
the inhibition of p53 functions [30]. The full-length 
(55K) E1B is required for mRNA export of viral late 
mRNA [112]. 

Large T and small t antigens in human polyoma-

viruses 

 Human polyomaviruses encode two onco-
proteins, large T (LT) antigen and small t (st) antigen, 
due to alternative RNA splicing. Both LT and st are 
viral nonstructural proteins expressed early in virus 
infection. Like SV40 T antigens, whose roles in cell 
transformation have been investigated extensively, 
human polyomaviral LT inactivates two cellular tu-
mor suppressor proteins, p53 and pRB, by direct pro-
tein-protein interactions, and st also inactivates cellu-
lar protein phosphatase 2A (PP2A) through pro-
tein-protein interactions. Experimentally, coexpres-
sion of st enhances the transforming ability of LT 
[113]. 

 Structurally, LT can be divided into several re-
gions [114]. The N-terminal J domain overlaps with 
two highly conserved regions (CR1 and CR2) and is 
the binding site for the Hsc70 family of chaperones, 
which promote the proper folding of proteins after 
translation. Both LT and st have this domain with the 
same aa residues derived from the same exon 1 re-
gion, but the remaining parts of each protein are dif-
ferent. A pRB-binding region is close to the J domain 
in LT and contains an LXCXE motif essential for its 
interaction with the pRB family members. The 
C-terminal ATPase/DNA helicase region of LT over-
laps with a p53-binding region. Together with a DNA 
origin–binding domain in the central portion of LT, 
this region is responsible for viral genome replication 
(Fig. 4A). LT inactivates p53 via its p53-binding site, 
but the LT–p53 complex activates insulin-like growth 
factor I (IGF-I) transcription to promote malignant cell 
growth [115]. In contrast, st lacks all of the LT do-
mains but contains a unique PP2A-binding site. Of 
note, binding of st inhibits the phosphatase activity of 
cellular PP2A, an essential regulator of numerous 
signaling pathways [116]. 

 Interestingly, LT mutation appears common in 
the human MCV genome isolated from MCCs. The 
MCC tumor-derived LT sequences harbor mutations 
prematurely truncating exon 2, which encodes the 
MCV LT ATPase/helicase. Consequently, the result-
ing MCV LT is deficient in viral replication, whereas 
pRB targeting is spared in cancer cells [27]. However, 
recent studies indicate that MCV T antigen expression 
is necessary for the maintenance of MCV-positive 
MCC [117]. 
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Figure 3. Schematic structures of adenovirus E1B protein and mRNAs. A. E1B protein structure and its biological functions. 

NES, nuclear export sequences; NLS, nuclear localization sequences; RNP, ribonucleoprotein motif; CKI/II, casein kinase I/II 

phosphorylation site. See other reference for more information about E1B [270]. B. RNA structure and alternatively spliced 

species of E1B pre-mRNA.  
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Figure 4. Diagrammatic representation of the SV40 large T antigen and its RNA splicing. A. Schematic protein structure of 

SV40 large T antigen. J, DnaJ domain; OBD, origin DNA-binding domain. B. Alternative splicing of SV40 T antigen pre-mRNA 

leads to production of Large T, 17K T, and small t mRNAs. Black dots indicate stop codon locations on spliced RNAs.  

 
 
 

LMP1 and BARF-1 in EBV 

 Apparently, several restricted forms of EBV la-
tency occur in the EBV-carrying malignancies, and 
modulation of LMP1 expression differs greatly de-
pending on the latency form. In B cells with type III 
latency, the EBV genome expresses six nuclear anti-
gens (EBNA-1 to -6) and three latent membrane pro-

teins (LMP1, -2A, -2B). EBNA-2 and -5 are responsible 
for LMP1 expression. In type II latency, which is 
mainly found in Hodgkin lymphoma, T- and 
NK-lymphoma, and NPC, the EBV genome expresses 
only EBNA-1 and LMPs. The expression of LMP1 is 
induced by IL-10 [118] and IL-21 [119]. In Burkitt 
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lymphoma, which has type I latency, only EBNA-1 is 
expressed. 

 The oncoprotein LMP1 of EBV is a 62-kD 
integral membrane protein of 386 aa residues that 
consists of a short cytoplasmic N-terminus of 24 aa, 
six transmembrane domains of 186 aa, and a cytop-
lasmic C-terminus of 200 aa (Fig. 5A) [120]. EBV LMP1 
is essential for the immortalization and transforma-
tion of human B cells, but its oncogenic activity can be 
downregulated by a truncated LMP1 (258 aa) [121]. 
LMP1 without a ligand drives proliferation of 
EBV-infected B cells by signaling within the B cells 
similar to the signaling of the cellular CD40 receptor 
[122]: both activate NF-κB, AP-1, Stat-1, CD83, and 
CD95 by associating with molecules such as TRAFs 
and JAK3. LMP1's signaling, however, differs fun-
damentally from that of CD40, because LMP1 regu-
lates these signaling pathways without itself being 

regulated by a ligand, as CD40 is. LMP1 levels vary in 
cells of clonal populations by more than 100-fold, 
which leads to multiple distinct activities of the on-
coprotein. When expressed at intermediate levels, 
LMP1 signals through NF-κB to promote cell prolife-
ration. When expressed at high levels, LMP1 inhibits 
general protein synthesis by inducing phosphoryla-
tion of eIF2α via activation of PERK kinase, leading to 
upregulation of activating transcription factor 4 
(ATF4) expression, which in turn transactivates 
LMP1's own promoter [18]. LMP1 activation leads to 
overexpression of antiapoptotic molecules, such as 
Bcl-2, Mcl-1, and Bcl-2–related protein A1 (Bfl-1) [123] 
and blocks p53-mediated apoptosis through the in-
duction of the A20 gene [124]. Complementary to its 
proliferative function, LMP1 inhibits proapoptotic 
factors such as Bax [125] and downregulates TCL1 
oncogene through miR-29b [126]. 

 

 

Figure 5. Schematic structures of EBV LMP1 protein and its RNAs. A. Full-length LMP1 protein. Both the N-terminal and 

C-terminal cytoplasmic domains are white boxes and the transmembrane domain is a shaded box. Protein-protein inte-

racting motifs are indicated as colored ovals, and a 30-nt deletion (del.) or duplication (dupl.) region often seen in naso-

pharyngeal carcinomas or B cells is underlined. TRAF, TNFR-associated factor; TRADD, TNFR-associated death domain 

protein; JAK3, Janus kinase 3. B. Schematic structure of LMP1 mRNAs. Promoters driving the expression of LMP1 and 

truncated LMP1 are shown relative to the EBV genome. Black dots indicate the first AUG on each transcript that is used for 

translation initiation.  
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 The LMP1 (BNLF1) gene contains three exons 

and two introns that are located within the BamHI-N 
region of the EBV genome [120,127]. Two ORFs have 
been identified based on nucleotide sequences and 
mRNA mapping of EBV B95-8 [128]. A transcript 
starting from the ED-L1 promoter, which is located 
upstream of the first exon, encodes full-length LMP1 
(386 amino acids; Fig. 5B) from the first ORF that is 
abundantly expressed in lymphoblastoid cell lines. 
There is no alternative RNA splice site in either of its 
two introns. Another transcript starting from the 
ED-L1A promoter, which is located within the first 
intron of the LMP1 gene, encodes the second ORF 
(Fig. 5B). The translation initiation site of this second 
ORF is methionine-129 of full-length LMP1 [128], and 
the ORF thus encodes an amino-terminally truncated 
form of the LMP1 protein. The truncated LMP1 (258 
amino acids) consists of the fifth and sixth trans-
membrane domains and the cytoplasmic carboxy 
terminus of full-length LMP1. 

 Although the B95-8 cell line, an in vi-
tro–immortalized lymphoblastoid cell line, was in-
itially used to characterize truncated LMP1, a number 
of studies demonstrated that expression of truncated 
LMP1 was specifically upregulated during the lytic 
phase of viral replication. Therefore, the truncated 
form of LMP1 is frequently referred to as lytic 
LMP1[129]. In contrast to full-length LMP1, truncated 
LMP1 does not transform rodent cells [130] or alter 
the phenotypes of human B lymphocytes [131]. The 
biological activity of truncated LMP1 is its ability to 
negatively regulate LMP1 signaling pathways [132] 
and LMP-1–mediated oncogenesis [121]. 

 The BARF1 gene is located in the BamHI-A 
fragment of the EBV genome and has potential onco-
genic activity. The BARF1 gene encodes a 31-kDa 
early protein, but can be expressed as a “latent” pro-
tein, in particular in NPC biopsy samples [21,133]. 
BARF1 induces malignant transformation of rodent 
fibroblasts [22], enhances the tumorigenicity of 
EBV-negative Burkitt lymphoma–derived cell lines 
[134], and immortalizes primary epithelial cells [135]. 
BARF1-rEBV–infected NPC cells are tumorigenic in 
nude mice [23]. A 54-amino-acid region of the 
N-terminus, which is capable of activating expression 
of the antiapoptotic protein bcl-2, is essential for the 
transforming activity [136]. B cells with BARF1 ex-
pression exhibit increased levels of c-myc, CD23, and 
CD2. BARF1 can also be secreted as a soluble receptor 
for human colony-stimulating factor [134,137]. In this 
form, it regulates the immune response by inhibiting 
interferon-α secretion from mononuclear cells and is 

detectable, along with LMP1, in the serum and saliva 
of patients with NPC [138]. The secreted BARF1 and 
LMP1 are mitogenic.  

Tax in HTLV 

 The HTLV-1 Tax protein is a 40-kD nuclear 
phosphoprotein that consists of 353 aa residues. To 
distinguish it from the HTLV-2 Tax protein (p37tax or 
Tax2), the HTLV-1 Tax is also called p40tax or Tax1. 
Tax1 and Tax2 share many characteristic properties, 
including in vitro immortalization of lymphocytes. 
HTLV-1 Tax is a transcriptional activator of the viral 
promoter and has been implicated in initiating trans-
formation events leading to the development of adult 
T-cell leukemia, but it is not needed to maintain cell 
transformation, and the tumor cells from adult T-cell 
leukemia do not express detectable levels of Tax 
[139,140]. This makes HTLV-1 Tax different from 
other cancer viruses, in which a continuous expres-
sion of viral oncogene is necessary for maintenance of 
transformation. However, it is clear that HTLV-1 Tax 
is oncogenic, because in all reported studies Tax 
transgenic mice were vulnerable to developing vari-
ous tumors [141-143]. The emerging concept [144] is 
that Tax is required to initiate transformation, but 
viral HBZ protein [145,146] and/or aberrant cellular 
microRNA expression [147,148] appear to be needed 
to maintain adult T-cell leukemia when Tax is no 
longer expressed.  

 HTLV-1 Tax is a pleiotropic transcription factor 
that modulates transcription of many cellular genes 
through direct interactions with transcriptional acti-
vators, basal transcription factors, and proteins in-
volved in chromatin remodeling as well as cell cycle 
progression [149]. Its role in transcription and regula-
tion of cell cycle progression are further supported by 
its direct presence in nuclear transcription hot spots 
and nuclear speckles containing SC35 [150] as well as 
by its direct association with many cell cycle regula-
tors [151]. Tax also associates with proteins involved 
in post-transcriptional control of mRNAs to further 
modulate gene expression. Thus, Tax plays an essen-
tial role in viral and cellular transcription as well as in 
cell transformation and oncogenicity.  Structurally, 
HTLV-1 Tax bears multiple protein-binding domains 
(Fig. 6A), as reviewed recently [152]. Its N-terminal 
region has a zinc finger motif that is responsible for its 
interaction with various transcription factors 
[153-155]. This region overlaps with an NLS. Muta-
tions within this zinc finger affect Tax-mediated CREB 
transactivation as well as subcellular localization 
[156].  
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Figure 6. Schematic structure of the HTLV-1 Tax protein and production of Tax mRNA by alternative RNA splicing. A. 

Functional regions of HTLV-1 Tax protein. NLS, nuclear localization signal; Zn, zinc finger; LZR, leucine-zipper-like region; 

NES, nuclear export signal; GLM, Golgi localization motif; SM, secretion motif; PDZ, PDZ-binding domain. B. HTLV-1 Tax 

expression by alternative RNA splicing. The HTLV-1 genome structure is shown at the top of the panel, with nine species of 
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mRNAs diagramed below. Boxes above RNA exons (solid lines) show an ORF in each spliced mRNA that is used for 

translation of an individual accessory protein. Introns and splicing directions for each mRNA species are indicated by the 

dotted lines. Six accessory proteins expressed by alternative RNA splicing all originate from a single pre-mRNA transcribed 

from the 5' LTR, and their cellular localizations are shown at the right. In addition, HTLV-1 basic leucine zipper factor (HBZ) 

minus-strand RNA is transcribed from the 3' LTR in an antisense fashion [271,272], and its encoded protein is a nuclear 

protein [273], as shown at the right. Panel B is modified from reference [151] with permission.  

 
 
The middle part of Tax bears a region for dime-

rization that also overlaps with two leucine zip-
per–like motifs and a nuclear export sequence 
[157-159]. Substitutions within the first leucine zipper 
affect Tax interactions with NF-κB and PP2A 
[160,161]. The C-terminal region of Tax contains an 
activation domain [162], a Golgi localization and se-
cretion motif [163], an Rb-binding sequence [164], and 
a PDZ-binding domain [165].  

CONTROL OF VIRAL ONCOGENE 
EXPRESSION BY ALTERNATIVE RNA 
SPLICING  

Regulation of HPV16 and HPV18 E6 and E7 ex-

pression by alternative RNA splicing 

 The E6 and E7 genes are positioned side by side 
at the beginning of papillomavirus genome. The ex-
pression strategy of oncogenic E6 and E7 differs from 
that of non-oncogenic E6 and E7. In oncogenic HPV16 
and HPV18, the two genes are expressed as a bici-
stronic pre-mRNA from a single promoter imme-
diately upstream of the E6 ORF. In nononcogenic 
HPV6 and HPV11, the genes are expressed indivi-
dually from two separate promoters. Another noti-
ceable feature is that oncogenic E6 genes contain an 
intron, whereas non-oncogenic E6 genes do not. 
Consequently, a spliced E6 ORF is predominant in 
oncogenic E6 mRNAs, but does not exist in 
non-oncogenic E6 mRNAs (Table 2), suggesting an 
important role of the E6 splicing in viral oncogenesis. 
Of note, the same promoter that drives oncogenic E6 
and E7 expression is also responsible for almost all 
early gene expression, and the resulting early tran-
scripts are polyadenylated by using the same early 
poly(A) signal [166,167]. Therefore, these early pri-
mary transcripts are all bicistronic or polycistronic, 
and each has two or more ORFs and contains three 
exons and two introns [167].  

 In HPV16, intron 1 and intron 2 of an E6E7 pri-
mary transcript each contain three alternative 3' splice 
sites which can be selected for RNA splicing in vi-
rus-infected cells, leading to the production of at least 
14 species of mRNA transcripts with various coding 
potential [167]. Intron 1 of an HPV18 E6E7 primary 
transcript has a single 3' splice site. Because intron 1 

and intron 2 are positioned, respectively, in the E6 
ORF and E1 ORF, retention of intron 1 during RNA 
splicing is necessary for E6 expression, whereas re-
tention of intron 2 is needed for E1 production. E1 
functions as a viral DNA helicase essential for viral 
DNA replication [168]. Splicing of either intron de-
stroys the coding of E6 or E1. Mechanistically, there 
are only shameful data currently available on how 
each intron could escape recognition by the cellular 
splicing machinery in order to produce these two 
important viral proteins. The cap-binding complex at 
the RNA 5' end was initially found to promotes the 
splicing of intron 1 of HPV16 E6E7 transcripts, but the 
enhanced intron 1 splicing by the cap-binding com-
plex can be restrained by the distance of intron 1 from 
its RNA 5' cap [169]. Under natural conditions, cellu-
lar epithelial growth factor (EGF) pathway regulates 
the intron 1 splicing of HPV16 E6E7 transcripts via 
Erk1/2 activation [170]. It is possible that the onco-
genic HPVs retain an intron as needed by interfering 
with the action of the splicing machinery using their 
own proteins. The findings that both HPV16 E2 and 
E6 act as RNA-binding proteins that suppress splicing 
[83] and viral E5 regulation of EGFR expression [171] 
may help us to understand this striking phenomenon. 

 Splicing of intron 1 in the HPV16 and HPV18 
E6E7 pre-mRNAs is highly efficient, and the majority 
of the transcripts in cervical cancer tissues and cer-
vical cancer–derived cell lines are E6*I, a spliced 
transcript without intron 1. Why then is efficient 
splicing of intron 1 in the HPV16 or HPV18 E6E7 
pre-mRNA needed for viral gene expression, since the 
splicing harms E6 expression? It has been proposed 
that splicing of intron 1 in 16E6E7 pre-mRNA might 
benefit E7 expression [53,172], because the space be-
tween the termination of E6 translation and the 
re-initiation of E7 in an intron 1–containing 16E6E7 
mRNA is limited, with only two nucleotides (nts) 
between them. This limited space between the E6 ORF 
and the E7 ORF would not give enough room or time 
for a scanning ribosome to release all of its termina-
tion components and to reload all of the necessary 
translation components to re-initiate translation of the 
E7 ORF on the same bicistronic mRNA [173]. This 
hypothesis regarding E7 expression was recently 
proven in various experiments in my laboratory 
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[169,174]. Splicing of intron 1 creates a frameshift, and 
the resulting E6*I mRNA obtains a pre-termination 
codon immediately downstream of the splice junction 
and, accordingly, creates enough space for the trans-
lation termination of E6*I and re-initiation of E7 
translation by a scanning ribosome[175]. Mutation of 
the intron 1 5' splice site to prevent RNA splicing or 

narrowing the space between the E6*I ORF and E7 
ORF from 145 nts to 2 nts significantly decreases E7 
expression, demonstrating that E7 is translated from 
the spliced isoforms of 16E6E7 mRNAs, and splicing 
of intron 1 from the E6 coding region is essential for 
the production of the viral oncoprotein E7 (Fig. 7) 
[169,174].  

 

Table 2. E6 splicing and carcinogenesis of HPVs. 

 
 

 
 
 
 

 

Figure 7. Intron 1 splicing in the E6 ORF in HPV16 or HPV18 E6E7 pre-mRNA is essential for E7 production. The HPV16 

or HPV18 E6E7 pre-mRNA contains three exons (colored boxes) and two introns (lines). The majority of the E6E7 RNA 

species in cervical cancer tissues and cervical cancer–derived cell lines are fully spliced E6*I mRNAs, which are utilized for E7 

translation. However, the presence of a minimal amount of partially spliced E6 with retention of intron 1 has been detected 

in cervical cancer tissues and cervical cancer–derived cell lines. This RNA species contains an entire E6 ORF and functions 

as an E6 mRNA for E6 translation [174]. 
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Regulation of adenovirus E1A and E1B expres-

sion by alternative RNA splicing 

 Adenovirus E1A pre-mRNA contains three ex-
ons and two introns. The suboptimal feature of E1A 
intron 1 makes it a minor intron, and its usage for 
RNA splicing occurs mainly late in infection. Intron 2, 
which has two alternative 5' splice sites, is a major 
intron of E1A pre-mRNA and is used constitutively 
for RNA splicing in every species of E1A mRNA, both 
early and late in virus infection. Through alternative 
RNA splicing of intron 2, and inclusion or exclusion of 
intron 1, the adenovirus E1A pre-mRNA generates 
five different mRNAs, designated 13S, 12S, 11S, 10S, 
and 9S mRNA according to their sedimentation coef-
ficients [176].These mRNAs give rise to five distinct 
proteins of 289 aa residues (13S mRNA), 243 aa (12S 
mRNA), 217 aa (11S mRNA), 171 aa (10S mRNA), and 
55 aa (9S mRNA)[177] (Fig. 2B). The 13S and 12S 
mRNAs are the two major spliced mRNAs during 
early virus infection, and their protein products share 
the same N- and C-terminal aa sequences but differ in 
the CR3 region, which is unique to the E1A-289R 
protein. The 9S mRNA accumulates to relatively high 
levels late in virus infection, at which time the 11S and 
10S mRNAs are only minimally expressed [178].  

 In the past two decades, a number of studies 
have shown that individual SR and non-SR proteins 
play roles in the selection of each alternative 5' splice 
site and in the shift from 13S to 9S RNA production. 
One interesting finding is that the 13S-to-9S transition 
can be triggered through titration of the SR proteins 
9G8, SC35, and ASF/SF2 by major-late transcripts that 
accumulate in nuclei late in the infection [179]. 
ASF/SF2 was the first of the SR proteins found to 
relate to the selection of the 13S 5' splice site, but its 
role in this 5' splice site selection can be antagonized 
by overexpressed hnRNA A1 [180,181], SRrp35, and 
SRrp40 [182]. ASF/SF2 RNA-binding domain 2 sti-
mulates splicing of the 13S 5' splice site and simulta-
neously represses 12S 5' splice site splicing [183]. 
SRp40 [184], SRp54 [185], TLS [186], and RBM4 [187] 
were found to preferentially activate the 9S 5' splice 
site, but SRp75 enhances the recognition of the 12S 
5'splice site [188]. However, lack of a specific binding 
site upstream of the 13S and 9S 5' splice sites for these 
proteins suggests that individual splicing regulators 
of the 5' splice site selection might function in an RNA 
sequence–independent manner (Fig. 2B). Identifica-
tion of a purine-rich ESE (named bidirectional splic-
ing enhancer, BSE) located immediately upstream of 
the 12S 5' splice site, and demonstration that such an 
ESE is involved in selection of the 12S 5' splice site and 

intron 1 3' splice site through binding to the SR pro-
teins 9G8 and ASF/SF2, suggests that at least one of 
the 5' splice site and 3' splice site in the adenovirus 
type 2 (ad2) E1A pre-mRNA is preferentially selected 
in an ESE-dependent manner [189]. The binding of 
9G8 to the ESE strongly activates the selection of the 
12S 5' splice site, whereas the binding of ASF/SF2 
stimulates the usage of the intron 1 3' splice site [189]. 
Exon definition also plays a role in stimulating the 
intron 1 3' splice site usage for 9S mRNA production. 
Of note, the 13S 5' splice site but not the 12S 5'splice 
site has been described as activating the upstream 
intron 1 3' splice site, crossing over exon 2 [190].  

 The E1B gene of adenovirus encodes a 
pre-mRNA with three exons and two introns (Fig. 3B). 
Although the E1B intron 1 is suboptimal and large in 
size, it contains two alternative 3' splice sites. E1B in-
tron 2 is constitutively spliced and small in size, but is 
used in RNA splicing for production of every species 
of the E1B mRNA. Through alternative RNA splicing, 
the primary transcript from the E1B gene produces at 
least four additional spliced forms of E1B mRNAs of 
2.28, 1.26, 1.31, and 1.02 kb to translate five distinct 
E1B proteins of 496R (E1B-55K), 176R (E1B-19K), 
156R, 93R, and 84R (Fig. 3B). E1B-19K and E1B-55K 
are created from the same 2.28-kb transcript but have 
two different initiation codons and different ORFs 
[109], and the two proteins are therefore not related. 
However, E1B-55K shares the same N-terminal 79 aa 
residues with E1B-156R, E1B-93R, and E1B-84R 
translated from exon 1, and the same C-terminal 77 aa 
residues with E1B-156R from exon 2 [191]. E1B-93 and 
E1B-84 have unique C-termini due to usage of two 
alternative 3' splice sites and termination at two dif-
ferent stop codons. 

 Production of the different E1B mRNAs during 
infection is regulated over time. While the 2.28-kb 
form is the main form produced early in infection, the 
proportion of the shorter spliced mRNAs increases 
over time, and the E1B-84R mRNA becomes predo-
minant in the late phase. The splicing mechanism of 
E1B pre-mRNA has been investigated much less tho-
roughly than the splicing of E1A pre-mRNA, and 
there is no information on whether RNA cis-elements 
or splicing factors are involved in the regulation of 
E1B alternative RNA splicing. 

Regulation of polyomaviral T antigen expression 

by alternative RNA splicing 

 The primary transcript of polyomaviral T anti-
gen has two exons and one intron. The T antigen in-
tron contains two alternative 5' splice sites and its 
alternative usage during RNA splicing leads to the 
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production of two spliced mRNAs, LT and st. In this 
regard, the st intron is relatively weak because of its 
limiting size and utilizes a different branch point from 
LT for its splicing [192], giving the LT splicing a 
competitive advantage relative to st splicing. Whether 
the two alternative 5' splice sites are regulated by an 
exonic or intronic splicing enhancer or silencer re-
mains to be identified. Historically, investigation into 
why the ratio of st to LT mRNAs is much greater in 
293 cells than in HeLa cells led to discovery of 
ASF/SF2 as a splicing factor that promotes st 5' splice 
site splicing [180,193]. In contrast, overexpressed 
ASF/SF2 inhibits the selection of the st 5' splice site, 
and the overexpression of SC35 blocks splicing of both 
LT and st 5' splice sites and promotes nuclear accu-
mulation of the unspliced pre-mRNA (Fig. 4B) [194]. 
There is a minor intron within exon 2 of SV40 LT that 
can be spliced from LT mRNA, leading to production 
of a 17-kDa T antigen consisting of 135 aa residues, of 
which 131 correspond to the N-terminus of LT 
[195,196]. This transcript is detectable in MCC tumors 
in addition to MCV LT and st transcripts [27].  

Regulation of HTLV-1 Tax expression by alter-

native RNA splicing  

 HTLV-1 Tax mRNA is derived by alternative 
RNA splicing from a common pre-mRNA whose 
transcription is initiated from the 5' LTR of the 
HTLV-1 genome (Fig. 6B). Thus, Tax mRNA contains 
a common 5' leader exon as its 5' UTR, as seen in all 
other spliced HTLV-1 RNA species, and a Tax ORF 
that spans exon 2 and exon 3. To produce Tax mRNA, 
the pre-mRNA needs to be double-spliced and pre-
cisely controlled, as the pre-mRNA has multiple weak 
3' splice sites that can be alternatively utilized during 
RNA splicing to generate several other species of 
mRNAs. Unfortunately, we know nothing today 
about how each splice site is selected and what con-
trols the selection of individual 3' splice sites. 

VIRAL NONCODING RNAs AND micro-
RNAs IN VIRAL ONCOGENESIS 

Viral noncoding RNAs in viral oncogenesis 

 Tumor viruses encode several abundant RNA 
molecules without coding function. These include 
EBV EBER RNAs [197,198], KSHV PAN RNA (po-
lyadenylated nuclear RNA) [199,200] and herpesvirus 
saimiri small nuclear RNAs [201,202]. They are all 
produced from tumor cells with latent or lytic tumor 
virus infection and are different in size from viral mi-
croRNAs. The functions of these viral noncoding 
RNAs remain to be understood. There is no direct 
correlation between expression of these RNA mole-
cules during virus transformation and tumorigenesis. 

However, recent studies show these noncoding 
RNAs, in particular EBV EBERs, might have some 
functions related to virus latency, cell survival, and 
oncogenic potential. It is possible that tumor viruses 
might utilize these noncoding RNAs to manipulate 
host-cell gene expression by down-regulation of host 
microRNAs as reported in herpesvirus saimiri [203].  

 EBV-encoded EBER RNA molecules that might 
contribute to oncogenesis have been reported [204]. 
EBER-1 (166 nts) and EBER-2 (172 nts) are two non-
polyadenylated nuclear RNAs transcribed by the 
RNA polymerase III system [198,205]. Both are com-
plexed with cellular La protein and have extensive 
primary sequence similarity to adenovirus VA1 and 
VA2 [206] and cellular U6 small RNA [198]. EBERs 
may play a role in the maintenance of malignant 
phenotypes of Burkitt lymphoma cells by enabling 
clonability in soft agar; tumorigenicity in immunode-
ficient mice; upregulated expression of bcl-2 onco-
protein; resistance to apoptosis [207]; and induction of 
IL-9, IL-10, and IGF [208-210]. EBERs confer resistance 
to interferon-α and Fas-mediated apoptosis by inhi-
biting double-stranded RNA–activated protein kinase 
R through direct binding [211,212].   

Viral microRNAs in viral oncogenesis 

 MicroRNAs are regulatory, noncoding RNAs 
about 21-23 nucleotides in length and have large-scale 
effects on the expression of a variety of genes at the 
post-transcriptional level. Through base-pairing with 
its targeted mRNAs, a microRNA induces RNA de-
gradation or translational suppression of the targeted 
transcripts [213,214]. All DNA tumor viruses except 
human papillomaviruses encode viral microRNAs. 
EBV encodes up to 25 viral microRNAs precusors 
from two clusters in the EBV genome [215-217]. 
Fourteen of the 20 BART (BamHI-A rightward tran-
scripts)-derived microRNAs are produced from BART 
introns prior to completion of the RNA splicing and 
are highly expressed in latently infected epithelial 
cells, but at much lower levels in B cells. In contrast, 
three BHRF1 (Bam HI fragment H rightward open 
reading frame 1) miRNAs expressed within introns of 
EBNA transcripts are found at high levels in B cells 
with stage III latency but are essentially undetectable 
in B cells or epithelial cells with stage I or II latency 
[216,218,219]. It is true that all EBV miRNAs from the 
BART region are expressed in NPC tissues, whereas 
EBV miRNAs from the BHRF1 region are not found 
[220-222]. KSHV encodes 12 viral microRNA precur-
sors, most of which are from a large intron of the 
KSHV latency-associated region, where KSHV 
LANA, vCyclin, vFLIP, and Kaposin are transcribed 
[223,224]. Like EBV microRNAs, KSHV microRNAs 
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are also expressed in B cells with latent KSHV infec-
tion. Among the polyomaviruses, MCV encodes one, 
BK virus generates four, and SV40 and JC virus each 
produce two microRNAs. All of these microRNAs are 
produced late during virus infection [225-227] and 
play a role in degradation of viral early mRNAs. The 
SV40 microRNAs confer resistance of virus-infected 
cells to lysis by cytotoxic T cells [225]. Human adeno-
virus probably produces a microRNA [224]. To date, 
there has been no report about the production of 
HPV-derived microRNAs [228,229].  

 Viral microRNAs may modulate tumorigenesis 
through various mechanisms during tumor virus in-
fection. For example, recent studies show that EBV 
BHRF1-3 microRNAs target chemokine 
CXCL-11/I-TAC for its suppression, which may serve 
as an immunomodulatory mechanism in 
AIDS-related diffuse large B-cell lymphomas [230]. 
EBV miR-BART2 downregulates viral DNA polyme-
rase BALF5 and inhibits the transition from latent to 
lytic viral replication [231]. EBV miR-BART5 inhibits 
the expression of the cellular protein PUMA (p53 
upregulated modulator of apoptosis) to promote host 
cell survival and the establishment of latent EBV in-
fection [232]. EBV miR-BART1, -16, and -17 reduce the 
expression of EBV LMP1 to prevent its overexpres-
sion, which would lead to inhibition of cell prolifera-
tion and an increased susceptibility to apoptotic sti-
muli [233]. By systematically introduction of muta-
tions in EBV's precursor miRNA transcripts to pre-
vent their subsequent processing into mature viral 
miRNAs, a recent study shows that viral miRNAs 
from the BHRF1 locus inhibit apoptosis and favor cell 
cycle progression and proliferation during the early 
phase of infected human primary B cells [234].  

 KSHV miR-K12-11 shares sequence identity 
with cellular miR-155 in the seed region, which con-
fers much of the target specificity, and has the poten-
tial to regulate multiple transcripts, in particular 
BACH-1 (BTB and CNC homology 1, a transcription 
factor), via the same binding sites utilized by the host 
miR-155 [235,236]. KSHV miR-K12–1, miR-K12-3-3p, 
miR-K12-6-3p, and miR-K12–11 reduce the expression 
of THBS1 (thrombospondin 1) by interaction with the 
THBS1 3' UTR. THBS1 functions in cell–cell and 
cell–matrix adhesion and possesses both antiprolifer-
ative and anti-angiogenic activity [237]. More studies 
from recent reports indicate miR-K12-5, miR-K12-9 
and miR-K12-10 repression of Bcl-2-associated tran-
scription factor 1, an apoptosis-inducing factor [238], 
miR-K12-3 reduction of LRRC8D (leucine rich repeat 
containing 8 family, member D), a leucin-rich type III 
transmembrane protein involved in proliferation and 
activation of lymphocytes, NHP2L1 (non-histone 

chromosome protein 2-like 1) [239], and a transcrip-
tion factor NFIB [240], miR-K12-1 inhibition of p21 
[241] and NFκB inhibitor IκBα [242], miR-K12-4-3p 
suppression of GEMIN8 [239], miR-K12-10a reduction 
of TWEAKR [243], miR-K12–1, -6, and -11 decrease of 
MAF (musculoaponeurotic fibrosarcoma oncogene 
homolog) [244], K12-4-5p targeting retinoblastoma 
(Rb)-like protein 2 (Rbl2) and miR-K12-5 and 
-9*suppressing ORF50 mRNA [245,246]. Together, 
these data suggest mutiple roles for these viral mi-
croRNAs in pathogenesis and potentially tumorige-
nesis in the KSHV-infected host.  

VIRAL ONCOPROTEINS AND CELLULAR 
microRNAs 

 Although much has been learned about the ab-
errant expression of cellular microRNAs in various 
tumor virus–induced cancers, the mechanism of this 
aberrant expression remains largely unknown. 
However, several exciting reports suggest that viral 
oncoproteins may play an important role in this ab-
errant regulation of cellular microRNA expression, 
including those oncogenic or tumor suppressive mi-
croRNAs.  

 EBV oncoprotein LMP1 dysregulates the ex-
pression of several cellular miRNAs. LMP1 induces 
miR-146a predominantly through two NF-κB–binding 
sites in the miR-146a promoter [247]. This observation 
was verified in a separate study showing that EBV 
LMP1 activates the miR-146a promoter but not a 
promoter with a mutation of the NF-κB response 
elements [248]. EBV LMP1 also induces the produc-
tion of the BIC (B-cell integration cluster) precursor 
RNA of cellular miR-155, which is highly expressed in 
various B-cell lymphomas and may contribute to EBV 
immortalization of B cells [249,250]. Recent studies 
have confirmed that LMP1 signals through NF-κB to 
transactivate miR-155 expression [251] to immortalize 
B-cells [252]. 

 Tumor-suppressive miR-34a is transactivated by 
the binding of p53 to a perfect p53-binding site in the 
miR-34a regulatory region. My laboratory recently 
observed [253] that expression of miR-34a is reduced 
in cervical cancer tissues and cervical cancer–derived 
cell lines containing oncogenic HPVs because the 
HPV oncoprotein E6 destabilizes the tumor suppres-
sor p53. The reduction of miR-34a expression in or-
ganotypic tissues derived from HPV-containing pri-
mary human keratinocytes correlates with the ex-
pression of viral E6. Knockdown of viral E6 expres-
sion in HPV16+ and HPV18+ cervical cancer cell lines 
by siRNAs leads to increased expression of p53 and 
miR-34a and a substantial retardation of cell growth. 
Our study has thus provided new insights into me-
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chanisms by which high-risk HPVs contribute to the 
development of cervical cancer [253]. Reduced 
miR-34a expression also occurs in normal cervical 
tissues and cervical lesions with high-risk HPV infec-
tions [254]. In addition, two other reports show that 
high-risk HPV E6 downregulates miR-218 [255] and 
E7 reduces miR-203 expression upon keratinocyte 
differentiation [256], but the mechanisms of how these 
regulations take place remain unknown.  

 HTLV-1 Tax is oncogenic in transgenic mice and 
is required for immortalization of human 
T-lymphocytes and transformation of rodent fibrob-
last [149,257]. Recent studies indicate that Tax trans-
activates miR-146a expression by binding to a single 
NFκB site in the miR-146a promoter proximal to the 
transcription start site [148]. Tax may also transacti-
vate miR-130b expression by regulating the expres-
sion of transcription factors most likely required for 
miR-130b promoter to function [147].  

REMARKS 

 It has been almost a century since the discovery 
of virus-induced cancers. Studies on tumor-causing 
viruses have led to many landmark breakthroughs 
that have revolutionized cell biology and the prin-
ciples of medicine, helped to establish virology as a 
discipline, and paved the way for most of the subse-
quent advances and ideas on the molecular basis of 
viral carcinogenesis. These milestone discoveries in-
clude the identification of RNA-dependent DNA po-
lymerase (reverse transcriptase) in Rous sarcoma vi-
rus by Howard Temin and David Baltimore [258,259], 
viral oncogenes and their cellular counterparts (pro-
to-oncogenes) from Rous sarcoma virus by Harold 
Varmus and Michael Bishop [260,261], and RNA 
splicing in adenovirus-2 by Philip Sharp and Richard 
Roberts [262,263]. 

 Viral strategies for manipulating the expression 
of cellular genes to enhance viral persistence, viral 
latency, and survival of infected cells have provided 
numerous clues to the mechanisms of gene expression 
and their dysregulation during tumor development. 
These functions are mainly undertaken by vi-
rus-encoded oncogenes, which are present in virtually 
all well-characterized tumor viruses except the hepa-
titis C virus. The fact that all characterized viral on-
coproteins are “sticky” and interact with cellular 
proteins in infected cells makes each of them multi-
functional and essential for cell immortalization and 
transformation. By interacting with several dozens or 
even hundreds of cellular factors, viral oncoproteins 
from different tumor viruses eventually end up in 
apparently similar scenarios of viral carcinogenesis by 
targeting cellular tumor suppressors, deregulating 

signal transduction pathways, redirecting gene tran-
scription, and/or stimulating anti-apoptotic programs 
in the host. In the past two decades, the study of can-
cer biology has been driven by the dynamic net-
working capacity of individual viral oncoproteins.  

 RNA splicing plays an important role in regu-
lating viral oncogene expression and is highly con-
served among tumor viruses. Through alternative 
RNA splicing, several species of mRNAs can be de-
rived from a primary transcript of a single viral on-
cogene to encode different truncated proteins or dif-
ferent oncoproteins. Although various studies over 
the years have shown that the levels and status of 
individual cellular splicing factors in virus-infected 
cells modulate alternative splicing of viral oncogene 
transcripts, a clear picture of how this modulation 
might take place during viral oncogene expression 
has not yet emerged. Because viral RNA transcripts 
are not naked in the cells and the movement of dif-
ferent sets of RNA-binding proteins on and off a par-
ticular RNA molecule is dynamic, it will be very in-
teresting to know how the selection of alternative 
splice sites in an RNA is precisely defined and trig-
gered. In the case of an HPV16 or HPV18 E6E7 bici-
stronic transcript, retention of the first intron is 
needed to express E6, but splicing of this intron pro-
motes E7 translation initiation to produce E7[174]. 
What is required for the decision to splice this intron 
or not, resulting in the expression of two different 
oncoproteins from the same transcript, and when this 
decision occurs are intriguing questions. A recent 
finding of EGF pathway that might be involved in this 
regulation is fascinating [170]. Thus, investigation into 
these questions will not only help to resolve this puz-
zle in tumor virology, but will also shed some light on 
complex biology as a whole. 

 Noncoding RNAs, including microRNAs and 
endogenous siRNAs, have profound roles in the reg-
ulation of gene expression [264-268]. During latent 
virus infection, DNA tumor viruses, except papillo-
maviruses, generate abundant noncoding RNAs. Al-
though we know very little at the present why viruses 
produce them and what their functions are, the pro-
duction of these noncoding RNAs by these groups of 
tumor viruses means that the function of the tumor 
virus genome has been highly conserved during virus 
evolution. Noncoding RNAs are not a consequence of 
virus latency; rather, their function might be neces-
sary for the maintenance of virus latency. Given that 
each microRNA subtly influences the translation of 
hundreds of different gene transcripts [264,265], viral 
microRNAs must be involved in many key biological 
processes in virus-infected cells during latent infec-
tion, leading to establishment of latency in tumor 
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cells. Thus, one can imagine that viral oncogenes do 
not act alone but perhaps coordinate extensively with 
other viral products to induce oncogenesis during 
persistent infection.  
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