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Abstract 

IL-27, a heterodimeric cytokine of IL-12 family, regulates both innate and adaptive immunity largely 
via Jak-Stat signaling. IL-27 can induce IFN-γ and inflammatory mediators from T lymphocytes and 
innate immune cells. IL-27 has unique anti-inflammatory properties via both Tr1 cells dependent 
and independent mechanisms. Here the role and biology of IL-27 in innate and adaptive immunity 
are summarized, with special interest with immunity against Mycobacterium tuberculosis. 
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Introduction 
Tuberculosis remains a leading cause of death 

worldwide which afflicts approximately one-third of 
the world’s population and claims a death toll around 
1.2 million annually [1].  

Mycobacterium tuberculosis (Mtb) is an unusual 
facultative intracellular pathogen which multiplies 
within macrophage [2]. Macrophages are crucial for 
the innate and adaptive immune response to Mtb be-
cause of their potent antimicrobicidal activities, anti-
gens-presenting abilities, secretion of inflammatory 
mediators such as the IL-12 family of cytokines [3, 4], 
and their role in granuloma formation to control the 
pathogen [5-7]. However, Mtb can persist within 
granuloma lifelong without clinical symptoms [3, 4, 
8]. In-depth understanding of the underlying molec-
ular mechanisms can inspire better drug design and 
treatment of TB. 

The interleukin-12 (IL-12) family, including 
IL-12, IL-23, IL-27 and IL-35, are important for TB 
pathogenesis and control, which can regulate the Th1 
response [9, 10]. 

Interleukin-27 (IL27) was first discovered in 2002 

as a new member of the IL-12 cytokine family [11]. It 
is a heterodimer, comprised of p28 and EBI3 subunits 
that are structurally similar to the p35 and p40 subu-
nits of IL-12 [12].  

IL-27 is largely secreted from activated anti-
gen-presenting cells (APCs) such as macrophages and 
Dendritic cells (DCs) [13-15] (Figure 1). The receptor 
of IL-27 consists of two subunits: IL-27Rα and gp130. 
Both subunits are essential [16-18] for activating Janus 
Kinase (Jak) and Transcription factor (Stat). Specifi-
cally, Stat1and Stat 3 are predominant mediators of 
IL-27 effects (figure 2) [19, 20]. IL-27 can mediate Th1 
cells differentiation and proliferation [17, 18]. IL-27 
has potent antitumor activities by activation of cyto-
toxic T lymphocytes CD8+ T cells [21-25], Natural 
killer (NK) cells [26-28], NK T cells [28] and an-
ti-angiogenic factors [29, 30]. However, IL-27R sig-
naling was demonstrated to be involved in the potent 
antagonizing of Th1, Th2 and Th17 inflammatory re-
sponses [31-33] and agonist of Tr1 cell response [34, 
35]. IL-27 can ameliorate symptoms of autoimmune 
diseases in preclinical studies [33, 36, 37]. 

 
Ivyspring  

International Publisher 



Int. J. Biol. Sci. 2015, Vol. 11 
 

 
http://www.ijbs.com 

169 

The expression level of IL-27 in granuloma sug-
gested a role in tuberculosis [38]. The elevated level of 
IL-27 in tuberculous pleural fluid suggested a poten-
tial biomarker for tuberculous pleurisy diagnosis [39, 
40]. IL-27 level might be manipulated to benefit 
pathogen [41-43]. 

Molecular characteristics of IL-27 
IL27 is a heterodimeric cytokine consisting of 

p28 and Epstein-Barr virus induced gene 3 (EBI3) 
subunits [16, 44]. EBI3 expression is high in human B 
lymphoblast cell lines transformed in vitro by EBV, 
activated APCs and placental syncytiotrophoblasts 
[16, 45]. EBI3 is a 34-kDa glycoprotein similar to the 
p40 subunits of IL-12 [46]. The EBI3 reversibly binds 
to IL-12p35-related subunit, namely p28, to form het-
erodimeric cytokine IL-27[46, 47]. The connection 
between p28 and EBI3 is labile and these subunits can 
be secreted independently [16]. EBI3 is also capable of 
binding to the IL-12p35 to form IL-35 [48]. The human 
p28 gene encodes a 24.5kDa polypeptide [16]. The p28 
is structurally similar to an IL-6/IL-12 family, com-
posed of a long chain of four α helix bundle named 
A–D from the N terminus to the C terminus[49]. The 
polypeptide loop connecting the p28 C and D α heli-
ces contains a stretch of polyglutamic acids (poly-E) 
unique among helical cytokines and is highly con-
served [50]. The p28 alone can suppress IL-27 medi-
ated Th1 responses [51] and IL-6 mediated signaling 
[52]. These data suggest a regulatory role of p28 in 

IL-27-mediated immune response. 
A polymorphism (-964A>G) in the p28 promoter 

has been noted in certain diseases such as asthma [53], 
inflammatory bowel diseases [54], chronic obstructive 
pulmonary disease[55], and epithelial ovarian cancer 
[56], which seems to be associated with an increase in 
disease susceptibility. However, the effects of SNPs 
on the expression of IL-27 remain elusive. 

IL-27 is mainly produced by activating APCs 
such as DCs and macrophages (figure 1). Macro-
phages-stimulated with TLRs agonists, (polyinosinic: 
polycytidylic acid (poly (I:C)), Lipopolysaccharide 
(LPS), or R848 can induce both subunits of IL-27 [13]. 
It has been reported that p28 production is completely 
dependent on the TLR4-associated myeloid differen-
tiation factor 88 (MyD88) mediated pathway and par-
tially dependent on NF-κBc-Rel transcription factor 
[14]. MyD88 also regulates p28 expression through 
binding of AP-1/c-Fos to the p28 promoter in both 
human and mouse macrophages. However, the 
binding of c-Fos to the p28 promoter can be blocked 
by overexpression of p38 MAPK [57]. In addition, 
TLR4 can induce the expression of p28 subunit 
through activating the TIR domain-containing adap-
tor inducing IFN-β (TRIF) and IFN regulatory factor 3 
(IRF3) pathways [58]. TLR2, TLR4, and 
TLR9-associated MyD88 are required for the induc-
tion of EBI3 expression through binding of NF-kB 
subunits (p50/p65) and PU.1 to the EBI3 promoter 
[59].  

 

 
Figure 1. Signaling involved in IL-27 expression. IL-27 is largely produced by Antigen-presenting cells (APCs) such as Dendritic cells (DCs) and macrophages 
upon stimulation with TLRs agonists, IFN-α, IFN-γ or microbial infections. It consists of two subunits (p28/EBI3) which are expressed independently. TLR2, TLR4 and 
TLR9-associated MyD88 can induce EBI3 expression through the binding of NF-𝛋𝛋B subunits (p50/p65) and PU.1 to the EBI3 promoter. TLR4-associated MyD88 
induces p28 expression through binding of NF-𝛋𝛋B-c-Rel and AP-1/c-Fos to the p28 promoter, TLR4-associated TRIF induces p28 expression by binding of IRF3 to the 
p28 promoter. The IFN-α and IFN-γ induces p28 expression through the binding of IRF3 and IRF8 to the p28 promoter, respectively. In addition, IFN-γ-mediated 
IL-27 instead of IL-27p28 gene expression is positively regulated by the C-Jun N-terminal kinases (JNK), mitogen-activated protein kinases (MAPKs) and the 
phosphoinositide 3-kinase (PI3K). 
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Figure 2. Regulatory role of IL-27 in the immune response against Mycobacterium tuberculosis. (A) IL-27 induced by Mtb infection modulates mac-
rophage response. IL-27 inhibits autophagy by inducing negative regulator factors of autophagy mTOR and Mcl-1 through PI3K/AKT and PI3K, respectively. IL-27 
induces IL-10 production through Stat1/Stat3, which in turn blocks phagosomal maturation. It also suppresses TNF-α and IL-12 via Stat3 and both cytokines required 
for augmenting IFN-γ production by macrophages. In addition, IL-27 targeting NF-kB to inhibit IL-18 mediated IFN-γ production. Suppression of IFN-γ led to 
down-regulation of V-ATPase and CD63 and Capethsin D (CD) and subsequently suppression of phagosomal acidification. (B) IL-27 induced IL-10-producing type 1 
regulatory T cells (Tr1) cell via Stat1/Stat3 and AhR/c-Maf pathway, which in turn suppress Th1 and Th17 cells. IL-27 directly inhibits Th17 cells by inhibiting ROR-γ 
expression and IL-6 signaling. 

 
  



Int. J. Biol. Sci. 2015, Vol. 11 
 

 
http://www.ijbs.com 

171 

IFN-alpha can promote the production of IL-27 
by enhancing the expression and binding of IRF-1 to 
the IFN-stimulated response element (ISRE) in the p28 
gene promoter [13]. Likewise, IFN-γ induced IRF-8 
expressions can upregulate p28 gene transcription in 
synergy with IRF-1 [15]. IFN-γ can selectively induce 
IL-27 expression via activating the C-Jun N-terminal 
kinases (JNK), MAPKs and the phosphoinosi-
tide-3-kinase (PI3K) signaling in primary human 
monocyte[60]. Many molecular details of the negative 
regulation of IL-27 expression remain to be deter-
mined. 

IL-27 signaling pathways 
IL-27R is indispensable for the IL-27 signaling. 

IL-27R consists of the class I cytokine receptor family 
(TCCR) (also known as WSX-1) and gp130 [16-18]. 
IL-27R is expressed in various cell types including 
naïve T cells, NK cells, activated B cells, monocytes, 
dendritic cells, activated endothelial cells, and mast 
cells [61]. IL-27 induced intracellular signaling in-
volves phosphorylation of different isoforms of Jak 
and Stat, which varies with immune cell types: Jak1, 
Jak2, Tyrosine kinase 2 (Tyk2), Stat1, 2, 3, 4 and Stat5 
in naïve CD4 T cells [62], Jak-1, Stat1, Stat-3 and Stat5 
in NK cells[61, 63] , Stat1, Stat3, and NF-κB activation 
in monocytes [20], and Stat-3 in mast cells [64]. Inter-
estingly, the effect of the IL-27 can be both 
pro-inflammatory and anti-inflammatory via same 
Stat1/Stat3 signaling. 

The pro-inflammatory role of IL-27 as key in-
flammatory mediator for Th1 differentiation and 
IFN-γ production has been intensively explored [16, 
63, 65]. Stimulation of Th0 in the presence of IL-27 
induces the expression of the key signature Th1 cyto-
kine IFN-γ via up-regulating of the transcription fac-
tor T-bet and IL-12Rβ2 chain which is essential for 
responding to IL-12 and the differentiation of a Th1 
phenotype [61, 62, 65]. This effect of IL-27 on Th cell 
depends on multiple transcription factors such as 
Stat-1 and Stat-3 [61, 62, 65]. In vivo studies demon-
strated the role of IL-27 in Th1 responses. In this con-
text, it was shown that WSX-1−/− mice were more 
susceptible to Leishmania major infection and impaired 
IFN-γ production [17]. Similarly, reduced Th1 re-
sponses and IgG2a production was demonstrated in 
WSX-1-deficient mice infected with Listeria monocyto-
genes [18]. Moreover, it was shown that IL-27R sig-
naling is vital in vivo for the IFN-γ production by 
CD8+ T cells [66]. IL-27 can enhance the proliferation 
of naïve CD8+ T cells and IFN-γ and granzyme B 
production dependent on Stat1 and Stat3 [22].  

IL-27 can stimulate human monocyte to express 
TLR4 through activation of Stat-3, and NF-κB which 
subsequently respond to LPS-inducing IL-6, TNF-α, 

MIP-1α, and MIP-1β expression [67]. IL-27 increased 
the production of nitric oxide from peritoneal mac-
rophages via activation of Stat-1, NF-κB and MAPKs 
[68]. IL-27 also enhanced monocyte derived dendritic 
cells (moDCs) to express IL-27, IL-8, CXCL10, chemo-
kine receptor (CCR1), IFN-stimulated genes, IRF8 and 
other genes involved in antigen presentation [69]. 
IL-27 negatively regulated Tr1 cells by induction of 
metallothioneins (MTs) which in turn reduced stat1 
and stat3 phosphorylation resulting in impaired IL-10 
production [70]. Taken together, IL-27 positively reg-
ulates both innate and adaptive immune responses.  

IL-27 can negatively modulate inflammatory 
processes. Improved control of Leishmania donovani 
correlates with massive inflammatory responses were 
reported in IL-27R-deficient mice [71]. Similarly, 
WSX-1-/- mice infected with Toxoplasma gondii or 
Trypanosoma cruzi generated robust IFN-γ responses 
and developed lethal T cell-mediated inflammation 
[31, 72]. Greater effector and memory CD4+ T cells 
responses were noted in IL27R lacking mice chal-
lenged by Plasmodium berghei [73].  

The negative feedback of IL-27 largely depends 
on the induction of type 1 regulatory T cells (Tr1). 
IL-27 can induce Tr1 cells via various mechanisms 
including activation of Stat1, Stat3 [75-76], upregula-
tion of Blimp1 [77], aryl hydrocarbon receptor (AhR), 
transcription factor c-Maf, inducible T cell costimula-
tor (ICOS), and IL-21 production, which is indispen-
sable for the expansion and maintenance of Tr1 cells 
[34, 35]. Furthermore, the anti-inflammatory effect of 
IL-27 needs more than the induction of Tr1 cells. 
IL-27R-/- CD4+ T cells produce more IL-2 than 
wild-type during in vitro differentiation. The addition 
of recombinant IL-27 suppressed the expression of 
IL-2 both transcriptionally and translationally [78]. 
IL-27 suppresses CD28-mediated IL-2 production by 
Stat 1 which in turn induces the expression of the 
suppressor of cytokine signaling 3 (SOCS3) [79]. 
Moreover, it was observed that WSX-1-deficient 
macrophages are more efficient in inducing IFN-γ and 
IL-17A production by CD4+ T cells than control. IL-27 
can activate stat1 which in turn suppresses cyclooxy-
genase (COX) expression and followed by reducing 
prostaglandin (PG2) secretion, which can affect the 
CD4+ T cell responses [80]. 

IL-27 was also reported to suppress Th2 cells 
development and their cytokines production by 
downregulation of Gata3 and upregulation of T-beta 
in differentiated Th2 cells [32]. In addition to suppress 
both Th1 and Th2 cells, IL-27 can inhibit the devel-
opment of Th17 cells. Consistently, it was demon-
strated that IL-27 can inhibit Th17 cell development 
through various mechanisms including the suppres-
sion of IL-6 signaling mediated IL-17 production [33], 
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retinoid-related orphan receptor γ (RORγ) expression 
(Th17-specific transcription factor) [36], and also via 
induction of the IL-10 production [81], and pro-
grammed death ligand 1 (PD-L1) on naïve T cells [37]. 
IL-27 upregulates the expression of Blimp1 in 
pre-committed Th17 cells and acquired a Tr-1-like 
phenotype characterized by the production of IL-10 
and IFN-γ [77].  

More recently, it was recognized that IL-27 can 
inhibit the development of Th9 cells and limit its re-
lated encephalitis by mechanism partly depending on 
Stat-1 [82]. Taken together, IL-27 induces an immu-
nosuppressive effect by both Tr1 cells dependent and 
independent mechanisms. However, the contribution 
of IL-27 in the induction of IL-35-producing T regu-
latory cells remains unknown.  

Role of the IL-27 in innate and adaptive 
immune response to Mtb infection 

The innate immunity plays a decisive role in the 
early clearance of Mtb via the recognition of the anti-
gen and subsequent induction of pro-inflammatory 
cytokines and antimicrobial peptides [83]. The pro-
duction of IL-27 in response to Mtb infection modu-
lates macrophage responses [41-43]. The combination 
of IL-12 and anti-IL-27R can limit Mtb growth via 
upregulation of pro-inflammatory cytokines such as 
TNF-α, IFN-γ, and IL-18[41, 84]. However, the mo-
lecular mechanisms by which IL-27 negatively regu-
lated macrophages during Mtb infections remain un-
clear. It was demonstrated that IL-27R singling in 
mice peritoneal macrophages suppresses IL-12 and 
TNF-α production by Stat3 [43]. IL-27 can antagonize 
IL-18 signaling in human macrophages challenged 
with Mtb by inhibiting the expression of the IL-18 
receptor beta-chain and IL-18R downstream signaling 
component NF-kB [42]. IL-18 and IL-12, synergisti-
cally induced IFN-γ production by human macro-
phages and promoted the killing of Mtb [84]. It has 
been shown that IL-27 can inhibit the expression of 
the phagosomal vacuolar ATPase (V-ATPase) and 
lysosomal integrated membrane protein-1 (CD63), 
resulted in the suppression of phagosomal acidifica-
tion and cathepsin D maturation [85]. IL-27 signaling 
is necessary for the IL-10 production by macrophages 
through enhancing the activity and binding of 
Stat1/Stat3 to the IL-10 promoter [86]. Recently, it was 
found that IL-10 induced by Mtb during macrophage 
infection can manipulate phagosomal maturation to 
enhance its own intracellular growth [87]. Most re-
cently a study demonstrated that IL-27 suppresses 
IFN-γ mediated autophagy in human macrophages 
infected with Mtb by inducing autophagy negative 
regulatory factors mTOR and Mcl-1 through 
JAK/PI3-K/Akt and PI3-K pathway, respectively 

[88]. In brief, Mtb can subvert the normal bactericidal 
function of macrophages by inducing IL-27 (Figure 
2A, Table 1).  

Table 1: The consequence of IL-27 signaling in tuberculosis 

Immune cells 
involved 

Consequence of IL-27 signaling References 

Macrophages Inhibits the production of pro-inflammatory 
cytokines 

[43-42] 

Induces the production of anti-inflammatory 
cytokine.  

[86] 

Inhibits phagosomal acidification. [85, 87] 
Suppresses the autophagy formation.  [88] 

T cells Suppresses Th1 cell responses. [43, 89-90]. 
Induces the IL-10 producing Tr1 cells, pro-
motes proliferation and maintenance of Tr1 
cells.  

[34-35, 
75-77, 94]. 
 

Suppresses the Th17 cell development. [33, 36, 37, 
81]. 

 
Ablation of IL-27, either by disruption of the 

IL-27R gene in mice or by an antibody blockade of the 
IL-27R, implicates an important role of IL-27 in adap-
tive immunity against mycobacteria infections. 
WSX-1-deficient mice have impaired IFN-γ produc-
tion and granuloma formation when challenged with 
M. bovis BCG [89]. However, there are no differences 
in liver pathology and bacterial load between mutant 
and wild type mice [89]. Significant elevation of IL-27 
throughout the infanthood and neutralization of IL-27 
in neonatal macrophages improved control of bacte-
rial replication [90]. Furthermore, blockade of IL-27 
during incubation with the M. bovis (BCG) augmented 
the IFN-γ production by allogeneic CD4+ T cells [90]. 
Similarly, it has been demonstrated that improved 
control of Mtb growth in the lungs results from in-
creased production of pro-inflammatory cytokines in 
WSX-1-knockout mice [43]. These results suggest that 
IL-27 negatively regulated Th1 response (Figure 2B, 
Table 1), however, the underlying mechanisms re-
main elusive. 

More recently, it was recognized that IL-27 posi-
tively regulates IL-10 producing Tr1 cells during 
chronic inflammation [34, 35, 75-77] (Figure 2B, Table 
1). It has been demonstrated that IL-10 suppressed the 
immune response to Mtb infections without im-
munopathology observed in both C57BL/6 and 
CBA/J mice [91, 92]. Moreover, it was shown that 
IL-10-deficient mice were more resistant to M. bovis 
(BCG) challenge in comparison to control mice [93]. 
Blocking of IL-10R in CBA/J mice improved M. bovis 
(BCG) evoked protection against Mtb characterized by 
enhanced Th1 and Th17 responses and increased 
IFN-γ and IL-17A production in the mice lungs [94]. 
Taken together, these data indicate IL-27 can modu-
late immune response against mycobacteria by in-
ducing IL-10. 

IL-27 directly mediated the suppression of the 
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development of Th17 cells in chronic inflammation 
models [33, 36, 37, 81] (Figure 2). Th7 cells induce T 
cell chemokines (CXCL9, CXCL10 and CXCL11) in the 
lungs of infected mice to recruit IFN-γ-producing 
CD4+ T cells to limit Mtb growth [95]. BCG-induced 
Th17 cells which can downregulate IL-10 and gener-
ate Th1 immune response resulted in protection upon 
Mtb challenge [96]. IL-17-deficient mice were more 
susceptible to mycobacteria, evidenced by the im-
paired granulomas formation and decreased IFN-γ 
production [97]. Vaccination will elicit Th17 cells re-
sponse associated with increased pro-inflammatory 
cytokines, granulocytes infiltration and severe lung 
damage in mice [98]. The higher amount of Th17 cells 
and related cytokines in active tuberculosis patients 
implicated a role in immunopathogenesis [99, 100].  

As an exceptional successful silent killer, Mtb can 
manipulate the host signaling to persist and reactivate 
at opportune occasion. Knowledge about the emerg-
ing player, namely IL-27, will inform better counter-
measures against this hideous threat of global health 
public.  
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