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Abstract 

A major concern with the identification of renal toxicity using the traditional biomarkers, urea and 
creatinine, is that toxicity signal definitions are not sensitive to medically important changes in 
these biomarkers. Traditional renal signal definitions for urea and creatinine have not adequately 
identified drugs that have generated important medical issues later in development. Here, two 
clinical trial databases with a posteriori known drug induced renal impairment were analyzed for 
the presence of a renal impairment biomarker signal from urea (590 patients; age 26-92, median 
65) and creatinine (532 patients; age 26-97, median 65). Data was analyzed retrospectively using 
multiple definitions for the biomarker signal to include values outside stratified reference intervals, 
values exceeding twofold increases from baseline, values classified by the 2009 NIAID renal tox-
icity table, change from baseline represented as a Z-score based on intra-individual biological 
variations, and an adaptive Bayesian methodology that generalizes population- with individu-
al-based methods for evaluating a biomarker signal. The data demonstrated that the adaptive 
Bayesian methodology generated a prominent drug induced signal for renal impairment at the first 
visit after drug administration. The signal was directly related to dose and time of drug admin-
istration. All other data analysis methods produced none or significantly weaker signals than the 
adaptive Bayesian approach. Interestingly, serum creatinine and urea are able to detect early 
kidney dysfunction when the biomarker signal is personalized. 

Key words: renal toxicity, biomarker signal, biologic variation, adaptive design, individual refer-
ence ranges, Bayesian inference. 

Introduction 
Drug induced safety issues, to include renal im-

pairment, continue to be a significant reason that 
drugs fail the development process [1]. New markers 
of nephrotoxiciy have been proposed and validated 
[2]. However, the ability to identify drug induced 
renal function changes during the development pro-
cess continues to be a challenge. The traditional renal 
biomarkers of urea and creatinine are frequently ob-
tained in all phases of clinical trials as these markers 
are accessible, analytically stable [3], and cost effec-
tive, but viewed as insensitive and non-specific mon-

itors of renal function [4]. The non-specific nature of 
urea and creatinine as renal markers may be advan-
tageous in clinical trials if the ability to identify drug 
induce renal impairment can be improved. Therefore, 
a sensitive statistical tool to identify drug induced 
changes in renal function, using these traditional bi-
omarkers, will be valuable in the drug development 
process. 

 The key element to identify a drug induced 
change in renal function from serum urea and creati-
nine is understanding that small changes are signifi-
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cant for these biomarkers. Multiple definitions of a 
toxicity signal exist such as published toxicity tables, 
identifying values outside the reference interval, us-
ing multiples of the reference interval, evaluating 
multiples of the baseline value (2 fold increase, 3 fold 
increase), and % change from baseline. These defini-
tions of a drug induced signal often fail because im-
portant drug induced changes for serum urea or cre-
atinine will be small relative to the reference interval. 
Alternatively stated, the Index of Individuality (IOI = 
CVi/CVg where CVi is the intra-individual biological 
variability and CVg is the inter-individual biological 
variability) is 0.67 for urea and 0.56 for creatinine [5]. 
These IOIs demonstrate that there is marked indi-
viduality in a subject’s baseline value.  

A Z-score can be defined as the number of 
standard deviations between a visit value and a base-
line mean: 

            …(1) 

where CVa is the coefficient of analytical variation 
and n is the number of baseline readings [5]. Assum-
ing a CVa of 5%, the 99% confidence interval 
(Z=±2.58) for a change from two baseline values, and 
given CVi’s of 5%, 10%, and 20%, the important 
change for an analyte value is approximately 22%, 
35%, and 65% increases from the baseline mean re-
spectively. These % changes could easily be masked 
by the definition of the renal impairment signal.  

 The CVi for Creatinine is typically about 5% 
while urea’s CVi is typically in the range of 10% [5]. 
Consequently looking at Z=2.58 shift in the patient’s 
values, a 22% change in a serum creatinine value or a 
35% change in a urea value, should be identified as a 
potential drug effect in a subject in a clinical trial. In 
comparison, if the mean value of the reference inter-
val is used, 75 µmol/L for creatinine and 5.0 mmol/L 
for urea, the absolute changes would be 16.5 µmol/L 
(final value 91.5 µmol/L) for creatinine and 1.8 
mmol/L for urea (final value of 6.8 mmol/L). These 
changes are well within the reference intervals (see 
Methods for reference intervals) and all traditional 
definitions of renal impairment for urea and creati-
nine would be negative for more than half of the trial 
population if all subjects had a significant increase in 
biomarker value based on the estimated % CVi.  

The solution for improving the sensitivity of 
urea and creatinine as renal toxicity markers is to 
move from a traditional fixed limit definition of a 
toxic signal to a statistical evaluation of the signal. A 
Z-score approach of defining an important change 
from the biological and analytical variation is partial 
solution to this issue [5]. Recently, it has been shown 

that both traditional reference intervals and Z-score 
formulas are two particular cases of a more general 
adaptive Bayesian model [6]. Population CVi and 
CVg can be used as prior information in a Bayesian 
network (BN) to move from population- to individu-
al-based intervals as the number of individual read-
ings increases. Heterogeneous factors leading to 
stratified reference intervals (such as age and gender) 
can be integrated in the BN to further remove be-
tween-subject variation. An assumption in the Z-score 
formula is that the population %CVi is constant across 
the population. By moving to an adaptive Bayesian 
approach, the detection algorithm is customized for 
biomarker and subject thereby minimizing assump-
tions and maximizing the sensitivity of signal identi-
fication. The adaptive Bayesian approach has been 
successfully applied for the evaluation of biomarkers 
as formalized in the so-called biological passport [7-8].  

Biomarker signal defined statistically and de-
tected through a very sensitive statistical technique 
may find an unimportant signal. However, in Phase I 
and Phase II trials where populations are small, iden-
tifying a signal permits one to watch the signal in the 
development process to see if the signal becomes 
medically important [9]. The lack of a toxicity signal 
viewed through a very sensitive statistical tool early 
in the development process minimizes the risk of a 
toxicity being found later in development. Two Phase 
III clinical trial datasets, with known drug induced 
renal impairment, are analyzed for a renal impair-
ment signal by traditional methods and an adaptive 
Bayesian approach in this report. Interestingly, the 
knowledge of renal impairment makes it possible to 
estimate the specificity (control group) and sensitivity 
(treated group) of the applied methods for the first 
visits post-administration when the signal is most 
probably weak. 

Methods 
Two Phase III clinical trial datasets, one for urea, 

one for creatinine, were analyzed retrospectively. 
These datasets were chosen due to a weak drug in-
duced renal impairment. The clinical trial database for 
urea was composed of 590 patients (aged 26-92, me-
dian 65) distributed among the placebo (200 patients) 
and two drug concentrations (group 1: 194 patients, 
group 2: 196 patients). The creatinine clinical trial da-
tabase had 532 patients (aged 26-97, median 65) dis-
tributed among the placebo (178 patients) and two 
drug concentrations (group 1: 174 patients, group 2: 
180 patients). The patients had between 1 and 3 
pre-treatment visits and data was analyzed for the 
first 3 visits after drug administration. Group 2 had 
twice the drug dose of group 1. 

The blood for the urea and creatinine measure-
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ments was collected in BD vacutainers (Becton Dick-
inson, Franklin Lakes, NJ), serum separated by the 
site, and transported to a central laboratory (Covance 
Central Laboratory). All samples were electronically 
reviewed for receipt within stability. Samples were 
analyzed on Roche chemistry analyzers (Roche, Basel, 
Switzerland) using Roche urea and rate blanked 
compensated alkaline picrate creatinine reagents.  

All statistical simulations were performed on 
Matlab version 7.7.0 with Statistics Toolbox version 
7.0 (Mathworks, Natick, MA). One-sided Kolmogo-
rov-Smirnov tests were used for hypothesis testing. 
The following stratified reference intervals were used 
for creatinine: males 18-50 years, 40–110 µmol/L; fe-
males 18–70 years, 31–101 µmol/L; males 50-70 years, 
40-119 µmol/L; males 70-80 years, 40-137 µmol/L; 
females 70-80 years, 31-110 µmol/L; males >80 years, 
40-145 µmol/L; females >80 years, 31-128 µmol/L 
(Covance Central Laboratory) and for urea: males and 
females 18–70 years , 1.4–8.6 mmol/L; males and fe-
males 70-80 years, 1.4-10.4 mmol/L; males and fe-
males >80 years, 1.4-12.1 mmol/L (Covance Central 
Laboratory).  

Toxicity of grade 1 were computed for all data 
following the 2009 toxicity table of the National In-
stitute of Allergy and Infectious Disease (NIAID). This 
table lists a grade 1 creatinine toxic value as 1.1 to 1.5 
times the upper limit of normal (ULN) and a urea 
toxic value as 1.25 to 2.5 ULN. 

The adaptive Bayesian approach was imple-
mented in a hierarchical BN (see Figure 1) with bi-
omarker signal decomposed into within-subject and 
between-subject components. The construction of the 
BN has been described in detail elsewhere [6;10]. It is 
assumed that a series of urea or creatinine values is 
normally distributed with mean and variance specific 
to each subject. Prior distributions of within-subject 
variation (denoted in Figure 1 by the variable CVi) 
and of the mean have been modeled as follows. The 
CVi is assumed to be log-normally distributed with 
geometric mean (GM) equal to -1.97 and -2.6 and 
geometric standard deviation (GSD) equal to 0.14 and 
0.095, for urea and creatinine respectively. With these 
parameters, the 99%-interval of prior distribution of 
CVi is [8-22]% for urea and [5.6-9.2]% for creatinine. 
The mean is assumed to be log-normally distributed 
with GM=0.89 and GSD of 0.15 for urea, GM=3.92 and 
GSD=0.13 for creatinine. The latter GSD gives the 
amplitude of the between-subject variations 
post-stratification. The stratification according to 
gender and age was modeled so that to obtain the 
stratified reference intervals given above (assuming 
99%-intervals). A BN was associated to each subject, 
with age and gender integrated as evidence in the BN 
before the start of the trial. Then, Bayesian inference 

techniques were used to iteratively and adaptively 
integrate pre-treatment visit values. Posterior distri-
butions of expected values were generated by the BN 
to analyze the values obtained in treatment. Finally, 
99%-intervals were computed as the 0.5 and 99.5 
percentiles of the posterior distributions. These in-
tervals can be viewed as biomarker and subject and 
pre-treatment data specific reference intervals.  

 

 
Figure 1. Hierarchical Bayesian network for the evaluation of urea 
data. Each node represents a variable (circle: continuous; square: 
discrete), each arrow a causal relationship between the variables. 
Differences in the biomarker according to gender and age were 
modeled so that to obtain stratified population-based reference ranges 
when no prior measurement is available on a patient. There is one 
network per patient with the patient's age and gender entered as hard 
evidence before the start of the trial. Urea measurements are then 
entered as hard evidence in the course of the trial, with Bayesian 
inference used to move adaptively from population-based to pa-
tient-specific distributions of the hidden variables “mean” and “vari-
ance”. Although not undertaken here, the effect of the drug can be 
modeled by the addition of a variable “drug”, typically a discrete 
variable with a number of classes equal to the number of arms in the 
trial. Similarly, a known (or potential) genetic polymorphism affecting 
either the marker or the effect of the drug on the marker can be 
introduced for still improved personalization [8]. 

 
In addition to testing single visit values, the BN 

was also used to test sequences of visit values ob-
tained after treatment [6]. For example, if the first two 
visit values fall both at the 95th percentile of the dis-
tribution of expected values, the sequence composed 
of these two values falls approximately at the 99.75 
percentile of the distribution of expected sequences of 
length 2. It has been shown that the latter approach 
has a significantly better sensitivity in the analysis of 
longitudinal biomarker data in the presence of a 
weak, but consistent over time, signal [9-11]. 

On pre-treatment data, an analysis of variance 
returned a CVi of 14% for urea and 6% for creatinine. 
These CVi were used in the Z-score formula of Equa-
tion (1). The magnitude of the Z-score is a measure in 
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standard deviations of how far the value has moved 
from the baseline values. It has been shown that the 
Z-score formula of Equation (1) is a particular case of 
the BN described above [10]. The BN gives the same 
results as the Z-score formula when (1) be-
tween-subject variations are assumed to be infinite, (2) 
the CVi is assumed to be universal (i.e. no sub-
ject-based CVi) and (3) no heterogeneous factors are 
taken into account [10]. Similarly, by design, the ref-
erence intervals returned by the BN before the inte-
gration of any individual biomarker data correspond 
to the traditional reference intervals stratified ac-
cording to age and gender [11]. 

Results 
Table 1 is a tabulation of the results from the two 

clinical trial databases. The greatest false-positive 
signal for both urea and creatinine was % values 
above the reference intervals. The adaptive Bayesian 

approach applied to single visit values or to sequences 
returned false-positive signals between 0.5 and 3.2%. 
These results are in agreement with a theoretical rate 
of 1% induced by the use of 99%-intervals. The mean 
and SD baseline values for urea and creatinine values 
across the cohorts are very similar (control, group 1, 
group 2 respectively, urea mean, 5.7, 5.8, 5.6 mmol/L, 
SD, 1.8, 1.9, 1.6 mmol/L ; creatinine, 75.6, 76.6, 76.4 
µmol/L, SD 20.5, 17.9, 22.7 µmol/L) prior to the ad-
ministration of the drug indicating a well-executed 
randomization of the patients. The number of subjects 
per visit ranged from 187 to 173 for the urea data and 
ranged from 178 to 77 for the creatinine data. The 
number of patients for the creatinine measurement 
decreased by approximately 50%, by design, in mov-
ing across the visits. The creatinine mean values in-
creased with time and drug dose while the urea mean 
values increased most directly with drug dose. 

Table 1. Results from the clinical trial databases for urea (top) and creatinine (bottom). SC: screening visits, V1: visit 1, V2: visit 2, V3: visit 
3. Pop: % of values out of the population-based reference intervals. Tox grade 1: % of values with a toxicity grade 1 according to NIAID 
2009 list. 2 fold: % of values with more than 200% increase from baseline mean. ADA-B: % of values outside the reference intervals 
computed by the adaptive Bayesian model. ADA-B seq: % of sequences outside the reference intervals computed by the adaptive Bayesian 
model. Z-score: % of values with Z-score higher than 2.58. 
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Table 1 compares the different signal definitions 
over time after drug administration. The data 
demonstrated a dose and time dependence on signal 
generation. A small signal was found with the tradi-
tional signal definitions of % high flags, NIAID tox-
icity grade 1, and 2 fold increases from baseline val-
ues. The Z-score approach generated a substantial 
signal. The adaptive Bayesian approach was the most 
sensitive at defining a signal. The adaptive Bayesian 
analysis of sequences was still more sensitive than the 
Bayesian approach based on a single visit value. No 
values were observed with a toxicity grade greater 
than 1, no values exceeded twice the upper limit of the 
reference interval, and no values were observed with 
a 3 fold increase or greater. 

At the population level, the mean values by 
group and visit show that the mean values increased 
after drug administration. Although the increases in 
mean values are small relative to the reference inter-
vals, all increases were significant since the first visit 
in-treatment (p<0.01). 

In Figure 2, the graphs of % change from base-
line to the adaptive Bayesian Z-value demonstrate the 
same % change can have different Z values and that 
the placebo distributions are different from the drug 
treated patient distributions. Treated patients have a 
greater % change and higher Z values. Placebo pa-
tients have only one Z greater than 3 for urea and 2 Z 
greater than three for creatinine. 

Discussion 
The adaptive Bayesian methodology generated a 

prominent drug induced signal for renal impairment 
on both analytes at the first visit after drug admin-
istration. The signal was directly related to dose and 
time of drug administration. All traditional definition 
of renal toxicity produced none or significantly 
weaker signals than the adaptive Bayesian approach. 

A dose dependent increase in the adaptive 
Bayesian sequential signal indicates a drug effect is 
present and is increasing over time. The data shows 
that a drug effect can be identified at the first time 
point after drug administration. The population val-
ues for urea increase from a mean of 5.6 mmol/L in 
the control group to 6.8 mmol/L in the treated group. 
This urea change, although significant from a statis-
tical point of view, is difficult to interpret from a bio-
logical perspective as this change remains in the ref-
erence interval and the renal handling of urea is 
complex and dependent on patient hydration. Sub-
sequently, these urea values are not remarkable. The 
increase in the population’s mean creatinine value of 
75 µmol/L to 91 µmol/L is more easily interpreted 
relative to the Modification of Diet in Renal Disease 
(MDRD) equation [12]. The MDRD equation shows 

that GFR is inversely related to serum creatinine val-
ues. Subsequently, an increase in the group 2 creati-
nine results of 21% by Visit 3 results in a decrease in 
the population GFR by 16%. The signal definition for 
renal toxicity needs to reliably identify this magnitude 
of population serum creatinine increase. 

The out-of-reference range high values and tox-
icity grade 1 values do provide an indication of a drug 
effect and as the results are different between the 
placebo and treated groups. The observed differences 
are small and difficult to define as an actionable sig-
nal. The weak signal could be due to noise in the sys-
tem, due to expected disease related changes, or a 
function of the patient’s baseline value being close to 
the upper limit of the reference interval. The compar-
ison of the out of range high results to the toxicity 
grade 1 results would imply that the high flagged 
results were false-positives as the % high results are 2 
to 3 times greater that the Tox grade 1 results. 

The use of multiples of the reference interval (2 
or 3 ULN) to define renal toxicity is less sensitive that 
the toxicity grade 1 limits. For instance calculating a 
Z-value using literature CVi values, at the boundary 
of 2 ULN from the low and high ends of the reference 
interval, the patient Z-values are very different. The 
Z-value change in moving from the lower limit of 
normal for urea and a male creatinine results to 2 
times the ULN is Z=278 and Z=27 respectively. The 
Z-value change in moving from the upper limit of 
normal to 2 times the upper limit of normal is Z=152 
for a urea result and Z=17 for a male creatinine result. 
This calculation demonstrates that the probability of 
generating a toxicity signal varies greatly with the 
baseline value and reference interval using traditional 
definitions of the biomarker signal. Also multiples of 
the reference interval require a substantial drug effect 
on the kidney to define a toxic signal as the Z-values 
are very high. 

The drug effect is concentration and time de-
pendent using the adaptive Bayesian methodology to 
calculate the signal. The false-positive reference in-
terval high results were significantly greater for both 
biomarkers than the % mean false-positive adaptive 
Bayesian results. The false-positive adaptive Bayesian 
signal is in the range of one tenth of the true signal. 
On the contrary, the false-positive rate for the % above 
the reference interval signal was approximately 50% 
of the treated group’s signal. The toxicity grading had 
a low false-positive rate equal to the adaptive Bayes-
ian approach. However, the toxicity grading had a 
very low rate of true positive signal identification 
also. The adaptive sequential Bayesian analysis rap-
idly produced a signal that exceeded the signal from 
the traditional definitions.  
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Figure 2. A. Scatterplot of % change in visit 3 creatinine data from baseline to the result of the adaptive Bayesian approach (represented here as 
a Z-score). Ellipse fit: solid line for control; dashed line for Group 1; dotted line for Group 2. B. Scatterplot of % change in visit 3 urea data from 
baseline to the result of the adaptive Bayesian approach (represented here as a Z-score). Ellipse fit: solid line for control; dashed line for Group 
1; dotted line for Group 2. 
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The adaptive Bayesian approach identified a 
drug effect on both analytes at the first visit after drug 
was administered on a significant number of patients. 
The rapid identification of a drug induced effect on 
renal function permits the rapid medical evaluation of 
this observed effect and, if appropriate, generate re-
quests for additional renal biomarker data to define 
the mechanism and magnitude of the effect on key 
kidney function parameters. The same approach has 
been successfully applied for the evaluation of creati-
nine data in early phase clinical trials [9].  

The data in Figure 2 shows a marginal correla-
tion of the % change from baseline to the adaptive 
sequential Bayesian Z-value results. The uncertain 
part of looking at % change from baseline is that the 
significance of the same % change from baseline will 
be different for different biomarkers and subjects. The 
% change from baseline methodology creates difficul-
ties in scoring individual patients as having moved 
significantly from the baseline value. The challenge of 
a development protocol is to move from population 
data to individual patient data and be able to identify 
the individual patient who needs to be medically 
evaluated. The adaptive Bayesian approach precisely 
identifies the individual patients that need medical 
evaluation. This dataset provides insight as to the 
magnitude of an adaptive Bayesian signal with a 
change in the population mean value. An approxi-
mate 20% change in the urea mean biomarker value 
generated an adaptive Bayesian signal for 31% of the 
treated subjects while the toxicity grade 1 signal was 
3.4%. An approximate 20% change in the creatinine 
mean value generated an adaptive Bayesian signal for 
29% of the treated subjects while the tox grade 1 signal 
was 6.5%.  

Change from baseline analysis makes defining 
the point of significant change more difficult than the 
adaptive Bayesian Z value approach as the same % 
change has a different statistical meaning across bi-
omarkers and across subjects. The adaptive Bayesian 
approach will identify the specific patients that have 
changed from the baseline value and minimize the 
dilution of true positives with false-positive observa-
tions.  

Both the creatinine and urea concentrations were 
rapidly effected by the drug even though the mecha-
nism of clearance of creatinine and urea are signifi-
cantly different. If renal impairment using 
non-specific markers such as creatinine and urea can 
reliably identify important changes from baseline 
with the adaptive Bayesian approach, the non-specific 
nature of these biomarkers may be very appropriate 
for first line screening of renal effects in clinical trial 
populations. Although much has been done by the 

Predictive Safety Testing Consortium (PTSC) to find 
new clinically relevant biomarkers of renal function 
[13], our study suggests that conventional biomarkers 
like creatinine and urea are able to detect early kidney 
dysfunction when using individual reference ranges. 
Also, the personalization of a biomarker signal makes 
possible the evaluation of drug efficacy and safety on 
an individual basis and in turn to tailor drug therapy 
at a dosage that is most appropriate for an individual 
patient. Correlations with genotyping data on meta-
bolic pathways in drug metabolism may be searched 
for still improved personalization [14]. 

A further advantage of the adaptive Bayesian 
approach is that as one looks at historical biomarker 
data, the approach is independent of the analytical 
method and the reference interval and therefore is 
very appropriate for data-mining historical data sets. 
Data mining using the adaptive Bayesian approach 
should permit one to take clinical issues identified in 
large datasets and follow the biomarker data back 
through the phases of development. If a signal is 
found in early small populations, the long-term im-
plications of small signals in early phases of devel-
opment can be more thoroughly understood. 

Conclusions 
Two Phase III clinical trial datasets were used to 

evaluate traditional methods of renal impairment and 
an adaptive Bayesian approach. These two datasets 
were appropriate for this analysis because they pre-
sent a weak increase in mean urea and creatinine 
values after drug administration as well as a known 
drug induced renal impairment. Traditional defini-
tion of toxicity limits such as greater than the upper 
limit of normal, toxicity table ranges, multiples of the 
reference interval, and greater than 2 or 3 fold changes 
from the baseline value all suffer from low sensitivity 
of signal generation and varying probabilities that the 
threshold will be exceed dependent on the baseline 
value. The % change from baseline is better than the 
fixed limit methods however there is not a single % 
change from baseline to define a significant signal for 
all biomarkers and for the same biomarker across 
subjects. The significance of a fixed value for the % 
change from baseline varies depending on the sub-
jects CVi of the biomarker. The adaptive Bayesian 
approach using all known factors provided superior 
sensitivity and specificity in these two large clinical 
trials for drug dependent renal impairment signal 
generation. 
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