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Abstract 

The 16, 470 bp nucleotide sequence of the mitochondrial genome (mitogenome) of an 
assassin bug from the reduviid subfamily Harpactorinae, Agriosphodrus dohrni, has been 
revealed. The entire genome encodes for two ribosomal RNA genes (rrnL and rrnS), 22 
transfer RNA (tRNA) genes, 13 protein-coding genes, and a control region. The nucleo-
tide composition is biased toward adenine and thymine (A+T = 72.2%). Comparative 
analysis with two other reduviid species Triatoma dimidiata and Valentia hoffmanni, ex-
hibited highly conserved genome architectures including genome contents, gene order, 
nucleotide composition, codon usage, amino acid composition, as well as genome 
asymmetry. All protein-coding genes use standard mitochondrial initiation codons 
(methionine and isoleucine), except that nad1 starts with GTG. All tRNAs have the classic 
clover-leaf structure, except that the dihydrouridine (DHU) arm of tRNASer(AGN) forms a 
simple loop. Secondary structure comparisons of the two mitochondrial ribosomal sub-
units among sequenced assassin bugs show that the sequence and structure of rrnL is 
more conservative than that of rrnS. The presence of structural elements in the control 
region is also discussed, with emphasis on their implications in the regulation of replica-
tion and/or transcription of the reduviid mitogenome. The phylogenetic analyses indi-
cated that within Reduviidae, Harpactorinae is a sister group to the Salyavatinae + Tri-
atominae clade. 

Key words: Mitogenome, Agriosphodrus dohrni, Reduviidae, genome architecture, phylogenetic re-
lationship 

Introduction 

Mitogenomes have become a major resource for 
comparative genomics and play an important role in 
metabolism, apoptosis, disease and aging [1]. In in-
sects, mtDNA is typically a small double-stranded 
circular molecule of 14-20 kb in length. It encodes 13 
protein-coding genes (PCGs), two rRNA genes, and 
22 tRNA genes [1, 2]. Additionally, insect mitoge-
nome contains a major non-coding region known as 
the A+T-rich region that plays a role in initiation of 

transcription and replication [2]. The length of this 
region is highly variable among different insects due 
to its high rate of nucleotide substitution, inser-
tions/deletions, and the presence of a variable num-
ber of tandem repeats [3, 4]. For the past two decades, 
mtDNA has been widely regarded as the molecular 
marker of choice for the phylogenetic analysis in 
metazoans because of its abundance in animal tissues, 
the small genome size, faster rate of evolution, low or 
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absence of sequence recombination, and evolutionary 
conserved gene products [5-7], although there are 
some criticisms on using mtDNA for phylogenetics, 
especially at the deeper level [8, 9].  

To date, mitogenomes of 236 insect species 
across 22 orders have been sequenced and deposited 
in the GenBank and the insect mitogenomes have 
been used extensively as molecular markers for pop-
ulation genetics, phylogeographic analyses, and the 
reconstruction of phylogenetic relationships at dif-
ferent taxonomic levels. Reduviidae, the largest fam-
ily of terrestrial predatory Hemiptera, consists of ap-
proximately 7000 species [10]. Both mitochondrial and 
nuclear ribosomal genes have been used as molecular 
markers to resolve the phylogenetic relationship in 
Reduviidae [10, 11]. However, the number of sub-
families and their phylogenetic relationship are still at 
the point of juncture because the resolution is rather 
limited using specific gene markers [10]. The utility of 
mitogenome data may provide new insights into re-
duviid higher-level systematics. Up to date, mitoge-
nomes of two assassin bugs, Triatoma dimidiata from 
subfamily Triatominae [12] and Valentia hoffmanni 
from subfamily Salyavatinae [13], have been se-
quenced. T. dimidiata is a medically important insect 
pest species. It feeds on vertebrate blood and has been 
known as the vector of Chagas’ disease in humans 
and other mammals.  

In this report, we present the complete mitoge-
nome of Agriosphodrus dohrni, a representative of 
Harpactorinae (the largest subfamily of Reduviidae) 
and a potential biocontrol agent in orchards and for-
ests [14]. Additionally, we compared the sequence 
and genome architecture of A. dohrni with 
blood-feeding T. dimidiata and V. hoffmanni. Finally, 
phylogenetic analysis of the three known reduviid 
species (including A. dohrni from this study) with 
representative heteropterans at the mitogenome level 
is provided to reexamine the feasibility of mitoge-
nome data to resolve infraordinal relationships of 
Heteroptera.  

Materials and Methods 

Agriosphodrus dohrni and genomic DNA extrac-
tion 

Adult A. dohrni samples were collected from 
Hanzhong, Shaanxi Province, China in May 2009. All 
collections were initially preserved in 95% ethanol in 
the field, and transferred to -20℃ for the long-term 
storage upon the arrival at the China Agricultural 
University (CAU). The genomic DNA was extracted 
from muscle tissues of the thorax using a ce-
tyl-trimethylammonium bromide (CTAB)-based 

method [15]. Voucher specimen (No. VHem-00201) 
was deposited at the Entomological Museum of CAU. 

PCR amplification, cloning and sequencing 

The mitogenome of A. dohrni was generated by 
amplification of overlapping PCR fragments (Sup-

plementary Material: Table S1). Initially, 13 frag-
ments were amplified using the universal primer sets 
from [6] (Fig. 1). Nine perfectly matched primers were 
designed based on the read of these short fragments 
for the secondary PCRs (Supplementary Material: 

Table S1).  
Short PCRs (< 1.5 kb) were carried out using 

Qiagen Taq DNA polymerase (Qiagen, Beijing, China) 
with the following cycling conditions: 5 min at 94℃, 
followed by 35 cycles of 50 s at 94℃, 50 s at 48-55℃, 
1–2 min at 72℃ depending on the size of amplifica-
tions, and the subsequent final elongation step at 72℃ 
for 10 min. Long PCRs (> 1.5 kb) were performed us-
ing NEB Long Taq DNA polymerase (New England 
BioLabs, Ipswich, MA) under the following cycling 
conditions: 30s at 95℃, followed by 45 cycles of 10 s at 
95℃, 50s at 48-55℃, 3-6 min at 68℃ depending on the 
size of amplicons, and the final elongation step at 68℃ 
for 10 min . The quality of PCR products were evalu-
ated by spectrophotometry and agarose gel electro-
phoresis.  

The PCR fragments were ligated into the 
pGEM-T Easy Vector (Promega) and resulting plas-
mid DNAs were isolated using the TIANprp Midi 
Plasmid Kit (Qiagen, Beijing, China). All fragments 
were sequenced in both directions using the BigDye 
Terminator Sequencing Kit (Applied Bio Systems) 
and the ABI 3730XL Genetic Analyzer (PE Applied 
Biosystems, San Francisco, CA, USA) with two vec-
tor-specific primers and internal primers for primer 
walking. 

Secondary structure prediction and sequence 
analysis  

DNA sequences were proof-read and aligned 
into contigs in BioEdit version 7.0.5.3 [16]. Pro-
tein-coding regions and rRNA genes were identified 
by sequence homology with published insect mito-
chondrial sequences from public domains (e.g., Gen-
Bank). The tRNA genes were identified by tRNAs-
can-SE Search Server v.1.21 [17] with default setting. 
Some tRNA genes that could not be determined by 
tRNAscan-SE were identified by comparing to the 
tRNA coding regions in other hemipterans. Second-
ary structures of the small and large subunits of 
rRNAs were inferred using models predicted for 
Drosophila melanogaster and D. virilis [18], Apis mellifera 
[19], Manduca sexta [20] and Ruspolia dubia [21]. 
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Stem-loops were named according to the convention 
of Gillespie et al. (2006) [19], as well as Cameron et al. 
(2008) [20]. Protein-coding genes were aligned with 
Clustal X [22]. A+T content and codon usage were 
calculated using MEGA version 4.0 [23]. The putative 
control region was determined using the mfold web 
server at http://mfold.rna.albany.edu/ [24] to locate 
regions with potential inverted repeats or palin-
dromes. Strand asymmetry was calculated using the 
formulas: AT skew= [A−T]/ [A+T] and GC skew= 
[G−C]/ [G+C] [25].  

Phylogenetic analysis  

Phylogenetic analysis was carried out based on 
the 33 complete or nearly complete mitogenomes of 
true bugs from GenBank (Supplementary Material: 

Table S2).Two species from Auchenorrhyncha were 
selected as outgroups. A DNA alignment was inferred 
from the amino acid alignment of the thirteen pro-
tein-coding genes using MEGA version 4.0 [23], 
which can translate between DNA and amino acid 
sequences within alignments. Alignments of indi-
vidual genes were then concatenated excluding the 
stop codon. Model selection was done with 
MrModeltest 2.3 [26] and ModelTest 3.7 [27] for 
Bayesian inference and ML analysis, respectively. 
According to the Akaike information criterion, the 

GTR+I+G model was optimal for analysis with nu-
cleotide alignments. MrBayes Version 3.1.1 [28] and a 
PHYML online web server [29] were employed to 
analyze this data set under the GTR+I+G model. In 
Bayesian inference, two simultaneous runs of 
1,000,000 generations were conducted for the matrix. 
Each set was sampled every 200 generations with a 
burnin of 25%. Trees inferred prior to stationarity 
were discarded as burn-in, and the remaining trees 
were used to construct a 50% majority-rule consensus 
tree. In ML analysis, the parameters were estimated 
during analysis and the node support values were 
assessed by bootstrap resampling (BP) [30] calculated 
using 100 replicates. 

Results  

The complete mitogenome of A. dohrni was se-
quenced and determined to be 16, 470 bp in size and it 
contains 13 protein-coding genes, 22 tRNA genes, two 
rRNA genes, and a control region (Fig.1). The se-
quence was deposited in GenBank under the acces-
sion number HM071001. 

Protein coding genes 

All but one protein-coding genes of A. dohrni in-
itiate with ATN as the start codon (eight with ATG, 
two with ATT, one with ATC and one with ATA) 

(Table 1). The only exception is the 
ND1 gene, which likely uses GTG as 
a start codon. Conventional stop 
codon (TAA) has been assigned to 
majority of the protein-coding genes 
of A. dohrni. COI, COIII and ND5, 
however, terminate with a single T 
residue which adjacent directly to 
the tRNA and non-coding region. 
Similar arrangement in which the 
termination codon is believed to be 
generated by the polyadenylation 
process has been observed for other 
insect species [31, 32]. 

 

Fig. 1 Map of the A. dohrni mitoge-
nome. The tRNAs are denoted by the 
color blocks and are labeled according to 
the IUPACIUB single-letter amino acid 
codes. Gene name without underline 
indicates the direction of transcription 
from left to right, and with underline 
indicates right to left. Overlapping lines 
within the circle denote PCR fragments 
amplified used for cloning and se-
quencing. 
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Transfer RNAs  

The whole set of 22 tRNAs typical of arthropod 
mitogenomes were found in A. dohrni, and schematic 
drawings of their respective secondary structures 
were shown in Supplementary Material: Figure S1. 
A. dohrni tRNA genes fold into a classic clover-leaf 
structure, with the exception of tRNASer(AGN) , in which 
its dihydrouridine (DHU) arm simply forms a loop. 
Based on the secondary structure, a total of 25 un-

matched base pairs are found in the A. dohrni tRNAs. 
Twenty-one of them are G-U pairs, which from a 
weak bond, locate in the AA stem (11-bp), the T stem 
(2-bp), and the DHU stem (8-bp). The remaining four 
pairs include U-U mismatches at the AA stem of 
tRNAAla and tRNAPro, respectively, U-C mismatche at 
the AA stem of tRNAAla, and A-A mismatch at the AC 
stem of tRNALys (Supplementary Material: Figure 

S1). 

 

Table 1. Organization of the A. dohrni mitogenome 

Gene Direction Location (bp) Size (bp) Anticodon Start Codon Stop Codon Intergenic  
Nucleotidea 

tRNAIle F 1-64 64 30-32 GAT    

tRNAGln R 62-130 69 98-100 TTG   -3 

tRNAMet F 130-198 69 160-162 CAT   -1 

ND2 F 199-1203 1005  ATT TAA 0 

tRNATrp F 1202-1267 66 1232-1234 TCA   -2 

tRNACys R 1260-1327 68 1291-1293 GCA   -8 

tRNATyr R 1369-1434 66 1400-1402 GTA   41 

COI F 1446-2979 1534  ATG T- 11 

tRNALeu(UUR) F 2980-3044 65 3009-3011 TAA   0 

COII F 3045-3728 684  ATC TAA 0 

tRNALys F 3730-3799 70 3760-3762 CTT   1 

tRNAAsp F 3802-3867 66 3833-3835 GTC   2 

ATP8 F 3869-4027 159  ATT TAA 1 

ATP6 F 4021-4704 684  ATG TAA -7 

COIII F 4691-5471 781  ATG T- -14 

tRNAGly F 5472-5534 63 5502-5504 TCC   0 

ND3 F 5535-5888 354  ATA TAA 0 

tRNAAla R 5889-5950 62 5918-5920 TGC   0 

tRNAArg F 5954-6019 66 5984-5986 TCG   3 

tRNAAsn F 6026-6093 68 6058-6060 GTT   6 

tRNASer(AGN) F 6093-6161 69 6120-6122 GCT   -1 

tRNAGlu F 6163-6227 64 6194-6196 TTC   1 

tRNAPhe R 6230-6294 65 6260-6262 GAA   2 

ND5 R 6296-8006 1711  ATG T- 1 

tRNAHis R 8008-8070 63 8038-8040 GTG   1 

ND4 R 8071-9402 1332  ATG TAA 0 

ND4L R 9396-9680 285  ATG TAA -7 

tRNAThr F 9687-9750 64 9718-9720 TGT   6 

tRNAPro R 9752-9817 66 9785-9787 TGG   1 

ND6 F 9831-10328 498  ATG TAA 13 

CytB F 10328-11464 1137  ATG TAA -1 

tRNASer(UCN) F 11474-11542 63 11504-11506TGA   9 

ND1 R 11706-12629 924  GTG TAA 163 

tRNALeu(CUN) R 12630-12694 65 12663-12665TAG   0 

lrRNA R 12695-13962 1268    0 

tRNAVal R 13963-14031 67 14000-14002 TAC   0 

srRNA R 14032-14827 796    0 

Control region  14828-16470 1643    0 
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Fig. 2 Predicted secondary structure of the rrnL gene in the A. dohrni mitogenome. Regions in red indicate the high 
variability in the three assassin bugs. Roman numerals denote the conserved domain structure. Dashed (-) indicate Wat-
son-Crick base pairing and dot (•) indicate G-U base pairing. 
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Ribosomal RNAs 

Like other insect mitogenomes, the large and 
small rRNA subunits (rrnL and rrnS) in A. dohrni are 
located at tRNALeu(CUN) - tRNAVal and tRNAVal - control 
region, respectively (Fig. 1 and Table 1). The length of 
rrnL and rrnS was determined to be 1, 268 bp and 796 
bp, respectively. Both rrnL and rrnS are in congruent 
with the secondary structure models proposed for 
other insects [18-21, 40, 41]. The secondary structure 
of A. dohrni rrnL consists of 6 structural domains 

(domain III is absent in arthropods) (Fig. 2). The 
structures of H991 region within the domain II were 
determined according to the models for M. sexta [20] 
and R. dubia [21], although they are highly variable 
and difficult to predict. Domain III of A. dohrni is ap-
parently shorter than other insects. The secondary 
structure of rrnS contains three domains (Fig. 3). He-
lix-47 region is highly variable among different in-
sects, and in A. dohrni can be folded into two helices, 
H47 and H47’ (Fig. 3). 

 

Fig. 3 Predicted secondary structure of the rrnS gene in the A. dohrni mitogenome. Regions in red indicate high vari-
ability in the three assassin bugs. Region in green displays a new predicated helix (H47’) compared with A. mellifera [19]. 
Regions in blue show sequence variability (base insertions and deletions) in the three assassin bugs. Regions in purple and 
parts (a-c) show the new proposed structures in V. hoffmanni. Roman numerals denote the conserved domain structure. 
Dashed (-) indicate Watson-Crick base pairing and dot (•) indicate G-U base pairing. Structural annotations follow Fig. 2. 



Int. J. Biol. Sci. 2011, 7 

 

 
http://www.biolsci.org 

798 

AT contents and codon usage  

The nucleotide composition of A. dohrni mito-
genome is biased toward adenine and thymine (A+T 
= 72.2%), ranging from 71.7% in protein-coding genes, 
73.1% in rRNA genes, 73.4% in tRNA genes, to 71.9% 
in the control region (Table 3). The genome-wide bias 
toward AT was well documented in the codon usage 
table. At the third codon position, A or T are over-
whelmingly overrepresented than G or C. The overall 
pattern was very similar among the three assassin 
bugs, with similar frequency of occurrences of various 
codons within a single codon family. There is a strong 
bias toward AT-rich codons with the five most prev-
alent codons in A. dohrni, as in order, TTA (Leu), TTT 
(Phe), ATT (Ile), ATA (Met) and AAT (Asn).  

Non-coding region 

The non-coding region of insect mitogenome 
consists of a control region and short intergenic spac-
ers. In A. dohrni, a long control region (1, 643bp) and 
14 intergenic spacers have been identified (Table 1). 
Majority of the intergenic spacers are only 1- to 13-bp 
long, however, the longest intergenic spacer located 
between tRNASer(UCN) and ND1 is 163 bp in length. It 
has two 58-bp tandem repeats and one 47-bp copy of 
the anterior portion of the repeat unit. This 163-bp 
intergenic spacer has no similarity to any existing 
sequences in the GenBank, and we suspected a similar 
function to the 314-bp intergenic spacer from T. di-
midiata that is believed to be the other origin of repli-
cation [12, 42]. 

The control region of A. dohrni mitogenome is 
located at the conserved position between rrnS and 
tRNAIle- tRNAGln- tRNAMet gene cluster (Fig. 1). The 
A+T content of this region is one of the lowest in the 
A. dohrni mitogenome and can be divided into four 
parts: 1) a 410-bp region that is bordered by rrnS and a 
conserved region, of which the G+C content (43.4%) is 
higher than the average of the entire genome; 2) a 
short conserved sequence block (CSB) 3) a 188-bp re-
gion heavily biased toward A+T (79.2%); 4) a region 
composed of six long tandem repeats; and 5) the re-
mainder of the control region (Fig. 4B). 

Phylogenetic relationships 

ML and BI analysis performed on the nucleotide 
dataset generate similar tree topologies (Fig. 5). The 
five Pentatomomorpha superfamilies (15 taxa) are 
monophyletic with the following relationships: Ara-
doidea + (Pentatomoidea + (Pyrrhocoroidea + 
(Lygaeoidea + Coreoidea))). The sister groups’ rela-
tionship of five Nepomorpha superfamilies are con-
firmed, but the position of Pleoidea is unstable. Two 
Leptopodomorpha superfamilies are monophyletic 
with the sister relationship to Nepomorpha. Cimico-
morpha is paraphyletic consisting of two groups 
(Reduvioidea and (Cimicoidea and Miroidea)). Two 
Gerromorpha superfamilies are monophyletic in the 
basal position of these five infraorders. The infraor-
dinal relationships tend to be poorly resolved with 
low support in ML analysis. The assassin bug sub-
family Harpactorinae presents a sister position to the 
(Salyavatinae + Triatominae) highly supported by ML 
and Bayesian inferences.  

 

Table 2. Start and stop codons of the A. dohrni, T. dimidiata and V. hoffmanni mitogenomes 

Gene Start Codon Stop Codon 

A. dohrni T. dimidiata V. hoffmanni A. dohrni T. dimidiata V. hoffmanni 

ND2 ATT ATC ATG TAA TAG TAA 

COI ATG ATG ATG T- T- T- 

COII ATC ATA ATA TAA T- T- 

ATP8 ATT ATA ATC TAA TAA TAA 

ATP6 ATG ATG ATG TAA TAA TAG 

COIII ATG ATG ATG T- TA- T- 

ND3 ATA ATA ATT TAA TA- T- 

ND5 ATG GTG ATT T- TA- T- 

ND4 ATG ATG ATG TAA TAA TAA 

ND4L ATG ATG ATT TAA TAA TAA 

ND6 ATG ATA ATA TAA TAA TAA 

CytB ATG ATG ATG TAA T- TAG 

ND1 GTG ATA GTG TAA TAA TAA 
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Table 3. Nucleotide composition of the A. dohrni (A.), T. dimidiata (T.) and V. hoffmanni (V.) mitogenomes 

Feature %A+T AT Skew GC Skew 

A. T. V. A. T. V. A. T. V. 

Whole genome 72.2 69.5 73.8 0.08 0.16 0.12 -0.12 -0.27 -0.21 

protein–coding genes 71.7 68.8 73.4 -0.14 -0.17 -0.16 -0.005 -0.02 0.004 

First codon position 73.5 69.2 74.6 -0.09 -0.13 -0.10 0.01 -0.03 0.01 

Second codon position 70.0 68.0 72.3 -0.18 -0.24 -0.20 0.01 0.03 0.02 

Third codon position 71.5 69.3 73.4 -0.16 -0.17 -0.16 -0.04 -0.08 -0.02 

rRNA genes 74.8 73.1 75.7 -0.09 -0.18 -0.11 0.27 0.31 0.30 

tRNA genes 73.4 74.3 76.0 0.02 0.03 0.01 0.11 0.15 0.14 

Control region 71.9 66.0 69.9 0.05 0.20 0.03 -0.17 -0.29 -0.25 

 

 
 
 

 

Fig. 4 Control regions of the A. dohrni, V. hoffmanni and T. dimidiata mitogenomes. (A) The conserved sequence block 
(CSB) and the G element of mitochondrial control regions of the three assassin bugs. (B) A schematic drawing of the 
structural organization of mitochondrial control regions of the three assassin bugs. The control regions flanking genes rrnS, 
trnI (I), trnQ (Q), and trnM (M) are highlighted in red boxes. The blue boxes with Roman numerals indicate the tandem 
repeat region. “G+C” indicates high G+C content region. “A+T” indicates high A+T content region. The yellow box indicates 
G element. 
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Fig. 5 Phylogenetic tree inferred from the mitogenomes of 33 heteropterans. (A) ML analysis inferred from all codon 
positions of 13 PCGs. Bootstrap support values are indicated at each node. (B) Bayesian analysis inferred from all codon 
positions of 13 PCGs. Bayesian posterior probabilities are indicated at each node. 
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Discussion 

The organization and characteristics of A. dohrni 
mitogenome 

The architecture of A. dohrni mitogenome in-
cluding genome content, gene order, and genome 
asymmetry is consistent with two other reduviid spe-
cies T. dimidiata and V. hoffmanni. The mitogenomes of 
the three assassin bugs share the same genome con-
tent (37 genes and 1 control region) and gene order, 
and have exactly the same genome asymmetry with a 
gene strand asymmetry (GSA) rate of 0.24 [GSA = 
(Number of genes on the major-strand – Number of 
genes on the minor-strand)/Number of total genes] 
[7]. The size differences among reduviid mitoge-
nomes (A. dohrni, 16, 470 bp; T. dimidiata, 17, 019 bp; 
and V. hoffmanni, 15, 625 bp) is mainly due to the 
variable number of repeats in the control regions. It is 
also worth noting that the evolutionary conserved 
genome architecture shared among assassin bugs is 
also considered ancestral to both insects and crusta-
ceans [7, 33]. 

Among three assassin bugs, six of the pro-
tein-coding genes (COI, ATP6, COIII, ND4, ND6 and 
CytB) have the same Met start codons (ATG or ATA) 
(Table 2). The other five genes use either Met or Ile as 
the start codon (ATT, ATC, ATG and ATA). In T. di-
midiata, the start codon for ND1 is ATA, whereas, A. 
dohrni and V. hoffmanni have GTG as their start codon. 
On the contrary, for ND5, T. dimidiata starts with GTG, 
whereas, A. dohrni and V. hoffmanni use ATG and ATT 
as their respective start codons (Table 2). 

Dihydrouridine (DHU) arm of A. dohrni 
tRNASer(AGN) simply forms a loop as seen in the two 
reduviid species T. dimidiata and V. hoffmanni as well 
as other insects [2, 13, 34-39]. The anticodon (AC) stem 
of tRNASer(AGN) among three reduviid species is very 
conservative, with a long base pairing (9-bp instead of 
the common 5-bp) and a bulged nucleotide in the 
middle. The length of A. dohrni tRNAs ranges from 
62-69 bp and is similar to the size of T. dimidiata (63-70 
bp) and V. hoffmanni (59-70 bp). tRNAs from the three 
reduviid species possess invariable lengths for the 
aminoacyl (AA) stem (7-bp), the AC loop (7 nucleo-
tides), and the AC stem (5-bp). Most of the size varia-
tions stem from the DHU and T arms, within which 
the loop size (3-9bp) is more variable than the stem 
size (3-5bp, except for tRNASer(AGN)). The A. dohrni an-
ticodons are identical to those observed in T. dimidiata 
and V. hoffmanni. 

The information regarding inferred rRNA sec-
ondary structures in assassin bugs and true bugs has 
been limited. Therefore, it is unclear how much vari-

ation exists in the rRNA structure and whether dif-
ferences in length are due to the loss of helices or the 
reduction in helix sizes. Although the sizes of rrnL 
and rrnS in A. dohrni (1, 268 bp and 796 bp, respec-
tively) are similar to those of T. dimidiata (1, 270 bp 
and 781 bp, respectively) and V. hoffmanni (1,256 bp 
and 777 bp, respectively), the sequence variation is 
too high in some regions for meaningful structural 
comparisons (Fig. 2). Overall, the 5’ end before the 
helix H183, and domain-II and -V are the most varia-
ble regions of the rrnL, and their length and secondary 
structure of the loop are more conserved than the 
stem (Fig. 2). For rrnS, both 5’ and 3’ ends, and do-
main-I and -II are more variable. Three regions (Fig. 

3a-c) of the V. hoffmanni rrnS which have lengthy base 
deletions were highlighted in blue and the new pro-
posed structures were highlighted in purple (Fig. 3). 
Region-a, which was proposed to form a helix 
(H1047), with a 15-bp deletion, can be folded into a 
new helix (Fig. 3a). In region-b, helix H1303 had a 
12-bp deletion and led to the loss of its stem-loop 
structure (Fig. 3b). In region-c, the 9-bp loop of helix 
H1399 reduced to 5-bp and formed a shorter loop 
(Fig. 3c). To summarize, the size and structure of rrnL 
is more conserved than rrnS in three sequenced re-
duviids. 

The AT bias is consistent in these three assassin 
bugs and the nucleotide skew statistics [25] for the 
whole mitogenome of these three species show that 1) 
the entire genome and control region are moderately 
A/C skewed; 2) protein-coding genes and codons 
lack significant G or C skew but moderate T skew; 3) 
rRNA genes are significant T/G skewed; and 4) tRNA 
genes are A/G skewed. Overall, the nucleotide com-
position of all three reduviid species representing 
three different subfamilies, respectively, is consistent 
and likely conserved in the family Reduviidae. It is 
worth noting that the control regions are not the most 
AT-rich region in the reduviid mitogenomes, and this 
generalized labeling of “AT-rich region” for the con-
trol region should be reconsidered [13]. 

The sequence alignment of all three assassin bug 
control regions reveals a CSB (Fig. 4A), including a G 
element which has been reported in triatomine bugs 
Rhodnius prolixus and T. dimidiata (referred as Gs) [12], 
and some dipterans (referred as G islands) [43]. After 
the CSB region, there is an A+T rich region which 
potentially can form the stem-loop structure (Fig. 4B). 
A possible involvement of this unique motif in insect 
replication and transcription initiation [43-45] is one 
of the interests for the future research. 

The presence of various numbers of tandem re-
peats is one of the characteristics of the insect control 
region [46]. In the case of T. dimidiata, the 2, 165 bp 
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control region has eight tandem repeats including one 
82-bp, five 140 bp, and two 173 bp repeats (Fig. 4B). 
Six tandem repeats identified in A. dohrni include two 
193 bp, one 41 bp (a partial copy of the anterior repeat 
unit), and three 194-bp repeats. However, in V. hoff-
manni, the 725 bp control region only has two 38-bp 
repeats, separated by a non-repetitive sequence (Fig. 

4B). Repeated sequences are common in the control 
region for most insects, and length variations due to 
the various numbers of repeats are not without prec-
edents [12]. Consequently, analysis of the repeat units 
among individuals from different geographical loca-
tions may shed light on the geographical structuring 
and phylogenetic relationships of species. 

Phylogenetic relationships among Heteroptera 
inferred from mitogenome sequences  

Based on both morphological and molecular 
characterizations, previous studies support the con-
tention that Reduviidae is monophyletic, whereas 
Reduviinae is polyphyletic in true bugs [10, 57, 58]. 
However the number of subfamilies and the phylo-
genetic relationships within Reduviidae has remained 
a point of discussion. As the mitogenome sequencing 
becoming a common practice, the utility of the mito-
chondrial genome data for the resolution of subfami-
ly-level relationships within Reduviidae is promising.  

The seven-infraorder classification of the Het-
eroptera has been accepted by most researchers [49, 
50], however, the phylogenetic relationships among 
infraorders are still controversial [47-51]. The mito-
genomes of 32 species in 29 families within five in-
fraorders of Heteroptera have already been se-
quenced [12, 13, 52, 53] and those data provide a new 
source for understanding deep-level true bug phy-
logeny. Based on the analysis of nine nepomorphan 
mitogenomes, Hua [13] suggested elevating Pleoidea 
to the infraorder Plemorpha. Within Cimicomorpha, 
Reduvioidea is paraphyletic with respect to Cimicoi-
dea and Miroidea in this study, and it is incongruent 
with previous results [54-56]. These discrepancies 
suggest that the selection of representative taxa at 
family-level may influence the phylogenetic rela-
tionships within the infraorder resolved from the 
mitogenome data. 

In the present study, the sister-relationship 
within Pentatomomorpha, Nepomorpha, Lepto-
podomorpha and Gerromorpha are highly supported 
by BI and ML analysis. In addition, the Gerromorpha 
clade is stable in the basal position. This result may 
provide evidence for the feasibility of mitogenome 
data to resolve infraordinal relationships of Heterop-
tera, however, the prerequisite is to ensure 
the integrality and representative of the infraor-

der-level taxa. Future analyses should focus on in-
cluding Enicocephalomorpha and Dipsocoromorpha 
mitogenome data and additional representatives for 
some poorly sampled clades. 

Supplementary Material 

Table S1: Primer sequences used in this study; Table 
S2: General informatics of the taxa used in this study; 
Figure S1: Inferred secondary structure of 22 tRNAs 
of the A. dohrni mitogenome.   
http://www.biolsci.org/v07p0792s1.pdf 
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