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Abstract 

Evodiamine has therapeutic potential against cancers. This study was designed to investigate 
whether combination therapy with gemcitabine and evodiamine enhanced antitumor efficacy 
in pancreatic cancer. In vitro application of the combination therapy triggered significantly 
higher frequency of pancreatic cancer cells apoptosis, inhibited the activities of PI3K, Akt, 
PKA, mTOR and PTEN, and decreased the activation of NF-κB and expression of 
NF-κB-regulated products. In vivo application of the combination therapy induced significant 
enhancement of tumor cell apoptosis, reductions in tumor volume, and inhibited activation of 
mTOR and PTEN. In conclusion, evodiamine can augment the therapeutic effect of gem-
citabine in pancreatic cancer through direct or indirect negative regulation of the PI3K/Akt 
pathway. 
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Introduction 

Pancreatic cancer has a high incidence of local 
recurrence and develops distant metastasis, leading to 
extremely poor prognosis (1). Many patients with 
locally advanced or metastatic pancreatic cancer are 
stable on chemotherapy with gemcitabine. Although 
gemcitabine is the most potent and standard treat-
ment of pancreatic cancer (2, 3), the tumor response 
rate of gemcitabine is below 10%. Previous studies 
have shown that treatment with gemcitabine results 
in the median survival time of about five to six 
months (4, 5). Furthermore, although treatment with 
gemcitabine and erlotinib or capecitabine benefits 
patients with pancreatic cancer, these therapeutic 
strategies fail to significantly prolong the survival 
time of pancreatic cancer patients (6, 7). Therefore, 

development of new chemotherapeutic approaches to 
enhance the therapeutic effect and reduce the devel-
opment of drug-resistance will be of great significance 
in the clinical management of pancreatic cancer.  

Constitutive activation of nuclear factor-κB 
(NF-κB) can promote cell proliferation, inhibit cell 
apoptosis and regulate the expression of genes asso-
ciated with the tumor-related invasion (8) and angio-
genesis (9, 10), reflecting the aggressive behavior of 
pancreatic cancer (11). Notably, gemcitabine can 
up-regulate NF-κB expression in pancreatic cancer 
cells, which is associated with the development of 
chemoresistance and poor outcome in cancer patients, 
including patients with pancreatic cancer (12-16). 
PI3K and Akt are kinases that play a critical role in 
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human cancer. Asano et al. (17) has reported that PI3K 
and Akt are activated due to aberrant PTEN expres-
sion and essential for the function of constitutively 
activated NF-κB in pancreatic cancer. Another report 
has shown that PI3K/Akt pathway is constitutively 
activated in a majority of human pancreatic cancer cell 
lines and PI3K/Akt has emerged as a promising tar-
get for therapeutic intervention (18). Arlt et al. (16) 
suggested that PI3K/Akt was not involved in gem-
citabine resistance, but another report (19) demon-
strated that Akt activity is necessary for the induction 
of NF-κB after gemcitabine treatment, though the 
mechanism does not involve activation of Akt.  

Evodiamine is one of the main constituents of 
Evodiae fructus (20) and has been shown to exhibit 
anti-tumor properties (21). The apoptotic activity of 
evodiamine was shown to be due to its inhibition of 

NF-κB activation via suppression of IκB kinase ac-
tivity, which leads to inhibition of NF-κB-regulated 
gene products such as XIAP, Bcl-2, and Bcl-xL (8). 
Previous study has also revealed the molecular 
mechanism by which evodiamine increases the ex-
pression of proapoptotic Bax and decreases that of 
anti-apoptotic Bcl-2, which amplified the activation of 
the caspase cascade, triggering consequent responses 
and cell death (21-23). PI3K was also found to exhibit 
essential regulatory effects on functions of SIRT1, p53 
and other signaling proteins involved in evodia-
mine-induced A375-S2 cell death (24, 25). Based on 
these reports, we hypothesized that evodiamine may 
augment the gemcitabine-induced anti-tumor effect 
on pancreatic cancer via direct or possibly indirect 
inhibition of the PI3K/Akt pathway targeting NF-κB. 

 This study showed that evodiamine inhibited 
the spontaneous and gemcitabine-induced NF-κB 
activation, and the expression of NF-κB-regulated 
proteins in SW1990 cells. Importantly, evodiamine 
inhibited the activation of PI3K/Akt pathway, phos-
phorylation of PTEN and mammalian target of ra-
pamycin (mTOR), and activity of cAMP-dependent 
protein kinase A (PKA) that was not influenced by 
gemcitabine. Our data suggest that evodiamine may 
augment the therapeutic effect of gemcitabine in 
pancreatic cancer through direct or indirect negative 
regulation of the PI3K/Akt pathway that targets 
NF-κB. 

Materials and Methods 

Reagents 

Evodiamine (purity: >99%) was purchased from 
Sigma (St. Louis, MO, USA), and dissolved in dime-
thylsulfoxide (DMSO) at 0.2 mmol/L to make the 
stock solution. Gemcitabine was purchased from Ely 

Lilly (Bad Homburg, Germany) and dissolved in ster-
ile saline at 50 g/L for stock solution, with a final 
concentration of DMSO at <0.1%. Rabbit polyclonal 
antibodies against phospho-PTEN(Ser380/Thr382/ 
383) and PI3K(Tyr458) were purchased from Cell Sig-
naling Technology (Beverly, MA, USA). Rabbit poly-
clonal antibodies against Bax and Bcl-2, phos-
pho-mTOR(Ser2448), Rictor-mTOR, phos-
pho-Akt(Ser473), rabbit monoclonal antibody against 
NF-κB(p65), survivin and active caspase 3 were pur-
chased from Abcam (Cambridge, UK). The in Situ Cell 
Death Detection Kit was purchased from Roche (Ba-
sel, Switzerland). 

Cell culture 

Human pancreatic tumor cell line, SW1990, was 
purchased from the American Type Culture Collec-

tion (ATCC, Manassas, VA, USA) and cultured in 

RPMI-1640 supplemented with 10% heat-incubated 
fetal bovine serum (FBS; Invitrogen, Carlsbad, CA, 

USA), 100 units/mL of penicillin, and 100 g/mL of 
streptomycin and incubated at 37˚C in a humidified 
5% CO2 atmosphere. Some SW1990 cells were stably 
transfected with luciferase, as previously described 
for Panc-1 cells (26). Luciferase-transfected SW1990 
cells were routinely cultured in the same condition as 
SW1990 cells. 

MTT assay  

The cytotoxicity of individual drugs against 
SW1990 cells was determined by the 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide assay (MTT; Sigma), as previously described 
(27). Briefly, SW1990 cells at 5×103 cells/well were 
cultured in 96-well microtiter plates overnight and 

treated in triplicate with 20 mol/L of gemcitabine for 
24 h, and/or 1.0 μmol/L of evodiamine for 48 h. Un-
treated cells in medium alone were used as controls. 
The viability of control cells was designated as 100% 
and the viability of other experimental groups was 
calculated relative to controls. 

In vitro treatment protocol and apoptosis assay  

SW1990 cells at 2×105/mL were cultured over-
night in six-well plates and treated in triplicate with 

20 mol/L of gemcitabine for 24 h, and/or 1.0 
μmol/L of evodiamine for 48 h. Untreated cells in 
medium alone were used as controls. Subsequently, 
the cells were harvested, washed and stained with 10 
µL of Annexin V and 5 µL of propidium iodide (PI) in 
the dark for 15 min at room temperature, according to 
the manufacturer’s instructions (Biosea, Beijing, Chi-
na). The apoptotic cells were detected and measured 
by flow cytometer (Epics AltraII; Beckman Coulter, 
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Fullerton, CA, USA) and examined under an inverse 
fluorescent microscope.  

Electrophoretic mobility shift assay (EMSA) 

NF-κB activity was evaluated by EMSA analysis, 
as described elsewhere (28). Nuclear proteins were 
extracted from treated or untreated cells and protein 
concentrations were determined by BCA assay. The 
Biotin end-labeled DNA duplex of sequence 5′-AGT 
TGA GGG GAC TTT CCC AGG C-3′ and 3′-TCA ACT 
CCC CTG AAA GGG TCC G-5′ containing a putative 
binding site for NF-κB was incubated with the nuclear 
extracts. Subsequently, the DNA-protein complexes 
were subjected to a 6% native polyacrylamide gel 
electrophoresis (PAGE) and transferred to a nylon 
membrane (Pierce, Rockford, IL, USA), and 
cross-linked for 15 min on a UV transilluminator, fol-
lowed by detection using the LightShiftTM Chemilu-
minescent EMSA kit (Pierce), according to the manu-
facturers’ instructions. The membranes were exposed 
to X-ray films and the relative intensities were ana-
lyzed using the NIH Image 1.62 package. The nuclear 
extracts from unstimulated gastric cancer SGC7901 
cells were used as negative control and SGC7901cells 
stimulated with 50 ng/mL TNFα were used as posi-
tive controls. 

Western blot analysis 

SW1990 cells (2×106/plate) were treated with 
drug(s) as described above and harvested. Total pro-
teins were extracted and concentrations were deter-

mined by the BCA assay. The lysates (20 g/lane) 
were separated by 8-12% sodium dodecyl sul-
fate–PAGE and transferred onto polyvinylidene fluo-
ride (PVDF) membranes. After being blocked with 5% 
fat-free milk, the membranes were probed with indi-

vidual primary antibodies overnight at 4C and the 
bound antibodies were detected with horseradish 
peroxidase (HRP)-conjugated goat anti-rabbit IgG. 
The formed immunocomplex was visualized by en-
hanced chemiluminescence reagent (ECL, Pierce) and 
exposed to X-ray films. Quantitative data were ex-

pressed as mean%SD of the relative levels of the 

objective protein and control -actin of each group of 
cells from three independent experiments. 

Measurement of intracellular cAMP concen-

tration  

 SW1990 cells (2×106/plate) were treated with 
drug(s) as described above and harvested. cAMP lev-
els were determined by cAMP enzyme immunoassay 
kit following the manufacturer's instructions (Cay-
man Chemical Co., Ann Arbor, MI, USA). The protein 
concentration of total cell lysate was used as loading 

control, and the results were expressed as picomoles 
of cAMP per microgram of total protein.  

Measurement of intracellular PKA activity  

 SW1990 cells were treated drug(s) as described 
above and collected with PKA extraction buffer before 
breakdown under 4˚C. Individual supernatants were 
collected by centrifugation (11,000×g, 10 min at 4˚C) to 
detect PKA activity using a PKA activity assay kit 
(Upstate, Lake Placid, NY, USA).  

Experimental animals and protocols 

Female BALB/c nude mice at four to six weeks 
of age were purchased from the Shanghai Laboratory 
Animals Center (China). All animals were housed in a 
specific pathogen-free facility. The experimental pro-
tocols involving animals were approved by the Ani-
mal Research and Ethical Committee of Wenzhou 
Medical College.  

To establish the SW1990 pancreatic cancer cells 
xenograft tumor model, individual mice were im-
planted subcutaneously with 2×106 SW1990 cells in 
200 μL of PBS on the back of each animal and moni-
tored for the development of tumors for up to three 
weeks post-implantation. When tumors reached ~5 
mm in one dimension (length, width, or height 
measured by Vernier calipers), the mice were ran-
domized and treated intraperitoneally (IP) with sa-
line, gemcitabine alone (125 mg/kg) (29), evodiamine 
alone (10 mg/kg) (30), or combined gemcitabine (80 
mg/kg) with evodiamine (10 mg/kg) every three 
days for up to 30 days post-implantation (n=12 per 
group). The experimental protocols are illustrated in 

Figure 1. One week after the last treatment, animals 
were weighed, sacrificed and the tumors were ex-
cised. The final tumor volume was estimated by the 
following formula: V=2/3πr3, where r is the mean of 
the three dimensions (length, width, and height). A 
portion of the tumor tissue was formalin-fixed and 
paraffin-embedded for subsequent apoptosis assay 
and immunohistochemistry analysis. 

Luciferase-transfected SW1990 cells xenograft 
tumor models were established by subcutaneously 
inoculating the cells into the bilateral abdominal 
flanks (three places on each side) of nude mice. After 
three weeks of implantation, a total of 48 nude mice 
were randomized into four treatment groups (n=12) 
based on the bioluminescence measured after the first 
IVIS imaging. The treatment protocol of each group 
was the same as described above. One week after the 
last treatment, the numbers of tumors that had grown 
in each mouse were monitored by the biolumines-
cence IVIS Imaging System 200 (Caliper Life Sciences, 
Hopkinton, MA, USA) using a cryogenically cooled 
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imaging system coupled to a data acquisition com-
puter running Living Image software (Xenogen Corp., 
Alameda, CA, USA). Before imaging, animals were 
anesthetized by asphyxiation in an acrylic chamber 
filled with 2.5% isoflurane/air mixture. Immediately 
afterwards, mice were intraperitoneally (i.p.) injected 
with 40 mg/mL D-luciferin potassium salt in PBS at a 
dose of 150 mg/kg. After 10 min of incubation with 
luciferin, mice were placed in a prone position and a 
digital grayscale animal image was acquired followed 
by acquisition and overlay of a pseudocolor image 
representing the spatial distribution of detected pho-
tons emerging from active luciferase within the ani-
mal. Signal intensity was quantified as the sum of all 
detected photons within the region of interest per 
second.  

In situ detection of apoptotic cells in tumor 

tissue 

The apoptotic tumor cells in the tumor tissues 
were characterized by the terminal deoxynucleotidyl 
transferase-mediated deoxyuridine tri-phosphate 
nick-end labeling (TUNEL) method using the In Situ 
Cell Death Detection Kit, according to the manufac-
turers’ instruction. The tumor tissue sections were 
subjected to TUNEL analysis and apoptotic cells were 
examined under a laser scanning confocal microscope 
with 400x observation camera. Images were captured 
and a total of 10 fields with strongest fluorescence 
from individual tissue samples were examined. The 
integrated optical density (IOD) was analyzed by us-
ing Image Pro Plus software (MediaCybernetics, Be-
thesda, MD, USA). Statistical differences between 
different groups were then analyzed. 

Immunohistochemistry detection of phos-

pho-mTOR(Ser2448) and phos-

pho-PTEN(Ser380) by  

Sections of paraffin-embedded pancreatic cancer 
tissues were deparaffinized and rehydrated prior to 
non-specific antigen blocking with goat serum. Im-
munostaining was performed using primary anti-
bodies specific for phospho-mTOR(Ser2448) or 
phospho-PTEN(Ser380), followed by staining with the 
appropriate HRP-conjugated secondary antibodies. 
The immunostained sections were developed in dia-
minobenzidine (DAB) and counterstained with a 
weak solution of haematoxylin solution. The stained 
slides were dehydrated and mounted in Permount 
(Fisher Scientific, Pittsburg, PA, USA) and visualized 
on a light microscope (Olympus, Tokyo, Japan). Im-
ages were captured with an attached camera linked to 
a computer. For data quantification, IOD level was 
analyzed by using the Image Pro Plus 6.0 software. 
Twelve nude mice were included for each experi-
mental group. One section was obtained from each 
animal. At least six fields were randomly selected 
from each section. The average IOD levels in different 
groups were then compared by statistical analysis. 

Statistical analysis 

Data shown are representative images or ex-
pressed as mean%±SD of each group. The difference 
among groups of cells or mice was analyzed by 
Chi-square (X2) test or ANOVA, followed by post hoc 
Student’s t-test using the SPSS v17.0 software (Chi-
cago, IL, USA). A P-value of less than 0.05 was con-
sidered statistically significant. 

 

 

Figure 1. Schematic illustration of the experimental protocol. 
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Results 

Cytotoxicity of evodiamine plus gemcitabine 

against SW1990 cells in vitro 

As shown by MTT assays (Fig. 2A), treatment 
with evodiamine or gemcitabine alone reduced the 
cell viability by nearly 42% and 57%, respectively. 
Treatment with combination of evodiamine and 
gemcitabine significantly reduced the cell viability by 
80%. Further analysis by cell apoptosis assay indi-
cated that single evodiamine increased the apoptotic 
rate from 12.6% to 28.6% and single gemcitabine in-
creased the apoptotic rate from 12.6% to 34.2%, while 
treatment with evodiamine plus gemcitabine induced 
nearly 57.6% of cell apoptosis (Fig. 2B and C). These 
data are consistent with results from cell growth in-
hibition studies using MTT, suggesting that the loss of 
viable cells by evodiamine and/or gemcitabine is 
partly due to the induction of cell apoptosis.  

Effect of evodiamine on the gemcita-

bine-induced NF-B activity in vitro  

SW1990 cells were treated with 20 M of gem-
citabine for varying periods and the DNA binding 
activity of NF-κB in the nuclear extracts was charac-
terized by EMSA. As shown in Fig. 3A, SW1990 cells 
in the absence of gemcitabine displayed low levels of 
DNA binding activity, indicating low levels of spon-
taneous NF-κB activation. Treatment of SW1990 cells 
with gemcitabine for 24 h increased the DNA binding 
activity of NF-κB by 436% in vitro, then activity of 
NF-κB gradually decreased to nearly a normal level at 
72 h after treatment (Fig. 3A). Treatment with differ-
ent doses of evodiamine inhibited the DNA binding 
activity of NF-κB in SW1990 cells (Fig. 3B). More im-
portantly, treatment with gemcitabine plus evodia-
mine significantly reduced the DNA binding of 
NF-κB, as compared with that of gemcitabine treat-
ment or control cells (Fig. 3C). Therefore, treatment 
with evodiamine effectively inhibited the gemcita-
bine-induced NF-κB activation in vitro, which may 
contribute to inducing more SW1990 cells apoptosis.  

 

Figure 2. Treatment with evodiamine plus gemcitabine inhibits the proliferation and induces apoptosis of SW1990 cells in 

vitro. SW1990 cells at 2×105/mL were cultured overnight in six-well plates and treated in triplicate with 20 mol/L of 

gemcitabine for 24 h, and/or 1.0 μmol/L of evodiamine for 48 h. Untreated cells in medium alone were used as controls. (A) 

Proliferation of SW1990 cells. (B) Representative dot-plots illustrating apoptotic status in SW1990 cells. (C) The percentage 

of SW1990 cell apoptosis. Data are expressed as mean%SD of each group of cells from three separate experiments. Evo: 

Evodiamine; Gem: Gemcitabine. *P<0.05 vs. control. **P<0.05 vs. cells treated with single drug or control.  
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Figure 3. Effect of evodiamine on the spontaneous and gemcitabine-induced NF-κB activation in vitro. (A) Gemcitabine (20 

mol/L) induces NF-B activation in SW1990 cells, as evidenced by EMSA supershift experiment. (B) Treatment with 

evodiamine for 48 h inhibits NF-B activation in SW1990 cells. (C) SW1990 cells at 2×105/mL were cultured overnight in 

six-well plates and treated in triplicate with 20 mol/L of gemcitabine for 24 h, and/or 1.0 μmol/L of evodiamine for 48 h. 

Untreated cells in medium alone were used as controls. Treatment with evodiamine attenuates the gemcitabine-induced 

NF-B activation in SW1990 cells. Equal protein loading was ensured by immunoblotting 10 μg of nuclear protein with 

anti-retinoblastoma antibody. Data are representative images (left column) and expressed as mean%SD of the relative 

levels of NF-B activation in SW1990 cells from tree separate experiments (right column). The nuclear extracts from 

unstimulated gastric cancer SGC7901 cells were used as negative control and SGC7901 cells stimulated with 50 ng/mL 

TNFα were used as positive controls. +: positive control; –: negative control; Evo: Evodiamine; Gem: Gemcitabine. *P<0.05 

vs. control. #P<0.05 vs. untreated cells or cells treated with gemcitabine. **P<0.05 vs. untreated cells; *# P>0.05 vs. untreated 

cells; ##P<0.05 vs. untreated cells.  
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Evodiamine inhibits gemcitabine-induced ex-

pression of NF-κB and modulates the expres-

sion of apoptosis-related proteins in SW1990 

cells  

Western blot analysis showed that treatment 
with evodiamine significantly down-regulated the 
expression of NF-κB/p65 in SW1990 cells and its in-
hibitory effects were dose-dependent (Fig. 4A and B). 
Furthermore, while treatment with gemcitabine sig-

nificantly up-regulated the expression of NF-κB/p65, 
as compared with that in control, treatment with 
evodiamine significantly mitigated the spontaneous 
and gemcitabine-induced expression of NF-κB/p65 
(Fig. 4C and D). Evodiamine significantly decreased 
the expression of Bcl-2 and survivin, while active 
caspase-3 and Bax were up-regulated (Fig. 4C and D). 
Reduced ratio of Bcl-2/Bax was seen in combination 
treatment group (Fig. 4E).  

 

 

Figure 4. Treatment with evodiamine modulates the expression of NF-κB and the NF-κB-targeted proteins in vitro. (A) 

Treatment with evodiamine for 48 h inhibits the expression of NF-κB/p65 in a dose-dependent manner. (B) Quantification 

of NF-κB/p65 was performed by assigning a value of 1 to the group without evodiamine treatment. (C) SW1990 cells at 

2×105/mL were cultured overnight in six-well plates and treated in triplicate with 20 mol/L of gemcitabine for 24 h, and/or 

1.0 μmol/L of evodiamine for 48 h. Untreated cells in medium alone were used as controls. The relative levels of NF-κB/p65, 

Bcl-2 and Bax expression and active caspase-3 in SW1990 cells. (D) Quantification was performed by assigning a value of 1 

to the control group. (E) Bcl-2/Bax ratio was quantified by assigning a value of 1 to the control group. Evo: Evodiamine; Gem: 

Gemcitabine. *P<0.05 vs. controls; **P<0.05 vs. control or gemcitabine alone group. 
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Figure 5. Western blot analysis illustrating the effect of evodiamine on phospho-mTOR(Ser2448), Rictor-mTOR, phos-

pho-PTEN(Ser380/Thr382/383), and their downstream substrates PI3K(Tyr458), phospho-Akt(Ser473) protein expression in 

SW1990 cells. SW1990 cells at 2×105/mL were cultured overnight in six-well plates and treated in triplicate with 20 mol/L 

of gemcitabine for 24 h, and/or 1.0 μmol/L of evodiamine for 48 h. Untreated cells in medium alone were used as controls. 

(A) Treatment with evodiamine or evodiamine plus gemcitabine inhibits the expression of phospho-mTOR(Ser2448), 

Rictor-mTOR, phospho-PTEN(Ser380/Thr382/383), PI3K(Tyr458), and phospho-Akt(Ser473) protein. (B) The relative levels 

of phospho-mTOR(Ser2448), Rictor-mTOR, phospho-PTEN(Ser380/Thr382/383), PI3K(Tyr458), and phospho-Akt(Ser473) 

in SW1990 cells. Quantification was performed by assigning a value of 1 to the control group. (C) Effect of evodiamine or 

evodiamine plus gemcitabine on cAMP concentration in SW1990 cells. (D) Effect of evodiamine or evodiamine plus gem-

citabine on PKA activity in SW1990 cells. Evo: Evodiamine; Gem: Gemcitabine. #P>0.05 vs. control; *P<0.05 vs. control; 

**P<0.05 vs. control or cells treated with gemcitabine alone.  

 

Evodiamine inhibits the phosphorylation of 

PI3K, Akt, PTEN and mTOR in SW1990 cells  

Evodiamine significantly down-regulated the 
expression of phospho-Akt(Ser473), which was not 
influenced by gemcitabine, and treatment with evo-
diamine plus gemcitabine also significantly inhibited 
the phosphorylation of Akt. Evodiamine or evodia-
mine plus gemcitabine markedly reduced the expres-
sion of PI3K(Tyr458), phospho-PTEN and phos-
pho-mTOR, which were not significantly influenced 
by gemcitabine. Evodiamine or evodiamine combined 

with gemcitabine down-regulated the expression of 
Rictor-mTOR, which was not modulated by gemcita-
bine. 

Evodiamine inhibits cAMP concentration and 

PKA activity 

 Evodiamine or evodiamine plus gemcitabine 
decreased cAMP concentration in SW1990 cells (Fig. 
5C). PKA is the primary mediator of cAMP activity 
and a key regulatory enzyme responsible for many 
normal cellular processes, such as cell growth and 
metabolism. We found that evodiamine or evodia-

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889633/figure/F2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889633/figure/F2/
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mine plus gemcitabine caused significant reduction in 
PKA activity (Fig. 5D), which was similar to the 
drug-induced effects observed for phos-
pho-Akt(Ser473) and PI3K(Tyr458). 

Antitumor effect of evodiamine plus gemcita-

bine on the growth of implanted pancreatic 

tumors in vivo 

We examined the effects of evodiamine and 
gemcitabine, alone or in combination, on the growth 
of subcutaneously implanted pancreatic tumors (Fig. 
6A). Analysis of the final tumor volumes measured on 

day 37 after the start of treatment revealed that 
treatment with gemcitabine or evodiamine alone led 
to significantly slower growth than treatment with 
saline alone (Fig. 6B) (P<0.05 vs. controls). The final 
tumor volumes on day 37 of treatment in the mice 
treated with combination of evodiamine plus gem-
citabine were further significantly minimized (Fig. 6B) 

(P0.05 vs. control or gemcitabine-treated mice). A 
similar pattern of inhibitory effect was observed in the 
dissected tumor weights (Fig. 6C).  

 

Figure 6. Evodiamine potentiates the effect of gemcitabine in blocking the growth of pancreatic cancer in nude mice. After 

three weeks of implantation, a total of 48 nude mice were randomized into four treatment groups (n=12 per group) based 

on the bioluminescence measured after the first IVIS imaging. (A) Photographs of subcutaneously implanted pancreatic 

tumors on day 37 of treatment. Combination of evodiamine with gemcitabine significantly inhibited tumor growth. (B) 

Tumor volumes in mice measured on the last day of the experiment (Day 37) (n=12). (C) The tumor weights from individual 

groups of mice. (D) Bioluminescence IVIS images of subcutaneously implanted pancreatic tumors in live, anesthetized mice. 

(E) The amount of tumor in each nude mouse, as measured by live IVIS imaging on day 37 of treatment (n=12). Evo: Evo-

diamine; Gem: Gemcitabine. Points are and columns represent mean values; bars represent SD. *P<0.05 vs. control; 

**P<0.05 vs. control or mice treated with single agent. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889633/figure/F2/
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The enhanced antitumor effect caused by com-
bination of evodiamine plus gemcitabine was further 
demonstrated in the luciferase-transfected SW1990 
pancreatic cancer cells xenograft tumor model. 
Measurements of bioluminescence by IVIS imaging 
(Fig. 6D and E) indicated that the amount of tumors in 
the combined evodiamine plus gemcitabine treatment 
group was lower than in any other group. 

Before treatment, the average body weight of 
mice was not significantly different among the four 
experimental groups. However, measurement of 
mouse body weights on day 37 of treatments revealed 
that the body weight in the control group, evodiamine 
therapy group, gemcitabine therapy group and com-
bination therapy group was 16.3±1.53 g, 17.2±1.67 g, 
13.2±1.54 g, and 15.7±1.54 g, respectively. The mean 
body weight in the mice treated with gemcitabine 
alone was significantly less than other groups of mice. 
The potent inhibition on the growth of implanted 
tumors and the maintained body weight in the evo-
diamine-treated mice suggested that evodiamine im-

proved the tumor- and gemcitabine-related deterio-
ration in mice. 

Treatment with evodiamine plus gemcitabine 

triggers pancreatic tumor cell apoptosis in vivo  

As shown by TUNEL assays (Fig. 7A and B), few 
cells underwent apoptosis in the control group, while 
significantly more apoptotic cells were observed in 
the tumors from the combination treatment group 

(P0.05 vs. mice treated with gemcitabine alone or 
controls). 

Evodiamine modulates the activation of 

phospho-mTOR(Ser2448) and phos-

pho-PTEN(Ser380) in tumor cells  

Consistent with the in vitro results, evodiamine 
alone or evodiamine plus gemcitabine significantly 
reduced the expression of phospho-PTEN(Ser380) and 
phospho-mTOR(Ser2448) in transplanted pancreatic 
cancer (Fig. 8A and B). 

 
 
 

 

Figure 7. Treatment with evodiamine enhances the gemcitabine-induced pancreatic cancer cell apoptosis in vivo. (A) 

TUNEL analysis of apoptotic cells (400x). (B) Quantitative analysis of apoptotic cells. Evo: Evodiamine; Gem: Gemcitabine. 

*P<0.05 vs. control; **P<0.05 vs. control or mice treated with single agent. 
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Figure 8. Immunohistochemistry detection of phospho-mTOR(Ser2448) and phospho-PTEN(Ser380). (A) Evodiamine or 

evodiamine plus gemcitabine inhibit the activation of phospho-PTEN(Ser380) and phospho-mTOR(Ser2448). (B) Quantified 

data are presented. Evo: Evodiamine; Gem: Gemcitabine. #P>0.05 vs. control; *P<0.05 vs. control; **P<0.05 vs. control or 

mice treated with gemcitabine. 

 

Discussion 

Gemcitabine may activate NF-κB, and activation 
of NF-κB is believed to be one of the reasons for the 
development of chemoresistance during cancer ther-
apy. In fact, spontaneous activation of NF-κB has been 
detected in human pancreatic cancer tissues, and ac-
tivation of NF-κB is believed to result in the chemo-
resistant phenotype in pancreatic cancer cells (31-33). 
On the other hand, inactivation of NF-κB sensitizes 
cancer cells to conventional chemotherapies (34-36). 
Evodiamine is widely believed to inhibit constitutive 
and inducible NF-κB activation (8) in several kinds of 
tumors, such as lung adenocarcinoma, T-cell lym-
phoma, and multiple myeloma. In this study, we 
found that evodiamine potentiated anti-tumor effects 
of gemcitabine by inhibiting pancreatic cancer cell 
proliferation and inducing SW1990 cell apoptosis in 
vitro and in vivo. In addition, evodiamine was also 

found to inhibit spontaneous and gemcita-
bine-induced NF-κB expression and activation in 
SW1990 cells. Taken together, these findings suggest 
that evodiamine potentiates the cytotoxicity of gem-
citabine against pancreatic cancer cells by inhibiting 
the expression and activation of NF-κB. 

Previous studies have demonstrated that inhibi-
tion of NF-κB can potentiate the anti-cancer effect of 
multiple chemotherapeutic agents (36, 37). Similarly, 
siRNA-mediated knockdown of survivin expression 
was reported to enhance the chemosensitivity of 
pancreatic cancer cells to gemcitabine (41). In this 
study, we found that gemcitabine-induced activation 
of NF-κB and up-regulation of Bcl-2 and survivin 
practically undermined its proapoptotic effect on 
pancreatic cancer cells. However, evodiamine 
significantly down-regulated the gemcita-
bine-induced NF-κB activation and altered expression 
of Bcl-2 and survivin. Moreover, the combination 



Int. J. Biol. Sci. 2012, 8 

 

http://www.biolsci.org 

12 

therapy with gemcitabine and evodiamine also 
significantly up-regulated Bax, as compared to sin-
gle-agent treatment, resulting in down-regulation of 
the Bcl-2/Bax ratio, and then increased the activation 
of caspase-3, which induced apoptosis. 

Earlier reports have shown that treatment of 
human melanoma A375-S2 cells with evodiamine 
negatively affects the PI3K/Akt signaling pathway 
(25, 38). PI3K and Akt are both considered as viable 
and effective targets for pancreatic cancer therapy (38, 
39). Previous studies have also indicated that inhibi-
tion of Akt can enhance the activity of gemcitabine 
chemotherapy in pancreatic cancer (40-42). Here, we 
found that evodiamine alone or combined with gem-
citabine decreased the phospho-Akt(Ser473) levels in 
SW1990 cells, implying that evodiamine may also 
potentiate the anti-tumor activity of gemcitabine 
through inhibiting Akt activation. Fahy et al. (43) 
showed that Akt inhibition sensitized pancreatic 
cancer cells to the apoptotic effect of gemcitabine by 
suppressing the activity of NF-κB and reducing the 
Bcl-2/Bax ratio in the pancreatic cancer cell line 
MIA-PaCa-2. Madrid et al. (44) demonstrated that the 
PI3K/Akt pathway is involved in development of 
chemoresistance, at least in part, by the activation of 
NF-κB. In our study, a remarkable deactivation of 
NF-κB and decrease in the Bcl-2/Bax ratio in SW1990 
cells was detected in the evodiamine therapy group 
and in the evodiamine plus gemcitabine combination 
group. The PI3K signaling pathway has been shown 
to be activated in clinical samples of pancreatic cancer 
(17), and activation of PI3K is known to ultimately 
lead to Akt phosphorylation at Thr308 and Ser473 
(45). In the present study, we found that PI3K(Tyr458) 
in SW1990 cells was down-regulated in response to 
evodiamine or evodiamine plus gemcitabine treat-
ments. PKA is the primary mediator of cAMP action 
and a key regulatory enzyme responsible for many 
normal cellular processes, such as cell growth and 
metabolism. Activation of PI3K/Akt can be achieved 
by cAMP-dependent PKA (46). Akt activation in hu-
man coronary artery endothelial cells was found to be 
inhibited by application of PI3K, Akt, or PKA inhibi-
tors (46). Here, for the first time, we demonstrated 
that evodiamine or evodiamine plus gemcitabine 
down-regulated the activity of PKA in SW1990 cells, 
suggesting that inhibition of PI3K/Akt by evodiamine 
is partly due to suppressing PKA activity. It has been 
reported that cAMP formation up-regulates PI3K/Akt 
and PKA activities, leading to NF-κB activation (47). 
Here, we also found that evodiamine or evodiamine 
plus gemcitabine down-regulated the cAMP concen-
tration in SW1990 cells, suggesting that inhibition of 
PI3K/Akt by evodiamine is partly due to inhibition of 

cAMP/PKA. PI3K/Akt kinases phosphorylate multi-
ple downstream substrates, including the ser-
ine/threonine protein kinase mTOR (48). A study by 
Sarbassov et al. (49) demonstrated that mTOR in 
complex with Rictor:G_L targets AKT for phosphor-
ylation at Ser473. Therefore, interplay between mTOR 
and PI3K/Akt may exist. Since PTEN is known to be 
able to negatively affect the PI3K pathway in vivo (45), 
it is possible that dephosphorylation of 
Ser380/Thr382/383 might indicate the up-regulation 
of PTEN phosphatase activity, a critical event that 
leads to destabilization and down-regulation of the 
PI3K pathway (45). Our results showed that treatment 
with evodiamine alone or combined with gemcitabine 
decreased the expression of phos-
pho-PTEN(Ser380/Thr382/383), phospho-mTOR 
(Ser2448) and Rictor-mTOR. In general, our study 
suggested that evodiamine might directly or indi-
rectly inhibit the PI3K/Akt pathway targeting NF-κB 
and inhibit the phosphorylation of PTEN and mTOR, 
thereby sensitizing pancreatic cancer cells to gemcita-
bine-induced apoptosis. 

We found that evodiamine significantly aug-
mented the antitumor efficacy of gemcitabine in sub-
cutaneously implanted tumors. Experiments based on 
the luciferase-transfected SW1990 cells xenograft tu-
mor model also showed that evodiamine plus gem-
citabine were more efficacious for treating pancreatic 
cancer. Furthermore, the study also showed that evo-
diamine and evodiamine plus gemcitabine 
down-regulated the expression of phos-
pho-PTEN(Ser380) and phospho-mTOR(Ser2448), but 
gemcitabine had no remarked effect on their expres-
sion in tumor tissue, consistent with the in vitro results 
of Western blot analysis. 

Chemotherapeutic agents often cause various 
adverse effects in patients. Gastrointestinal adverse 
effects, such as anorexia, constipation, or diarrhea 
often result in under nourishment and loss of body 
weight. We found that the body weight of mice 
treated with gemcitabine alone was significantly less 
than that of other groups. However, the body weight 
of the mice treated with both evodiamine and gem-
citabine was similar to that of controls. These data 
suggest that treatment with a reduced dose of gem-
citabine, combined with evodiamine, not only en-
hanced the antitumor effect, but also reduced the 
gemcitabine-induced body weight loss in mice. A 
similar approach may also prevent and mitigate the 
side effect of gemcitabine treatment in patients with 
pancreatic cancer to improve the life quality of pa-
tients.  

In conclusion, our data indicated that evodia-
mine may augment the therapeutic effect of gemcita-
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bine in pancreatic cancer by direct or indirect inhibi-
tion of the PI3K/Akt pathway that was not influenced 
by gemcitabine and targeted NF-κB, thereby leading 
to sensitization of pancreatic cancer cells to gemcita-
bine. 
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