Supplementary Material

Photoactivation Studies of Photoirradiated Zinc Porphyrin-Myoglobin System and Its Application for Light-Chemical Energy Conversion

Chin-Hao Chang^a, Yi-Ting Hu^a, Chen-Fu Lo^b, Liyang Luo^c, Hung-Ming Lin^a, Cheng-Hsiang Chang^a, Ching-Yao Lin^{*b}, Eric Wei-Guang Diau^{*c}, and Tung-Kung Wu^{*a}

^aDepartment of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China, Fax: +886-3-5725700; Tel: +886-3-5712121-56917; E-mail: tkwmll@mail.nctu.edu.tw

^bDepartment of Applied Chemistry, National Chi Nan University, Puli, Nantou County, Taiwan, Republic of China, Fax: +886-49-2917956; Tel: +886-49-2910960-4152; E-mail: cyl@mail.ncnu.edu.tw

^cDepartment of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China, Fax: +886-3-5723764; Tel: +886-3-5712121-31524; E-mail: diau@mail.nctu.edu.tw

Figure S1. Steady-state absorption spectra of $ZnPE_1$ in THF (dash line) and $ZnPE_1$ -Mb in 100 mM KPi (solid line). Soret band of $ZnPE_1$ in THF is 439 nm and Q bands of $ZnPE_1$ in THF are 567/615 nm. Soret band of $ZnPE_1$ -Mb in 100 mM KPi is 443 nm and Q bands of $ZnPE_1$ -Mb in 100 mM KPi are 576/628 nm.

Figure S2. (A) Absorbance of 340 nm change for the solution containing ZnPP-Mb (25 μ M), TEA (1 M), and NADP⁺ (2.5 mM) irradiated by different duration (0 (**n**), 0.5 (**•**), 1 (**A**), 2 (**V**), 3 (**•**), 4 (**•**), 5 (**•**) and 6 (**★**) hours) then kept in dark. (B) Absorbance of 340 nm change for the solution containing ZnPP-Mb (25 μ M), TEA (1 M), and NADP⁺ (2.5 mM) under continued photoirradiation for 36 hours (**•**); 6 hours photoirradiation and dark reaction for 5 days (**n**); 6 hours photoirradiation (without NADP⁺) and dark reaction for 5 days (with NADP⁺) (**A**), and continued dark reaction for 5 days (**V**). (C) Absorbance change of photoirradiation by using ZnPP-Mb (25 μ M) as a model photosensitizer, ethanolamines (MEA, DEA, and TEA, 1M) as sacrificial electron donor, and NADP⁺ (2.5 mM) as substrate was irradiated for 6 hours then kept in dark. (D) Absorbance change in the solution containing 25 μ M of ZnPP-Mb, 2.5 mM of NADP⁺, and 0 (**n**), 1 (**•**), 10 (**A**), 100 (**V**), 250 (**•**), 500 (**•**)

and 1 M TEA (\blacklozenge) was irradiated for 6 hours then kept in dark.

Figure S3. UV–visible spectral change under continued photoirradiation for 36 hr. (a) ZnPP-Mb + NADH, the absorbance at 340 nm was rapidly decrease and the Soret band at 428 nm was also decrease rapidly and a little blue-shift to 421 nm. (b) ZnPP-Mb + TEA + NADH, the absorbance at 340 nm was decrease at first two hours and then increase and Soret band at 428 nm was decrease and blue-shift to 413 nm. (c) ZnPE₁-Mb + NADH, the absorbance at 340 nm was rapidly decrease and the Soret band at 443 nm was decrease gradually and no shift. (d) ZnPE₁-Mb + TEA + NADH, the absorbance at 340 nm was rapidly decrease and the Soret band at 443 nm was decrease gradually and no shift. (d) ZnPE₁-Mb + TEA + NADH, the absorbance at 340 nm was rapidly decrease and the Soret band at 443 nm was decrease gradually and no shift. (d) ZnPE₁-Mb + TEA + NADH, the absorbance at 340 nm was slowly decrease and the Soret band at 443 nm was decrease gradually and blue-shift to 426 nm. [ZnPP-Mb] = 25 μ M, [ZnPE₁-Mb] = 25 μ M, and [TEA] = 1 M and [NADH] = 2.5 mM. All in 20 mM HEPES (pH 8.5).

Figure S4. Concentration-dependent effect of TEA on (A) ZnPP-Mb + NADH + TEA and (B) ZnPE₁-Mb + NADH + TEA photoirradiation reactions. (A) 25 μ M of ZnPP-Mb, 2.5 mM of NADH, and 1 (\blacksquare), 0.5 (\bullet), 0.1 (\blacktriangle), 0.01 (\blacktriangledown), or 0 M (\triangleleft) of TEA was irradiated for 12 hours. (B) 25 μ M of ZnPP-Mb, 2.5 mM of NADH, and 1 (\blacksquare), 0.5 (\bullet), 0.1 (\bigstar), 0.01 (\blacktriangledown), or 0 M (\triangleleft) TEA was irradiated for 12 hours.

Figure S5. Determination of H_2O_2 following photoirradiation of ZnPP-Mb + NADH in the presence (\blacksquare) or absence (\bigcirc) of oxygen. [ZnPP-Mb] = 25 µM, and [NADH] = 2.5 mM. All were in 20 mM HEPES (pH 8.5). The ZnPP-Mb + NADH without photoirradiation (\blacktriangle) and HEPES buffer (\blacktriangledown) were used as negative control. The produced H_2O_2 was incubated with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and peroxidase to generate a ABTS⁺⁺ radical-cation, which can be monitored with absorbance at 730 nm.

Figure S6. Cyclic voltammogram of $ZnPE_1$ in THF. The first porphyrin-ring reduction was observed as a reversible reaction at -1.23 V vs. SCE and the first oxidation was observed as an irreversible reaction at +1.07 V vs. SCE. Experimental conditions: $Zn-PE_1$ (0.5 mM) in freshly distilled and degassed THF/0.1M TBAP, scan rate = 100 mV/s, Pt working and counter electrodes, SCE reference electrode.

Figure S7. Comparison of photosensitizer effect for catalytic kinetics at photoirradiation. 2.5 mM NADP⁺ with 1 M TEA were independently reacted with 25 μ M ZnPP-Mb (O), ZnPP (\triangleright), ZnPE₁-Mb (Δ), ZnPE₁ (\triangleleft) and ZnTMPyP⁴⁺ (\Box) under photoirradiation in 100 mM KPi, pH 9. 2.5 mM NADP⁺ with 1 M TEA reacted without photosensitizer (\diamondsuit) was used as control.