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Abstract 

Membrane biofouling is widely acknowledged as the most frequent adverse event in wastewater 
treatment systems resulting in significant loss of treatment efficiency and economy. Different 
strategies including physical cleaning and use of antimicrobial chemicals or antibiotics have been 
tried for reducing membrane biofouling. Such traditional practices are aimed to eradicate biofilms 
or kill the bacteria involved, but the greater efficacy in membrane performance would be achieved 
by inhibiting biofouling without interfering with bacterial growth. As a result, the search for en-
vironmental friendly non-antibiotic antifouling strategies has received much greater attention 
among scientific community. The use of quorum quenching natural compounds and enzymes will 
be a potential approach for control of membrane biofouling. This approach has previously proven 
useful in diseases and membrane biofouling control by triggering the expression of desired phe-
notypes. In view of this, the present review is provided to give the updated information on quorum 
quenching compounds and elucidate the significance of quorum sensing inhibition in control of 
membrane biofouling. 

Key words: quorum quenching, quorum sensing inhibition, natural compounds, wastewater 
treatment, biofouling, membrane bioreactor. 

Introduction 
Wastewater treatment has become an issue of 

global concern as scientific community strives for 
ways to keep environment clean. Different conven-
tional as well as advanced treatment processes such as 
activated sludge, rotating biological contactor or se-
quencing batch reactor and membrane bioreactor 
(MBR) have been in use to treat industrial and mu-
nicipal wastewaters. Among them, MBR is now ac-
cepted as a technology of choice for various 
wastewater treatments. MBR is state-of-the-art high 
quality wastewater treatment technology consisted of 
common bioreactors with membrane filtration units 
for biomass retention [1]. Recent technological inno-
vations and significant membrane cost reduction have 
allowed the MBRs to become an established treatment 

system for industrial and municipal wastewaters [2]. 
MBRs have emerged as an effective solution to trans-
form wastewaters into high quality effluent suitable 
for discharge into surface waterways or to be re-
claimed for irrigation purpose. The other advantages 
of MBR include small footprint, modular design, easy 
retrofit and ease of operation with high automation 
potential [2, 3]. As a result the use of MBR for treating 
domestic sewage, landfill leachate, hospital 
wastewater, restaurant wastewater, petrochemical 
wastewater and high-concentration industrial 
wastewater has significantly increased and the wid-
ening of application areas will occur in future [4]. To 
date, the MBR wastewater treatment technology is 
being successfully applied at number of locations 

 
Ivyspring  

International Publisher 



Int. J. Biol. Sci. 2014, Vol. 10 
 

 
http://www.ijbs.com 

551 

around the world. It is expected that MBR use for 
wastewater treatment will be sustained in future and 
further acceleration will depend on its better perfor-
mance. The major players involved in the commercial 
production of MBR unit include CNC-Siemens, Ze-
non-GE, Mitsubishi-Rayon, Tory, Kubota, Motimo etc 
[4].  

Despite numerous advantages of MBR over 
conventional wastewater treatment processes, there 
are some challenges faced by technology that may 
restrict its wider applications. These are; pretreatment 
of wastewater to remove hairs, lint, fibrous materials 
and other debris, high operational costs due to the use 
of anti-fouling strategies applied to the system, lack of 
long-term performance, clogging of aerators and so 
on [5, 1]. One of the major drawback and process lim-
itation of MBR is clogging of membrane surface dur-
ing the filtration. This phenomenon termed as ‘mem-
brane fouling’ is the coverage of membrane surfaces 
by deposition of soluble and particulate materials 
onto and into the membrane which lead to a loss in 
permeability. The fouling of membrane initiated with 
the attachment of soluble microbial products (SMP), 
bacteria and other colloidal particles onto the mem-
brane surface. The early bacterial attachment, subse-
quent growth and colonization across the overall 
membrane surface result into biofilm formation. The 
developed biofilms are highly heterogeneous and 
consist of both water-permeable and non-permeable 
substances. Biofilms lead to several adverse effects on 
MBR performance such as significant reduction in 
hydraulic performance, transmembrane pressure 
(TMP) increase, loss of system productivity, shorten 
membrane lifespan and increased operation cost; 
which makes biofouling becomes one of the most 
challenging issues facing further MBR developments.  

To make the MBR as an option of choice for 
wastewater treatment, it is necessary to overcome the 
problem of membrane biofouling. Various perspec-
tives including causes, characteristics, mechanism of 
fouling and methods of control have been investi-
gated previously [6]. More recent, different physico-
chemical and biological strategies have been at-
tempted to control membrane biofouling. Most strat-
egies for reducing MBR biofouling are focused on the 
physical cleaning of membrane surfaces, modification 
of existing membranes and incorporation of antibiot-
ics or antimicrobial compounds in MBRs [6, 7]. Dif-
ferent antimicrobial compounds have been exten-
sively tried to control membrane biofouling such as 
nitrofurazone, chlorhexidine, silver salts, polymerized 
quaternary ammonium surfactants, anionic nanopo-
rous hydrogels and antibacterial peptides [8]. How-
ever, some antimicrobial compounds are also toxic to 
non-target organisms and pollute the aquatic envi-

ronment. A major challenge presented by formed 
biofilms is that the bacteria living within biofilms 
have higher protection against antimicrobial com-
pounds and are markedly more tolerant to such con-
trol treatments [9]. Such complex structure of biofilms 
require excess use of antibiotics or synthetic antimi-
crobials which results in emergence of multi-antibiotic 
resistance among them. However, the control of bio-
fouling does not mean the killing bacteria or limiting 
its growth but to block the expression of biofilm 
forming phenotypes. Quorum sensing, a way of bac-
terial population density-dependent cell to cell com-
munication and phenotype regulation is known to 
associate with biofilm formation [10, 11]. Thus unlike 
antibiotics, interrupting quorum sensing may repre-
sent a novel alternative approach to combat mem-
brane biofouling.  

Recently, interest in controlling membrane bio-
fouling through use of quorum quenching mediated 
approaches has increased among scientific communi-
ties. Since quorum sensing controls a range of biolog-
ical functions associated with biofilms, this approach 
has the potential in controlling membrane biofouling. 
In quorum quenching, the targets are not essential for 
bacterial survival and therefore are not subject to ad-
verse effects observed like due to conventional anti-
biotics [12-15]. It has been reported that a variety of 
natural compounds such as vanillin, furanones, fla-
vonoids, curcumin etc. and few enzymes showed 
considerable quorum quenching activity against bio-
fouling bacteria without interfering with its growth 
[16-21]. Moreover, the concept of bead-entrapped 
quorum quenching bacteria has been introduced to 
MBR as a new biofouling control paradigm [22]. In 
view of this, the present review is focused to cover all 
the important aspects of quorum quenching mediated 
approaches for control of membrane biofouling. Un-
derstanding the previous studies on quorum 
quenching compounds will help to design 
non-antibiotic biofouling control strategies and give 
pointers for best practices.  

Quorum sensing system  
Bacteria use the language of small diffusible 

signaling molecules called autoinducers to com-
municate and assess their population densities in a 
process called quorum sensing. The sensing mecha-
nism is based the synthesis, release and uptake of 
autoinducers in the surrounding medium, whose 
concentration correlates to the density of secreting 
bacteria in the vicinity. The basic mechanism of QS 
involves the interaction of autoinducer with a tran-
scriptional regulator, either directly or through acti-
vation of a sensor kinase [23]. Both the Gram-positive 
and Gram-negative bacteria use species-specific au-
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toinducers for activation of quorum sensing system. A 
variety of quorum sensing signaling molecules func-
tions as local sensors to communicate population 
densities in bacteria. These signaling molecules and 
their receptors have been broadly divided into three 
major classes: N-acyl homoserine lactones (AHLs), 
which vary in the length and oxidation state of the 
acyl side chain and produced by Gram-negative bac-

teria; oligopeptides or autoinducing peptides (AIP), 
consisting of 5-34 amino acids residues, are generally 
used by Gram-positive bacteria; autoinducer-2 (AI-2), 
a ribose derivative [4,5-dihydroxy-2,3-pentanedione] 
employed by both Gram-positive and Gram-negative 
bacteria for interspecies communication (Figure 1 and 
Table 1) [24, 25].  

 

 
Figure 1. Structures of bacterial quorum sensing signaling molecules, representing three major classes of autoinducers; N-acyl homoserine lactones, 
autoinducer-2 and autoinducing peptides 1 to 4.  

 

Table 1. Quorum sensing signaling molecules and phenotypes controlled in Gram-negative and Gram-positive bacteria. 

Autoinducer(s) Producing bacteria Phenotype(s) controlled Ref. 
Gram-negative bacteria    
N-acyl homoserine lactone (AHL) V. fischeri, P. aeruginosa, C. violaceum, 

Aer. hydrophila 
Bioluminescence, Exopolysaccharide production, Biofilm 
formation, Virulence factor, Pigmentation 

[30-35] 

Autoinducer-2 (AI-2)  V. harveyi, E. coli, Y. pestis Bioluminescence, Biofilm formation, Motility, Virulence 
factor 

[36-39] 

4,5-dihydroxy-2,3-pentanedione Sa. enteric serovar typhimurium Virulence factor [40, 41] 
Cyclic dipeptides/ Diketopiperazines (DKP) 
(a) Cyclo(L-Pro-L-Tyr) 

P. putida WCS358, P. aeruginosa  Cross activates QS biosensors  [42, 43] 

(b) Cyclo(L-Phe-L-Pro) P. putida WCS358, P. aeruginosa Cross activates QS biosensors [42, 43] 
(c) Cyclo(L-Leu-L-Pro) P. putida WCS358 Cross activates QS biosensors [42] 
(d) Cyclo(L-Leu-L-Val) P. putida WCS358 Cross activates QS biosensors [42] 
Quinolone  
(2-heptyl-3-hydroxy-4-quinolone) 

P. aeruginosa Antibiotic production [44-46] 

Diffusible factor (DSF) X. campestris Endoglucanase production  [47] 
Gram-positive bacteria    
Autoinducing peptide (AIP1-AIP4) Sta. aureus  Cross-signaling between strains and species, Biofilm for-

mation, Virulence factor 
[28, 29, 48, 
49] 
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A numbers of structurally diverse autoinducers 
have been identified in Gram-positive and 
Gram-negative bacteria. Most of them are either small 
(<1000 Da) organic molecules or peptides with 5-20 
amino acids [26, 27]. Gram-negative bacteria employ 
AHL, 2-heptyl-3-hydroxy-4-quinolone, fatty acid 
methyl esters, long-chain fatty acids and a group of 
inter-convertible furanones derived from DPD called 
AI-2. The ribose derivative AI-2 is also produced by 
Gram-positive bacteria, but these organisms generally 
prefer linear, modified or cyclic peptides AIP made by 
Staphylococcus sp [28, 29]. The diffusible factor 
c-butyrolactones produced by Streptomyces sp. is 
structurally related to AHLs, as both classes belong to 
butanolides. In general, AHLs produced by 
Gram-negative bacteria and AIP from Gram-positive 
bacteria are often engaged in quorum sensing signal-
ing and have been most intensively investigated. 
Many of these quorum sensing signal molecules are 
chemically diverse and species specific, while some of 
them can be recognized by inter-species communica-
tion. Such signal molecules exhibit biological proper-
ties far beyond their role in coordinating gene ex-
pression in producer strain. It is speculated that 
quorum sensing system allows bacteria to listen the 
communication signals from other bacteria and ex-
ploit this information to its own advantage.  

Most of Gram-negative bacteria use AHLs to 
regulate quorum sensing mediated behaviors, while 
Gram-positive bacteria prefer linear, modified or cy-
clic peptides such as the AIP to control quorum sens-
ing phenotypes. The quorum sensing systems regu-
late the coordination of population behavior to en-
hance nutrient availability, collective defense against 
other antagonizing organisms or community escape 
from adverse conditions [27]. Since the discovery of 
quorum sensing regulation in bacteria, numerous 
such systems have been described. These quorum 
sensing systems regulates diverse functions in both 
Gram-negative and Gram-positive bacteria, which 
include biofilm formation, virulence factor, biolumi-
nescence, motility patterns, exopolysaccharide pro-
duction, antifungal or antibiotic production, en-
doglucanase production, pigmentation, competence, 
plasmid conjugal transfer, cross-signaling between 
strains and species etc.  

AIP mediated quorum sensing in 
Gram-positive bacteria  

Several Gram-positive bacteria are known to use 
modified peptides also called AIP as signaling mole-
cules to regulate different phenotypes such as viru-
lence (agr system in Staphylococcus sp.), bacteriocin 
production (pin and ssp systems in lactic acid bacte-
ria) and competence (com system in B. subtilis) [50-52]. 

The AIP are generated by cleavage from larger pre-
cursor peptides and subsequent modification with 
substitution of isoprenyl groups to form lactone and 
thiolactone rings [53]. When the extracellular concen-
tration of AIP becomes high, that binds to cognate 
membrane-bound two-component histidine kinase 
receptors. Which further lead into induction of re-
ceptor’s kinase activity and transcription of genes in 
the quorum sensing regulon [54]. In case of some 
Gram-positive bacteria, the AIP are detected by 
membrane-bound two component signal transduction 
system [55, 50]; as the bacterial cell membrane is im-
permeable to peptides the specialized transporters are 
required to secrete AIP. Certain species of 
Gram-positive bacteria use AIP to regulate the pro-
duction of virulence factors and biofilm formation [48, 
49]. The human pathogen Sta. aureus uses the para-
digmatic Agr system to regulate adhesion and pro-
duction of virulence factors [54]. It is also reported 
that AIP-mediated quorum sensing has been used to 
regulate bacterial competence and conjugation in Sta. 
aureus and Ent. faecalis respectively [56]. Thus, the 
evolution of AIP-mediated quorum sensing system in 
pathogenic bacteria could have been an effective 
therapeutic strategy for the control of virulence and 
biofilms in diseases. However, there is one report 
available suggesting the involvement of AI-2 medi-
ated quorum sensing in membrane biofouling; where 
reduced AI-2 was positively correlated to the reduced 
fouling resistance of nylon membranes [57].  

AHL mediated quorum sensing in 
Gram-negative bacteria  

The best-studied quorum sensing systems in 
Gram-negative bacteria use LuxI-type enzymes, 
which produce AHLs as small diffusible signal mol-
ecules that get bind and activate members of the LuxR 
transcriptional activator protein family [58, 59]. AHL 
based quorum sensing system functions through 
three key components: i) AHL signal molecules, ii) 
AHL synthase protein for synthesis of AHL signals, 
and iii) a regulatory protein which responds to sur-
rounding concentration of AHL signal [60]. This pro-
cess initiated with the synthesis and release of AHL 
signals into the surrounding environment which ac-
cumulates in a cell-population-density-dependent 
manner. When the concentration of AHL signals 
reaches at higher level; the quorum sensing cells starts 
responding allowing them to regulate the production 
of secondary metabolites and control the expression 
of quorum sensing genes. A majority of 
Gram-negative bacteria regulates various phenotypes 
through the secretion and detection of such signaling 
molecules. However the efficacy of expression of 
quorum sensing phenotypes depends upon the pres-
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ence or absence of surrounding cells. Using quorum 
sensing bacteria can act to express a specific set of 
genes responsible for variety of physiological behav-
iors including bioluminescence, antibiotic production, 
extracellular polymer production, biosurfactant syn-
thesis, sporulation, release of virulence factors and 
biofilm formation (Figure 2) [61-66]. 

The use of biosensor systems to detect quorum 
sensing signaling molecules has led to the discovery 
of broad range of AHLs as produced by diverse 
Gram-negative proteobacteria belonging to α, β, and γ 
subdivisions [26]. The AHLs biosensors system con-
sist of a quorum sensing-controlled promoter fused to 
a reporter such as lacZ or lux or gfp operon [67, 68, 34] 
or pigment induction e.g. violacein in C. violaceum 
[31]. These biosensor strains have a functional R pro-
tein but lack the AHL synthase; thus the promoter 
activity depends on the presence of exogenous AHL 
[69]. Use of biosensor strains revealed that wide gen-
era of Gram-negative bacteria produce a broad range 
of AHL molecules ranging from C4 to C18-carbon acyl 
side chains and either an oxo, a hydroxy, or no sub-
stitution at the third carbon. The acyl chain varies in 
length, satuaration level, and oxidation state. In most 
cases, the acyl chain has an even number of carbon 
(C4-C18), although some AHLs with odd carbon 
(C5-C7) have been investigated [70, 71]. Examples of 
AHLs producing bacteria includes species of Aer-

omonas, Acidithiobacillus, Acinetobacter, Agrobacterium, 
Brucella, Burkholderia, Erwinia, Enterobacter, Chromo-
bacterium, Mesorhizobium, Pseudomonas, Ralstonia, 
Rhodobacter, Rhizobium, Serratia, Sinorhizobium, Vibrio 
and Yersinia [27]. Many of these bacteria have ability to 
produce multiple AHLs due to the presence of more 
AHL synthase and thus can regulate different phe-
notypes.  

Quorum sensing and biofouling  
Quorum sensing and biofilm formations are the 

central and interconnected feature of bacterial social 
life [72-74]; which enables bacteria to organize their 
activities at the population level and switch from 
acting as individual cells to concentrated mul-
ti-cellular structure in the form of biofilms [75]. Bio-
films are the matrix enclosed bacterial cells attaching 
to each other or to surfaces [76]. Such complex multi-
layer structure of defined architecture helps bacterial 
communities to live in a sessile and protected envi-
ronment [77, 78]. The formation of biofilm is linked to 
a number of interacting processes beginning with 
secretion of signal molecules, solute diffusion, cell to 
cell or cell to solute interactions, EPS matrix produc-
tion, colonization, surface attachment and maturation 
[79].  

 

 
Figure 2. The LuxR/AHL-mediated quorum sensing regulation of multiple gene expressions in Gram-negative bacteria. The ‘R’ and ‘I’ genes are homo-
logues of the LuxR and LuxI genes in which the ‘R’ protein is the AHL receptor and signal transducer while I protein is AHL signal synthase. The I protein 
is responsible for the production of AHLs. After synthesis, AHLs get diffuse (short chain) or pumped out (long chain) of the bacterial cell into the sur-
rounding medium prior to being taken up into nearby bacterial cells. The AHL activate R protein by direct binding to make AHL/R protein complex which 
rapidly increases I gene expression and hence AHL production. At a certain level of bacterial cells, the quorum sensing system becomes fully activated which 
leads to R-mediated expression of quorum sensing target genes.  
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The bacterial biofilms are ubiquitous in nature 
and exist on all type of surfaces in water and 
wastewater treatment systems, which may play bene-
ficial as well as detrimental roles. The presence of 
biofilms or attached bacterial cells on filtration mem-
branes is highly prevalent and often adversely affects 
its efficiency. The robust biofilms are needed for 
treatment of wastewater by trickling filters, granular 
sludge and moving bed biofilm reactors [6, 80]. 
However, deposition of biofilms and associated ex-
tracellular polysaccharides (EPS) on membrane sur-
faces decreases filtration flux and causes permeability 
loss [81, 82]. The non-degraded organic matters, mi-
crobial flocs and SMP are also considered as potential 
foulants [83, 84], but the formation of biofilms on 
membrane surfaces is the major contributor in mem-
brane biofouling and is the main obstacle restricting 
the development of MBR technology for advanced 
wastewater treatment. 

The role of AHL-mediated quorum sensing in 
the development of specialized biofilm structure is 
best understood in P. aeruginosa [85]. The genes and 
quorum sensing regulatory circuits associated with 
initial cell-surface interactions and biofilm maturation 
are also identified in some bacteria [77]. Numerous 
links have been made between quorum sensing and 
biofilm formation, which includes direct demonstra-
tion of Aeromonas sp., Pseudomonas sp. and Xanthomo-
nas sp. AHLs-mediated phenotypes important to bio-
film formation in water treatment systems [85-88]. 
The relationship between P. putida adhesions to dif-
ferent membrane surfaces was found to be a 
AHLs-mediated quorum sensing trait [89]. Xia et al. 
[90] demonstrated that diffusion of exogenous 
3-oxo-C8-HSL increased the growth rate of P. aeru-
ginosa cells on ultra-filtration membrane biofilm and 
had no influence on EPS of biofilm. The quorum 
sensing system might enhance the growth of neigh-
boring bacterial cells in contact with membrane sur-
faces into biofilm and may influence the structure and 
organization of biofilm. The results of the study also 
showed that quorum sensing system has a significant 
relation with protein production. A correlation be-
tween AHLs production and biofilm formation was 
reported among activated sludge bacterial isolates; 
where biosensor assay with C. violaceum 026 and A. 
tumefaciens A136 confirms the ability of Aeromonas, 
Enterobacter, Serratia, Leclercia, Pseudomonas, Klebsiella, 
Raoultella and Citrobacter sp. to produce AHLs and 
form biofilms on polystyrene surface [91].  

In addition to this, several studies have linked 
presence of AHLs with biofilm formation and ad-
dressed the problem of membrane biofouling in MBRs 
[82, 89, 92]. The chromatographic analysis of MBR 
sludge using HPLC technique has identified the 

presence of several AHLs molecules. Recently HPLC 
analysis of MBR sludge has suggested the presence of 
3-oxo-C8-HSL and C8-HSL in MBR activated sludge 
[22]. Moreover, HPLC characterization by Lade et al. 
[91] detected eight different AHLs v.z. C4-HSL, 
C6-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL, C12-HSL, 
3-oxo-C12-HSL and C14-HSL in activated sludge col-
lected from MBR treating wastewater. Yeon et al. [93] 
detected C6-HSL and C8-HSL from mixed cultured 
biocake derived from fouled MBR treating 
wastewaters. These studies suggest that 
AHLs-mediated quorum sensing is extensively regu-
lating biofilm formation. Though AHLs have been 
detected in activated sludge and biofouling bacteria, 
the precise role in membrane biofouling is not clear. 
Further investigation need to be carried out to under-
stand the exact role of AHLs in various stages of bio-
fouling. Still, membrane biofouling is persistent 
problem in MBR treating wastewaters and interfering 
with quorum sensing system may eliminate it and 
thus increase its efficiency. 

Quorum quenching and biofouling con-
trol  

The quorum quenching refers to a process by 
which autoinducer-mediated quorum sensing is in-
terrupted [94]. Quorum sensing helps bacteria to co-
ordinate community-based behavior, but it is not es-
sential for survival or growth. Thus, interference with 
quorum sensing may lead to the inhibition of desired 
phenotypes such as formation of biofilms. The large 
numbers of aquatic bacteria are Gram-negative and 
employ AHLs-mediated quorum sensing as their 
major language to coordinate population behavior 
[95, 10]. Since quorum sensing is involved in for-
mation of biofilms, targeting quorum sensing has of-
fered a novel way to combat membrane biofouling 
without killing or inhibiting bacterial growth [96]. 

There are several quorum quenching strategies 
available through which the process of quorum sens-
ing can be interrupted which includes; i) Inhibition of 
AHL synthesis by blocking the LuxI-type synthase 
proteins [97, 98] ii) Enzymatic destruction of AHLs 
molecules by AHL-acylase and AHL-lactonase that 
will prevent them from accumulating [99, 33, 100] and 
iii) Interference with signal receptors or blockage of 
formation of AHL/LuxR complex [101, 102] (Figure 
3). In addition to this, quorum quenching has previ-
ously proven to be a primarily target both for quorum 
sensing signal synthase and sensor or response regu-
lator proteins involved [12-15]. These strategies can be 
applied to achieve inhibition of AHLs-mediated 
quorum sensing in Gram-negative and 
AIPs-mediated quorum sensing in Gram-positive 
bacteria. However, as the membrane biofouling is 
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mainly associated with AHLs-mediated quorum 
sensing, our focus in this review is on inhibition of 
AHLs-mediated quorum sensing. 

The traditional practices of biofouling control are 
based on antimicrobial compounds or antibiotics that 
kill or inhibit bacterial growth. However bacterial 
survival is essential for decomposition of contami-
nants and a major concern with the use of antimicro-
bial agent is development of multi-drug resistance 

among bacteria exposed [103]. This leads the way for 
an intense search of non-antibiotic compounds that 
can specifically block AHL-mediated biofouling trait 
without interfering with growth. It is envisioned that 
some natural compounds and enzymes can control 
the AHLs-mediated biofilm formation without af-
fecting bacterial growth and also reduce the risk of 
multi-drug resistance.  

 
Figure 3. Inhibition of quorum sensing in Gram-negative bacteria by various mechanisms. Three quorum quenching strategies have been used for at-
tenuating AHL-mediated phenotypes; (i) Inhibition of AHL synthesis (ii) Degradation of AHL signal molecules (iii) Interference with signal receptor. 
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sensing inhibitory compounds derived from plant, 
fungi, algae and bacteria is provided in Table 2. 

Lower cell density

AHL

Lux I

Lux R

Target gene

Higher cell density

Lux I
Target geneAHL/Lux R complex

Low AHLs conc.

Inhibition of AHL synthesis

Threshold AHLs conc.

Degradation of AHLs

Interference with signal
receptor Lux R

O

O

N
HR2

OR1

O

O

N
HR2

OR1

AHL



Int. J. Biol. Sci. 2014, Vol. 10 
 

 
http://www.ijbs.com 

557 

Table 2. Natural compounds as quorum sensing inhibitors.  

Natural compound(s) Source QS activity Ref. 
Furanone/ 2(5H)-Furanone/ Macroalga (Delisea pulchra) Mimics AHL signal by occupying the binding site on putative 

regulatory protein which results in the disruption of QS-mediated 
gene regulation. Inhibit biofilm formation in Aer. hydrophila 

[109, 17] 

  Repress LuxR protein dependent expression of P(luxI)-gfp(ASV) 
reporter fusion. Inhibit virulence factor in E. coli XL-1.  

[110] 

(5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5
H)-furanone. 

Macroalga (Delisea pulchra) Disrupts QS-regulated bioluminescence in V. harveyi by interacting 
with Hfq protein. Inhibit swarming motility and biofilm formation 
in E. coli 

[111, 112] 

Ajoene  
(1-Allyldisulfanyl-3-(prop-2-ene-1-sulfinyl)-pro
pene)  

Garlic extract (Allium sativum) Blocks the QS-regulated productions of rhamnolipid resulting in 
phagocytosis of biofilm. Targets Gac/RSM part of QS and lowers 
the expression of regulatory RNAs in P. aeruginosa PAO1  

[113, 114] 

Iberin  
(1-Isothiocyanato-3-(methylsulfinyl)propane) 

Horseradish extract (Armoracia 
rusticana) 

Inhibit expression of QS-regulated lasB-gfp and rhlA-gfp genes 
responsible for virulence factor in P. aeruginosa 

[115] 

Sulforaphane  
(1-Isothiocyanato-4-(methylsulfinyl)butane) 

Boroccoli Reduce the expression of lasI-luxCDABE reporter in P. aeruginosa [116] 

Erucin (4-methylthiobutyl isothiocyanate) Boroccoli Reduce the expression of lasI-luxCDABE reporter in P. aeruginosa [116] 
Naringin 
(4'5-diOH-Flavone-7-rhgluc) 

Citrus extract Decrease the QS mediated biofilm formation and swimming motil-
ity in Y. enterocolitica  

[18] 

Naringenin  
(4',5,7-Trihydroxyflavanone) 

Malagasy bark extract (Com-
bretum albiflorum) 

Reduces production of pyocyanin and elastase in P. aeruginosa 
PAO1. Also inhibit 3-oxo-C12-HSL and C4-HSL synthesis driven by 
lasl and rhll genes 

[117, 118] 

Taxifolin/ Distylin 
(dihydroquercetin) 

Malagasy plant extract (Com-
bretum albiflorum) 

Reduces production of pyocyanin and elastase in P. aeruginosa 
PAO1 

[117] 

Morin (2',3,4',5,7-Pentahydroxyflavone) Grapefruit (Artocarpus hetero-
phyllus) 

Inhibit LasR and RhlR dependent protease, elastase and hemolysin 
in P. aeruginosa PAO1 

[119, 120] 

Patulin/ Clavacin 
(4-Hydroxy-4H-furo[3,2-c]pyran-2(6H)-one) 

Penicillium sp. Targets the RhlR and LasR proteins. Down-regulates QS genes for 
biofilm formation and virulence in P. aeruginosa  

[121] 

Penicillic acid  
(3-Methoxy-5-methyl-4-oxo-2,5-hexadienoic 
acid) 

Penicillium sp. 
 

Down-regulates QS genes for biofilm formation in P. aeruginosa [121] 

Vanillin  
(4-Hydroxy-3-methoxybenzaldehyde) 

Vanilla beans extract (Vanilla 
planifolia Andrews) 

Interfere with AHL receptors. Inhibit C4-HSL, C6-HSL, C8-HSL, 
3-oxo-C8-HSL. Inhibit biofilm formation in Aer. hydrophila  

[122, 123, 
16] 

Agrocinopine B 
( [(3S,4R,5R)-3,4,5,6-tetrahydroxy-2-oxohexyl] 
[(2R,3S,4S)-3,4,5-trihydroxy-1-oxopentan-2-yl] 
hydrogen phosphate) 

Crown gall cells Control conjugation of pTiC58 by regulating exprssion of the arc 
operon in A. tumefaciens 

[124] 

L-canavanine  
(L-α-Amino-γ-(guanidinooxy)-n-butyric acid) 

Seed exudates (Medicao sativa) Inhibit the expression of QS-regulated phenotype exopolysaccha-
ride II production in Si. meliloti 

[125] 

Gamma-aminobutyric acid (GABA) 
( 4-Aminobutanoic acid) 

Plants (Arabidopsis sp.) Induce the expression of attKLM operon to stimulate inactivate 
3-oxo-C8-HSL by A. tumefaciens lactonase AttM 

[126, 127] 

Rosmarinic acid 
(R-O-(3,4-Dihydroxycinnamoyl)-3-(3,4- dihy-
droxyphenyl) lactic acid) 

Sweet basil (Ocimum basilicum) Inhibit protease, elastase, hemolysin production, biofilm formation 
and virulence factor in P. aeruginosa 

[119, 108, 
128] 

Salycilic acid (2-Methyl-5-tert-butylsalicylic 
acid) 

Plant phenolic secondary 
metabolite 

Inhibit the expression of vir regulon in A. tumefaciens. Also stimu-
lates AHL-lactonase expression which degrades AHLs. 

[129] 

Chlorogenic acid (3-Caffeoylquinic acid) Plant extract (Moringa oleifera) Inhibit QS-regulated violacein production in C. violaceum 12472 [130] 
Allin  
(2-Amino-3-[prop-2-ene-1-sulfinyl]-propionic 
acid) 

Garlic extract (Allium sativum) Inhibit QS-regulated gene expression by interacting with receptors 
in P. aeruginosa and make biofilm sensitive to antibiotics.  

[113, 131] 

Ursolic acid (3beta-Hydroxyurs-12-en-28-oic 
acid) 

Plant extract (Sambucus 
chinesis)  

Inhibit biofilm formation by suppressing cystenine synthesis in E. 
coli 

[132, 133] 

Ellagic acid (Benzoaric acid) Fruit extract of Terminalia 
chebula Retz. 

Down-regulate the expression of virulence gene in P. aeruginosa 
PAO1. Reduces biofilm formation and swarming motility in B. 
cepacia 

[134, 135] 

 α-Hydroxybutyric acid (2-hydroxy-butanoic 
acid) 

Arabidopsis exudates Induce the expression of attKLM-lacZ fusion in A. tumefaciens [136] 

Epigallocatechin gallate (Epigallocatechol) Green tea (Camellia sinensis L.) This compound has gallic acid moiety and specifically block 
AHL-mediated biofilm formation in Sta. aureus and B. cepacia. 
Inhibit transfer of conjugative R plasmid in E. coli 

[135, 
137-139] 

Pyrogallol 
(1,2,3-Trihydroxybenzene) 

Plant extract (Punica granatum) Inhibit AI-2 mediated bioluminescence in V. harveyi [140, 141] 

Cinnamon oil/ Cynnamaldheyde 
( trans-Cinnamaldehyde) 

Cinnamomum zeylanicum Interfere with AI-2 based QS and decreases the DNA-binding 
ability of LuxR protein to reduce virulence in V. spp. Reduces 
LuxR-mediated transcription from the PluxI promoter which in-
fluences biofilm formation in P. aeruginosa 

[142, 143] 

Furocoumarin/ Psoralen 
(7H-Furo[3,2-g][1]benzopyran-7-one) 

Grapefruit juice and extract 
(Psoralea corylifolia L.)  

The structural resemblance of furan moiety results in QS-mediated 
inhibition of biofilm formation in E. coli. Inhibit QS-mediated 
swarming motility in P. aerugionsa PAO1 

[144, 145] 

Urolithin  
(3,8-Dihydroxy-benzo[c]chromen-6-one) 

Ellagitannin-rich extract from 
Pomegranate 

Inhibit C6-HSL and 3-oxo-C6-HSL associated biofilm formation in 
Y. enterocolitica. Inhibit QS-mediated swarming motility in E. coli 

[146, 147] 
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 and P. aerugionsa PAO1  
Curcumin 
(E,E)-1,7-bis(4-Hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione 

From Curcuma longa  Down-regulates virulence factors and biofilm initiation genes in P. 
aerugionsa PAO1 and inhibit its phenotype expression. 

[19] 

  Attenuate QS-dependent EPS production, swarming motility and 
biofilm formation in uropathogenic E. coli, P. aerugionsa, Pr. mirabilis 
and S. marcescens. 

[148] 

α-D-galactopyranosyl-(1→2)-glycerol (florido-
side) (N), Betonicine 
(O), and Isethionic acid 

Red alga (Ahnfeltiopsis flabelli-
formis) 

Inhibit C8-HSL mediated QS in A. tumefaciens NTL4 [149] 

Musaceae Musaceae extract (Musa parad-
iciaca) 

Inhibit QS-mediated elastase production and biofilm formation in 
P. aerugionsa PAO1 

[150] 

Garlic Garlic extract Interferes with expression of QS-controlled virulence genes in P. 
aeruginosa 

[121] 

Piper betle Piper betle extract Inhibit QS-mediated biofilm formation in P. aeruginosa [151] 
Cuminum cyminum Cuminum cyminum extract Reduce LuxR dependent biofilm formation and swarming motility 

of P. aerugionsa 
[152] 

 
 
A promising group of natural QSI is the halo-

genated furanones produced by the Australian red 
alga, Delisea pulchra which inhibit AHLs-mediated 
gene expression by interfering with AHL signal from 
its reporter protein [153, 110]. Halogenated furanones 
are also known to inhibit quorum sensing by destabi-
lizing and accelerating the turnover of LuxR which 
then impairs its ability to bind DNA and initiate 
transcription [154]. It has now been shown that 
furanones inhibits AHLs as well as AI-2 based 
quorum sensing system as they are structural mimics 
of lactones and tetrahydrofuran rings of quorum 
sensing system [112]. The marine alga Delisea pulchra 
produces furanones in central vesicle gland cells and 
secrete to the fronds to prevent bacterial colonization 
and thereby macro-fouling [155]. Furanones are 
structural analogues to short-chain AHLs and appears 
to interact directly with LuxR-type receptors [156]. 
Thus, they inhibit AHL-mediated quorum sensing 
and subsequent biofilm formation in some 
Gram-negative bacteria such as P. aeruginosa, V. har-
veyi and E. coli [122, 157-160, 112]. A natural com-
pound (5Z)-4-bromo-5-(bromomethylene)-3-butyl- 
2(5H)-furanone produced by marine alga has been 
shown to inhibit swarming motility and biofilm for-
mation in E. coli at concentration non-lethal to plank-
tonic growth [112, 111]. 

Flavonoids are widely distributed in the plant 
kingdom and are known for their numerous and de-
terminant roles in plant physiology, metabolism and 
development of plant–rhizobia interactions. For the 
human health perspective, flavonoids have shown 
their roles as anti-oxidant, anti-inflammatory and an-
ticancer agents [161]. In addition to these health ben-
efits, flavonoids such as kaempferol, naringenin, 
quercetin and apigenein have been reported as inhib-
itors of AHL and AI-2 mediated pathogenic traits in P. 
aeruginosa PAO1, E. coli O157:H7 and V. harveyi [117, 
162, 163]. Quercetin and naringenin were found to 
inhibit quorum sensing based biofilm formation in V. 

harveyi BB886 and E. coli O157:H7 [163]. Flavanones 
naringenin and taxifolin derived from Malagasy plant 
Combretum albiflorum attenuates the production of 
QS-controlled virulence factors in P. aeruginosa PAO1 
[117]. Moreover, Flavan-3-ol catechin from the bark of 
same plant reduce the production of quorum sensing 
regulated virulence factors- pyocyanin, elastase and 
biofilm formation in P. aeruginosa PAO1 without af-
fecting growth [118]. In addition, reduction in ex-
pression of several quorum sensing controlled genes 
i.e. lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1 and rhlA 
was also reported with these compounds. Truchado et 
al. [18] reported the quorum sensing inhibitory effects 
of an orange extract enriched in O-glycosylated fla-
vanone naringin, which diminished the levels of lac-
tones secreted by pathogenic Y. enterocolitica and de-
creased quorum sensing mediated biofilm maturation 
without affecting bacterial growth. The naringin was 
also found to inhibit swimming motility and induce 
the transcription levels of yenR, flhDC, and fliA in Y. 
enterocolitica. 

A sulfur-rich QSI compound ajoene have been 
identified from garlic extract, which can block the 
quorum sensing regulated production of rhamno-
lipids resulting in phagocytosis of biofilms. This 
compound also targets Gac/RSM part of quorum 
sensing system and lowers the expression of two 
small regulatory RNAs, RsmY and RsmZ in Pseudo-
monas aeruginosa PAO1 [114]. Another isothiocyanate 
containing sulfur-rich compound iberin extracted 
from horseradish has shown strong QSI activity [115]. 
A recent study identified sulforaphane QSI from 
broccoli extract, which covalently bind to cys79 resi-
due in the 3-oxo-C12-HSL binding pocket of LasR in 
P. aeruginosa [116, 164]. An arginine analog 
L-Canavanine derived from seeds exudates of Medicao 
sativa has shown to serve as a nitrogen source for seed 
germination and also inhibit growth of certain bacte-
ria and phytophagous insects [165]. This compound 
incorporates in place of L-arginine into nascent pro-
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tein chains during synthesis and results in altered 
protein structure and function leading to death of 
target bacteria [165, 125]. 

More recently, various plants extract including 
habanero (chilli), tomato, crown vetch, soybean, water 
lily, Daucus carota subsp. sativu, Medigo sativa, Pisum 
sativum seedling, Allium cepa, Allium sativum, Lycoper-
sicum esculentu, Medicago truncatula, vanilla, Piper betle, 
Cuminum cyminum and some medicinal plants of 
southern Florida were found to possess anti quorum 
sensing activities [121, 156, 166, 110, 167, 151, 152, 
168]. A cyclic disulphur compound having strong 
antagonistic effect on LuxR-based quorum sensing 
has been identified from garlic extract [121, 169]. Fu-
rocoumarin derived from grapefruit was found to 
inhibit quorum sensing mediated biofilm formation in 
E. coli and swarming motility in P. aerugionsa PAO1 
[144, 145]. Limonoids from sour orange seeds such as 
isolimonic acid, ichangin and deacetyl nomilinic acid 
17 β-D-glucopyranoside were found to inhibit AI-2 
mediated quorum sensing in V. harveyi [170]. The 
structural resemblance of furocoumarin and limo-
noids with autoinducers molecule in the furan moiety 
was found to be responsible for competitive quorum 
sensing inhibition [171, 172].  

It is expected that fungi can produce QSI com-
pounds as they have co-existed with quorum sensing 
bacteria from millions of years. In a recent study two 
QSI compounds were identified as penicilic acid and 
patulin produced by Pe. radicicola and Pe. coprobium 
respectively [121]. The DNA microarray-based tran-
scriptomics showed that penicilic acid and patulin 
respectively targets 60% and 45% quorum sensing 
genes in P. aeruginosa suggesting the RhlR and LasR 
quorum sensing regulators [173, 121].  

Therefore natural QSI offer a potential solution 
to the multidrug resistance associated with traditional 
antibiotics or antimicrobial compounds. Several 
comprehensive reviews on natural compounds that 
antagonize quorum sensing are available [174, 161]. 
However, further investigation is required to identify 
the potential QSI present in natural sources and 
mechanism they employ to antagonize quorum sens-
ing. Use of natural QSI may lead to the development 
of novel non-antibiotic agent which will target at the 
inhibition of desired traits like biofilm formation or 
virulence factor rather than killing the bacteria. 

Natural compounds for control of mem-
brane biofouling 

Natural QSI have advantages of nontoxicity, 
high antifouling potential and low risk of bacterial 
resistance development. These compounds have 
mostly been applied to pathogenic bacteria; however 
some recent studies showed that control of membrane 

biofouling could also be achieved by incorporation of 
natural QSI. An early example of the addition of nat-
ural quorum sensing compound in a CDC biofilm 
reactor (Center for Disease Control) was provided by 
Poonusamy et al. [175]. The author successfully used 
vanillin for combating Aer. hydrophila biofilms on five 
different membrane surfaces. Vanillin was also re-
ported to inhibit the short and long-chain 
AHL-mediated quorum sensing leading to the reduc-
tion of Aer. hydrophila biofilm on polystyrene surface 
[16]. The Piper betle extract has been found to mitigate 
membrane biofouling in ultrafiltration MBR treating 
textile effluent [176]. In another study Piper betle ex-
tract has shown the reduction in biofilm formation 
and EPS production caused by P. aeruginosa and bac-
terial consortium without raising the selective pres-
sure for the growth of microorganisms [151]. These 
results reveal that Piper betle extract could be used as 
a potential anti-quorum sensing agent for mitigation 
of membrane biofouling. The correlation between 
membrane biofouling and quorum sensing activity 
demonstrated that Piper betle extract could inhibit 
AIs production and reduce EPS and biofilm formation 
[177]. These evidences suggest that incorporation of 
natural QSI on membrane surfaces and addition in 
MBRs could be an effective strategy for control of 
membrane biofouling. Such artificial quorum sensing 
regulatory systems might help to mimic the problem 
of membrane biofouling without disturbing bacterial 
growth. Thus, engineered membranes with natural 
compounds are expected to be very useful in plant 
scale MBR and in designing of wastewater treatment 
systems with economic feasibility.  

Enzymes as QSI  
Complete degradation or inactivation of AHL 

signal molecules can be achieved by quorum 
quenching enzymes. Two major classes of enzymes 
that degrades AHLs signal molecules are reported, 
which includes lactonases that open the homoserine 
(HSL) ring [178, 158, 179] and acylases that cleave the 
acyl side chain from the HSL ring [99, 180]. Another 
class of enzyme oxidoreductase has also been known 
to catalyze the oxidation or reduction of acyl side 
chain [181, 182] (Figure 4).  

In nature, several AHLs degrading enzymes 
have been reported from large number of bacteria, 
fungi, plants and legumes. A broad spectrum of AHLs 
degrading AHL-acylases are produced by Ralstonia sp. 
XJ12B and P. aeruginosa PAO1 [99, 183]. Few examples 
of bacterial AHL acylases reported includes AiiD 
from Ralstonia sp. XJ12B [99], AhlM from Streptomyces 
sp. [184], PvdQ and QuiP from P. aeruginosa PAO1 
[183, 185, 33] and AiiC from Anabaena sp. PCC7120 
[185]. The acylases HacA and HacC produced by P. 
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syringae B728a have shown to degrade quorum sens-
ing signal AHLs [187]. AHL-acylase produced by 
Streptomyces sp. has been shown to possess an ability 
to degrade specific AHLs having 6 or more acyl 
chains [184].  

The other quorum quenching enzyme 
AHL-lactonases have been reported from various 
bacteria and fungi. The most promising bacteria 
producing AHL-lactonase are strains belonging to 
diverse Bacillus sp. such as B. cereus, B. subtilits and B. 
thuringiensis [188-191]. However, B. thuringiensis pre-
sent a unique property as it does not produce quorum 
sensing signals but has AHL-lactonase activity [192]. 
The other bacterial lactonases includes AttM from A. 
tumefaciens c58 [179], AiiA from Bacillus sp. 240B1 
[158], AiiB from A. tumefaciens [193], QIcA from Ac-
idobacteria sp. [194] and AidH from Ochrobactrum sp. 
T63 [195]. A fungal quorum quenching enzyme glu-
conolactonase has been reported from As. niger IAM 
2094 [196]. The legume alfalfa, clover, lotus, peas and 
yam bean shown to contains AHL degrading enzyme 
lactonase [197-199]. A summary of the known quorum 
quenching enzymes is provided in Table 3. 

 

 
Figure 4. Degradation mechanism of quorum sensing signal molecule 
N-acyl homoserine lactone by quorum quenching enzymes. (a) Lactonase 
open the HSL ring (b) Acylase cleaves the acyl side chain from HSL ring or 
hydrolyze the amide linkage (c) Oxidoreductase catalyzes the oxidation or 
reduction of acyl side chain. 

Table 3. Enzymes as quorum sensing inhibitors.  

Enzyme class/ Name Source/ Producing strain AHLs degradation Ref. 
AHL-acylase    
Acylase I Porcine (Kidney) C4-HSL, C6-HSL, C8-HSL, 3-oxo-C10-HSL, 3-oxo-C12-HSL [88, 200, 

201] 
  C4-HSL, C6-HSL, C8-HSL [20, 202-204] 
AiiD Ralstonia sp. XJ12B 3-oxo-C8-HSL, 3-oxo-C10-HSL, 3-oxo-C12-HSL  [99] 
AiiC Anabaena sp. PCC7120 C4-HSL ͠ C14-HSL [186] 
PvdQ Pseudomonas sp. strain PAI-A C10-HSL, 3-oxo-C10-HSL, C12-HSL, 3-oxo-C12-HSL, C14-HSL, C16-HSL [183, 33] 
HacA P. syringae strain B728a C8-HSL, C10-HSL, C12-HSL [187] 
HacB P. syringae strain B728a C6-HSL, C8-HSL, C10-HSL, C12-HSL [187] 
Aac R. solanacearum GMI1000 C7-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL [205] 
Aac Shewanella sp. strain MIB015 C8-HSL, C10-HSL, C12-HSL [206] 
AhlM Streptomyces sp. strain M664 C8-HSL, C10-HSL, 3-oxo-C12-HSL [184] 
QuiP P. aeruginosa C6-HSL, C8-HSL, C10-HSL, C12-HSL [207] 
n.d. Pseudomonas sp. 1A1 C6-HSL, C8-HSL, 3-oxo-C8-HSL, 3-oxo-C10-HSL, C10-HSL, 3-oxo-C12-HSL, 

C12-HSL 
[208] 

AHL-lactonase    
Lactonase Human (Airway epithelia) 3-oxo-C12-HSL [209] 
Gluconolactonase (GL) As. niger IAM 2094 Lactone ring hydrolysis [196] 
AttM A. tumefaciens c58 3-oxo-C8-HSL [179] 
AiiA Bacillus sp. 240B1 C8-HSL [158, 210] 
 B. anthracis (Ames strain) C6-HSL, C8-HSL, C10-HSL [211] 
 B. cereus and B. mycoides C6-HSL, C8-HSL, C10-HSL [189] 
 B. thuringiensis 3-oxo-C6-HSL, C6-HSL, C8-HSL [212] 
AiiB A. tumefaciens C58 3-oxo-C6-HSL, C6-HSL, C8-HSL, C7-HSL, 3-oxo-C8-HSL, C8-HSL [213] 
AiiB A. tumefaciens  C4-HSL, 3-oxo-C6-HSL, C6-HSL, 3-oxo-C8-HSL, C8-HSL, C10-HSL [193] 
GKL Ge. kaustophilus 

strain HTA426 
C6-HSL, 3-oxo-C8-HSL, C8-HSL, C10-HSL, 3-oxo-C12-HSL [214] 

AiiM M. testaceum StLB037 3-oxo-C6-HSL, C6-HSL, 
3-oxo-C8-HSL, C8-HSL, 
3-oxo-C10-HSL, C10-HSL 

[215] 

MCP My. avium subsp. paratuberculosis K-10 C7-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL, C12-HSL [216] 
PPH My. tuberculosis C4-HSL, 3-oxo-C8-HSL, C10-HSL [217] 
AidH Ochrobactrum sp. T63 C4-HSL, C6-HSL, 3-oxo-C6-HSL, 3-oxo-C8-HSL, C10-HSL [195] 
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AhlS So. silvestris StLB046 C10-HSL [218] 
SsoPox Sul. solfataricus strain P2 3-oxo-C8-HSL, C8-HSL, 3-oxo-C10-HSL, 3-oxo-C12-HSL [219, 220] 
QsdA Rho. erythropolis W2 3-oxo-C6-HSL, C6-HSL, 

3-oxo-C8-HSL, C8-HSL, 
3-oxo-C10-HSL, C10-HSL, 3-oxo-C12-HSL, C12-HSL, 3-oxo-C14-HSL, 
C14-HSL 

[221] 

QIcA Acidobacteria sp. 3-oxo-C6-HSL, C6-HSL, C7-HSL, 3-oxo-C8-HSL, C8-HSL, 3-oxo-C10-HSL, 
C10-HSL 

[194] 

AhlD Arthrobacter sp. IBN110 C4-HSL, 3-oxo-C6-HSL, C6-HSL, C8-HSL, 3-oxo-C10-HSL, C10-HSL [222] 
Oxidoreductase    
P450BM3 B. megaterium 

CYP102A1 
Oxidizes; C12-HSL, 3-oxo-C12-HSL, C14-HSL, 3-oxo-C14-HSL, C16-HSL, 
C18-HSL, C20-HSL. 

[181] 

n.d. Burkholderia sp. strain 
GG4 

Reduces; 3-oxo-AHL to corresponding 3-hydroxy  
derivatives. 

[207] 

n.d. Rho. erythropolis W2 Converts C8-HSL to C14-HSL to corresponding 3-hydroxy derivatives [182] 

n.d.: Not determined. 

 

Enzymatic control of membrane biofoul-
ing 

Enzymatic inactivation of AHL molecules has 
recently been proved to be a promising approach for 
the control of membrane biofouling. The quorum 
quenching enzymes AHL-acylase and AHL-lactonase 
have shown their potential to be used as quorum 
quenching agent in biofouling control. Xu et al. [201] 
reported that formation of Aer. hydrophila biofilm on 
polystyrene surface would be reduced by Acylase I. In 
another study it was found that 5µg/ml of Acylase I 
dose results into 60% and 73% reduction of Aer. hy-
drophila and P. putida of biofilms on polystyrene sur-
face [20]. In order to overcome the loss of enzyme 
during operation and ensure the slow release, immo-
bilization of Acylase I on nanofiltration membrane 
was carried out by Kim et al [203]. The results of the 
laboratory-scale nanofiltration system demonstrated 
that newly developed acylase-immobilized mem-
brane could inhibit quorum sensing between bacteria 
and biocake, thereby reducing biofouling. In addition 
to this, Lee et al. [223] developed an effective anti-
fouling system by immobilizing quorum quenching 
acylase in magnetically separable mesoporous silica. 
The engineered system was found to effectively alle-
viate the biofilm maturation of test strain P. aeruginosa 
PAO1 on a membrane surface and thereby enhanced 
its filtration performance even under harsh conditions 
of high organic load and low enzyme dose. The syn-
ergetic action between enzymatic regulation of 
quorum sensing molecules and nanobiocatalytic en-
zyme stabilization has proven its high potential to-
wards simple and effective antifouling solution in 
MBR. However, the exact mechanism by which the 
enzymatic quorum quenching can mitigate the bio-
film formation in MBR is not yet fully investigated. 

Yeon et al. [204] developed acylase attached 
magnetic particles to inhibit quorum sensing in MBR 
treating wastewaters. They found that immobilized 
enzymatic particles has reduced the biofilm formation 

and enhanced membrane permeability for prolonged 
period. A major advantage using enzymatic quorum 
quenching approach is that it only influences sludge 
characteristics and biofouling, while not impacting 
pollutant degradation [202]. The mass production of 
quorum quenching enzymes by engineering gene 
network in bacteria whose expression is under 
quorum sensing system could be a futuristic approach 
for prolonged inhibition of membrane biofouling [224, 
23]. Recently, a microporous membrane encapsulated 
with AHL-lactonase producing recombinant E. coli 
has been successfully used for the control of biofoul-
ing by interspecies interference in MBR [21]. In an-
other study, a microbial-vessel containing quorum 
quenching bacteria encapsulated inside a porous 
hollow fiber membrane was found to inhibit mem-
brane biofouling in an external submerged MBR 
treating synthetic wastewater [225].  

Conclusions  
Biofouling, a consequence of various microbial 

activities is a complex process in MBR treating 
wastewaters. Recent studies have proved evidence 
that quorum sensing, which was earlier known for 
pathogenesis, may also play key role in membrane 
biofouling. AHLs-based quorum sensing system as-
sociated with Gram-negative bacteria is known to 
have a potential role in biofilm formations. Under-
standing the mechanism of AHLs-based quorum 
sensing system in wastewater microbiology can help 
in targeting quorum sensing and addressing the 
problem of membrane biofouling. Natural com-
pounds as QSI could act as a ‘silver bullet’ to solve the 
problem of membrane biofouling as this has great 
potential towards inhibiting biofilm formation with-
out affecting bacterial growth.  
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