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Abstract 

TGFβ1 was initially identified as a potent chemotactic cytokine to initiate inflammation, but 
the autoimmune phenotype seen in TGFβ1 knockout mice reversed the dogma of TGFβ1 
being a pro-inflammatory cytokine to predominantly an immune suppressor. The discovery of 
the role of TGFβ1 in Th17 cell activation once again revealed the pro-inflammatory effect of 
TGFβ1. We developed K5.TGFβ1 mice with latent human TGF1 overexpression targeted to 
epidermal keratinocytes by keratin 5. These transgenic mice developed significant skin in-
flammation. Further studies revealed that inflammation severity correlated with switching 
TGF1 transgene expression on and off, and genome wide expression profiling revealed 
striking similarities between K5.TGFβ1 skin and human psoriasis, a Th1/Th17-associated in-
flammatory skin disease. Our recent study reveals that treatments alleviating inflammatory 
skin phenotypes in this mouse model reduced Th17 cells, and antibodies against IL-17 also 
lessen the inflammatory phenotype. Examination of inflammatory cytokines/chemokines af-
fected by TGF1 revealed predominantly Th1-, Th17-related cytokines in K5.TGF1 skin. 
However, the finding that K5.TGF1 mice also express Th2-associated inflammatory cyto-
kines under certain pathological conditions raises the possibility that deregulated TGF sig-
naling is involved in more than one inflammatory disease. Furthermore, activation of both 
Th1/Th17 cells and regulatory T cells (Tregs) by TGFβ1 reversely regulated by IL-6 highlights 
the dual role of TGFβ1 in regulating inflammation, a dynamic, context and organ specific 
process. This review focuses on the role of TGFβ1 in inflammatory skin diseases. 
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Introduction 

Transforming growth factor β (TGFβ) is a mul-
tipotent cytokine consisting of TGFβ1, 2, and 3, with 
TGFβ1 being the most abundant isoform in most tis-
sues, including the skin. Smad2 and Smad3 are 
phosphorylated once TGFβ binds to receptors I and II. 
Phosphorylated Smads bind with Smad4 to form het-
eromeric complexes, translocate to the nucleus and 
transcriptionally regulate TGFβ responsive genes [1]. 
TGFβ1 is secreted in a biologically latent form and be-
comes activated when mature TGFβ1 disassociates 

from its latency associated peptide dimer. TGFβ1 is a 
very potent stimulator of chemotaxis; TGFβ1 stimu-
lates migration of monocytes, lymphocytes, neutro-
phils and fibroblasts with 10-15 M concentrations [2]. 
There are several animal models study the effects of 
TGFβ1. TGFβ1 knockout mice die from multifocal in-
flammation and autoimmune disorders in internal or-
gans, suggesting its immune suppressive effect in these 
organs [3, 4]. However, TGFβ1 knockout mice lack 
Langerhans cells, which require TGFβ1 for develop-
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ment and activation, and therefore do not have skin 
inflammation [5, 6]. Furthermore, overexpression of 
TGFβ1 in the epidermis of K5.TGFβ1 mice (latent 

human TGF1 overexpression targeted to epidermal 
keratinocytes by keratin 5) results in significant skin 
inflammation [7], whereas their internal organs are 
protected from inflammation and autoimmune dis-
eases by elevated systemic levels of TGFβ1 secreted 
by K5.TGFβ1 keratinocytes [8]. In vitro cultured 
keratinocytes isolated from these transgenic mice still 
exhibit the growth inhibitory effect of TGFβ1, sug-
gesting that epidermal hyperplasia is mainly due to 
indirect effects of TGFβ1-initiated inflammation, fi-
broblast hyperproliferation and angiogenesis [7]. The 
inflammatory effect of TGFβ1 on skin has been further 
confirmed with inducible TGFβ1 transgenic mice, 
where studies have shown inflammation is correlated 
with TGFβ1 expression [9, 10]. The significance of 
TGFβ1 overexpression mediating skin inflammation 
in our mouse model is further highlighted by a recent 
study showing that genome wide expression profiling 

in K5.TGF1 skin is strikingly similar to that in human 
psoriasis [11].  

IL-23/Th17 pathway is involved in TGFβ- 
mediated skin inflammation  

The role of T cells in the development of psoria-
sis was identified 20 years ago. Psoriasis was consid-
ered a Th1-associated autoimmune disease until the 
identification of Th17 cells [12-14]. Recent studies in-
dicate that Th17 cells and their upstream stimulator 
IL-23, or the IL-23/Th17 pathway, play crucial roles in 
the pathogenesis of several autoimmune diseases 
such as rheumatoid arthritis, inflammatory bowel 
disease and psoriasis [14-16]. Th17 cells differentiate 
from naïve T cells and are distinct from Th1 and Th2 
cells. Studies suggest TGFβ1 and IL-6 are required for 
mouse Th17 cell differentiation from naïve CD4+ T 

cells [17-19]. In humans, the presence of TGF1 sig-
nificantly increases Th17 cell differentiation, although 

it is still an ongoing debate if TGF1 is absolutely re-
quired [12, 15, 20, 21]. 

IL-23 is a heterodimeric cytokine consisting of 
IL-23p19 and IL-12p40 subunits. Many cell types, in-
cluding monocytes/macrophages, dendritic cells, T 
cells and keratinocytes, have been shown to express 
IL-23 [12, 22-24]. The IL-23 receptor (IL-23R) consists 
of the heterodimer that binds to the IL-23p19 subunit 
and the IL-23/IL-12p40 subunit. IL-23R has been 
found on activated and memory T cell populations, 
but not naïve T cells [25-27]. IL-6 and TGFβ1 were 

shown to induce IL-23R expression. Although IL-23 
may not be involved in the differentiation of Th17 
cells from naïve T cells, it plays a key role in the 
maintenance of Th17 cells, and promotes Th17 cells to 
be more terminally-differentiated and 
pro-inflammatory [26]. Abnormal expression of IL-23 
has also been linked to the pathogenesis of autoim-
mune inflammation. Further studies showed IL-23 
regulates its target genes through activation of STAT3 
[12, 27]. Based on current studies, Th17 cell differen-
tiation from naïve T cells requires TGFβ1 and IL-6, but 
full and sustained differentiation of Th17 cells also 
requires IL-23 and IL-1β [12, 21, 26]. Increased IL-23 
expression has been found in psoriatic skin lesions 
[28, 29]. A genomewide association study (GWAS) 
also reveals an association between psoriasis and the 
IL-23 and NF-κB pathways [30]. Furthermore, anti-
bodies against the IL-23/IL-12 p40 subunit are effec-
tive treatments for human psoriasis patients [31-35]. 
These findings led to the hypothesis that IL-23 is in-
volved in human psoriasis. This notion is further 
supported by experimental therapeutics showing ef-
ficacy of the monoclonal antibody against the 
IL-23p19 subunit to treat mice with xenografted hu-
man psoriasis lesions [36]. Therefore, it is currently 
accepted that activation of Th17 cells, with or without 
Th1 cells, contributes to the pathogenesis of human 
psoriasis [37-41]. 

Several earlier reports indicated that TGFβ1 was 
abnormally expressed in human psoriasis [42-45]. In 
our K5.TGFβ1 mice, TGFβ1 causes significant skin 
inflammation recapitulating most features of human 
psoriasis: scaly and erythematous plaques in the skin 
grossly [7] and histologically epidermal hyperplasia, 
leukocyte infiltration in the dermis and/or in the up-
per layer of the epidermis forming subcorneal mi-
croabscesses (Fig. 1) [7]. In the foot pad where the 
thickness of the epidermis is comparable to human 
skin, rete ridge (down growth of the epidermis) is 

obvious in K5.TGF1 skin (Fig. 1). The causal role of 
TGFβ1 in skin inflammation in mice was further con-
firmed by our subsequent study using a 
gene-switch-TGFβ1 mouse model [9]. In this mouse 
model, temporal TGFβ1 induction resulted in skin 
inflammation, which abated when TGFβ1 induction 
was halted [9]. Based on the K5.TGFβ1 transgenic 
mouse model, we reported that molecular mecha-
nisms underlying TGFβ1-induced skin inflammation 
could be attributed to Th1-type cytokines in the skin 
[7].  
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Fig.1. K5.TGFβ1 skin exhibits psoriasis-like histopathology. ① H&E staining of dorsal skin in normal wild type mouse (NL), which 

is significantly thinner than human epidermis. ② H&E staining of dorsal skin in K5.TGFβ1 transgenic mouse (Tg) showing epidermal 

hyperplasia, infiltrated leukocytes in the dermis and parakeratosis (arrow). ③ Subcorneal microabscesses (arrow) formed in the dorsal 

skin of K5.TGFβ1 transgenic mouse (Tg). ④ Foot pad skin from a normal wild type mouse (NL) showing epidermal thickness comparable 

with human epidermis. ⑤ Foot pad skin of a K5.TGFβ1 transgenic mouse (Tg) showing significant epidermal hyperplasia and downward 
growth of the epidermis forming rete ridge structures with infiltrated leukocytes between them; the characteristics are similar to human 

psoriatic lesions. 

 
It has been shown previously that 

CD4+CD25+Foxp3+-regulatory T cells (Tregs) from 
patients with psoriasis were dysfunctional in sup-
pressing the proliferation of T responder cells [46] and 
over activation of the IL-23/Th17 pathway existed in 
human psoriasis [12]. TGF-β is critical for generation 
of both Tregs and Th17 cells from naïve T cells [17, 47] 
whereas the presence of IL-6 inhibits the conversion of 
T cells into Foxp3+ Tregs and favors Th17 immunity 
[48, 49]. The population of Tregs from lymph node 
cells or splenocytes of K5.TGFβ1 transgenic mice 
showed no difference in comparison with that from 
wild type mice [50]. In vitro culture Tregs from both 
wild type and K5.TGFβ1 mice do not proliferate in 
response to polyclonal stimulation [50]. However, 
Tregs from K5.TGFβ1 transgenic mice failed to sup-
press T responder cell proliferation during later stages 
of disease development and the dysfunction of Tregs 
has been restored in K5.TGFβ1 mice received 
8-methoxypsoralen plus ultraviolet A therapy 

(PUVA) with downregulation of IL-6 [50]. Those re-
sults suggested increased IL-6 in K5.TGFβ1 mice play 
a crucial, suppressive role in TGFβ induced Tregs 
differentiation.  

To further investigate if the IL-23/Th17 axis is 
involved in TGFβ1 induced skin inflammation, we 
studied how the IL-23/Th17 pathway is altered in 
K5.TGFβ1 mice. Compared to wild type mice, the 
numbers of IL-23p19 positive keratinocytes and 
stromal cells in the skin are significantly increased in 
K5.TGFβ1 [50]. Additionally, high levels of serum 
IL-17A, IL-17F and IL-23 were detected. IL-23p19 
staining in dorsal skin and serum levels of IL-17 de-
clined with the reduction of inflammation after 
treatment with PUVA [50]. Further, platelet-activating 
factor (PAF), a potent biolipid mediator involved in 
psoriasis pathogenesis, also induces the IL-23/Th17 
pathway; blocking PAF by its receptor antagonist 
results in a decrease of mRNA and/or protein levels 

of IL-17A, IL-17F, IL-23, IL-12A, and IL-6 in K5.TGF1 
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mice [51]. Increased numbers of Th17 cells were also 
found in Smad4-deleted oral mucosa where endoge-

nous TGF1 is overexpressed and signaling is mainly 
Smad3-dependent [52]. These results strongly indicate 
IL-23/Th17 axis involvement in TGFβ1 mediated in-
flammation. Supporting this finding, Mohammed et al 
recently reported that temporally and acutely induced 
TGFβ1 overexpression in premalignant epidermal 
keratinocytes enhanced IL-17-producing cell popula-
tions in their Tet-inducible K5.TGFβ1 transgenic 
mouse model [10]. Further analysis in their study 
showed CD4+ and γδ+ T cells secreted IL-17A upon 
TGFβ1 induction [10]. Interestingly, TGFβ1 induction 
in cultured mouse keratinocytes pre-infected with 
v-rasHA resulted in increased IL-23p19 and IL-6 tran-
scriptional expression dependent on autocrine TGFβ1 
signaling. Conditioned media from the above cul-
tured cells also caused IL-17A production in naïve T 
cells [10]. Therefore, it is likely that TGFβ1, through 
induction of inflammatory cell- and keratino-
cyte-derived Th17-polarizing cytokines, contributes to 
the production of IL-17 in TGFβ1-induced inflamma-
tory skin tissue (Fig.2) [7, 10, 12, 50]. As IL-23 is pri-
marily involved in maintaining Th17 effector cells and 
does not function on naïve T cells [26], using IL-23 
antibody alone is insufficient to antagonize constitu-
tive overexpression of TGFβ1-induced IL-17 produc-

tion and therefore shows no effect on TGF1-induced 
inflammation (Fig. 2) [53]. In contrast, directly tar-
geting IL-17 with an IL-17 antibody treatment is ef-
fective in relieving skin inflammation in K5.TGFβ1 
mice (Fig.2) [50].  

Is TGFβ1 involved in Th2 cell mediated in-
flammatory skin diseases? 

All K5.TGFβ1 transgenic mice develop skin in-
flammatory phenotypes during their lifespan, and 
visible skin inflammation manifests at around 
2-months of age. The gross phenotype and histo-
pathology largely mimics features of human psoriasis 
with dominant Th1 type cytokines in skin lesions [7]. 

However, a subsequent report shows that K5.TGF1 
mice also developed lesions and pathogenesis resem-
bling human atopic dermatitis (AD), with high IL-4 
expression and scattered eosinophils in lesional skin, 
and high-serum IgE levels [53]. There are several 
possibilities to reconcile these apparently paradoxical 
findings. First, Th1 and Th2 inflammatory skin dis-
orders are not always mutually exclusive. Skin barrier 
defects play an important role in AD [54]. Similarly, a 
GWAS showed that gene deletion for the cornified 
envelope of the epidermis is linked to psoriasis sus-
ceptibility [16]. Studies have shown that IL-17 pro-
duced by Th17 cells is also elevated in acute AD le-

sions, and the number of Th17 cells correlated with 
acute AD severity [55, 56]. Psoriasis and late-phase 
AD in humans share many pathologic features [38, 
57], and increased TGFβ1 has been found in both 
psoriasis [42, 45] and AD [55]. Also, similar therapeu-
tic approaches, e.g. corticosteroids, cyclosporine A 
and phototherapy, show clinical efficacy for both 
diseases [57, 58]. This clinical evidence reflects an 
overlap of pathogenesis occurring in vivo between 
these two diseases. Second, TGFβ1 may also be in-
volved in AD pathogenesis. TGFβ1 overexpression 
has been shown to cause infiltration of mast cells [7], 
which favor AD development [59, 60]. Third, alt-
hough psoriasis and AD usually have distinct Th1- 
and Th2-associated inflammatory cytokines, respec-
tively, Th2 and Th1 cytokine profile shifts have also 
been observed in both AD and psoriasis [38, 61-63]. 
The shift of cytokine profiles and pathological char-
acteristics could happen in K5.TGFβ1 mice at different 
ages or in housing conditions where they are exposed 
to different environmental factors, especially under 
conditions where lesional skin barrier functions are 
severely compromised. For instance, the predominant 
Th2 cytokine profile found in one study [53] was not 
evident in other studies [50, 51] or in mice freshly 
re-derived in the SPF (Specific Pathogen Free) facility 

[7]. Lastly, TGF1-mediated skin inflammation may 
be involved with more than Th1/Th2 diseases, as 
IL-17 antibody treatment or depletion of total T cells 

does not completely eliminate TGF1-induced in-
flammation or infiltration of other leukocyte types [9, 
10, 50]. Therefore, the effects of TGFβ on immune cell 
regulation are complex, and formation of inflamma-
tion may be affected by other factors such as the en-
vironment. Long term and parallel evaluation of the 
phenotype and its underlying pathogenesis in 

K5.TGF1 mice will advance our current under-
standing of the role of TGFβ1 in the skin inflamma-
tion, and help design new strategies for controlling 
human inflammatory disorders. In clinical practice, 
treatments in psoriasis and AD are largely different, 
while some common methods are used for symptom 

controls. If TGF1 proves to be involved in the path-

ogenesis of both diseases, inhibition of TGF1 or its 
downstream effectors may be explored as therapeutic 
strategies. 

Experiments testing therapeutic approaches 
for TGFβ1-mediated skin inflammation in 
the K5.TGFβ1 mouse model 

K5.TGFβ1 transgenic mice develop a stable and 
significant skin inflammation phenotype, thus this 
mouse model can be used for testing novel drugs and 
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other strategies to control inflammatory diseases. For 
instance, we previously tested Enbrel, a psoriasis drug 

that inhibits the TNFα-NFκB pathway, in K5.TGF1 
mice and found that it alleviates the skin inflamma-
tory phenotype [9]. Additionally, PUVA has been 
widely used as an alternative therapeutic approach 
for human psoriasis, especially for severe or wide-
spread psoriasis. Our recent report indicated 
K5.TGFβ1 mice receiving PUVA treatment had sig-
nificantly reduced skin inflammation [50]. Further 
studies on the underlying mechanism suggested 
PUVA therapy, in addition to its possible direct an-
ti-proliferative effects on keratinocytes [64], dramati-
cally inhibited the IL-23/Th17 pathway in 
TGFβ1-induced inflammation. By analyzing immune 
alterations in skin and serum in K5.TGFβ1 mice before 
and after PUVA treatment, we found that several 

molecular components that lie upstream of Th17 ac-
tivation signaling, including IL-23, ROR-γt and 
STAT3, were significantly reduced upon PUVA 
treatment. Consequently, populations of IL-17A– and 
IL-17F–producing CD4+ T cells in pooled splenocytes 
were decreased ~2 and ~6 fold, and IL-17A with 
IL-17F cytokine expression in skin was significantly 
reduced. In addition, PUVA treatment has also been 
found to regulate the Th1/Th2 cell shift in K5.TGFβ1 
mice, characterized by inhibition of IFN-γ expression 
and induction of IL-10 in both serum and skin. Fur-
ther studies indicated that TGFβ1-induced skin in-
flammation was blocked by anti-IL-17 mAb. These 
data verified the important role of the IL-23/Th17 axis 
in TGFβ1-induced skin inflammation and further 
validated this mouse model for testing therapeutic 
approaches against skin inflammation. 

 

Fig.2. Schematic model depicts potential molecular mechanisms of IL23/Th17-mediated inflammation in K5.TGFβ1 

skin. A. TGFβ1 is overexpressed in the epidermis of K5.TGFβ1 mice and released into, and activated in the dermis, where it attracts 

inflammatory cells. Inflammatory cells in cooperation with keratinocytes produce IL-23, IL-1β, IL-6 and other cytokines or chemokines in 

stroma. B. Th17 cells develop from naïve T cells in the presence of TGFβ1 and IL-6. IL-23, together with IL-1β act on activated/memory 

T cells to maintain Th17 cell activation. Anti-IL-23 antibody treatment on K5.TGFβ1 mice partially inhibits Th17 cell producing IL-17, but 

not enough to block TGFβ1-induced Th17 cell proliferation. Direct targeting IL-17 with anti-IL17 treatment has a more potent effect on 

relieving skin inflammation in K5.TGFβ1 mice. 
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Future perspectives  

Our K5.TGFβ1 transgenic mice provide a useful 
model in exploring the function of TGFβ1 in the for-
mation of skin inflammation. To further understand 
which inflammatory skin diseases in humans involve 
TGFβ1-induced skin inflammation, levels of TGFβ1 
and its signaling components in human diseases 
should be carefully examined. Unbiased cross-species 
comparisons of the pathological and molecular alter-

ations between human diseases and K5.TGF1 mice 
should be performed. Similar to the study using 
whole-genome transcriptional profiling [11], 
high-throughput proteomics approaches using 
K5.TGFβ1 skin at different disease stages and samples 
from human inflammatory skin diseases could also 
provide important molecular biomarkers of 
TGFβ-mediated inflammation. These experiments 
will help us delineate differences and similarities in 
the pathogenesis between TGFβ1 transgenic mice and 
human inflammatory skin diseases. 

Moreover, this mouse model will allow us to test 
various therapeutic strategies for controlling inflam-
matory skin diseases. Because the experimental ther-

apeutic approaches explored in K5.TGF1 mice can-
not completely or permanently reverse 
TGFβ1-induced skin inflammation, direct inhibition 
of TGFβ1 in the skin should be explored as a thera-
peutic strategy for inflammatory skin diseases where 

TGF1 overexpression plays a causal role in disease 
pathogenesis.  
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