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Abstract 

STAT4 is a member of the signal transducer and activator of transcription (STAT) family of 
molecules that localizes to the cytoplasm. STAT4 regulates various genes expression as a tran-
scription factor after it is phosphorylated, dimerizes and translocates to the nucleus. STAT4 ac-
tivation is detected virtually in the liver of several mouse models of liver injury, as well as the 
human liver of chronic liver diseases. STAT4 gene polymorphism has been shown to be associated 
with the antiviral response in chronic hepatitis C and drug-induced liver injury (DILI), primary 
biliary cirrhosis (PBC), HCV-associated liver fibrosis and in hepatocellular carcinoma (HCC). 
However, the roles of STAT4 in the pathogeneses of liver diseases are still not understood en-
tirely. This review summarizes the recent advances on the functional roles of STAT4 and its re-
lated cytokines in liver diseases, especially in regulating hepatic anti-viral responses, inflammation, 
proliferation, apoptosis and tumorigenesis. Targeting STAT4 signaling pathway might be a prom-
ising strategy in developing therapeutic approaches for treating hepatitis in order to prevent 
further injury like cirrhosis and liver cancer. 
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Introduction 
The Janus Kinase-Signal Transducers and Acti-

vators of Transcription (JAK-STAT) pathways have 
already been clearly shown to play critical roles in the 
immune, neuronal, hematopoietic and hepatic sys-
tems. Among these complex pathways, STAT4 is an 
important transcription factor that is crucial for the 
differentiation of Th1 cells in promoting cellu-
lar-mediate immune response (1). Generally, it has 
been accepted that STAT4 expression is restricted to 
myeloid cells (especially in activated monocytes, 
macrophages, and dendritic cells (2)), thymus, and 
testes. In contrast, the expression of STAT4 in resting 
human T cells is very low. Diverse cytokines can ac-
tivate STAT4, including interleukin (IL)-12 (3-5), in-
terferon (IFN)-α/β (6-8), IL-2 (9) and IL-17 (10) pro-

duced by T cell, natural killer (NK) cell and several 
other types of immune cells. In addition, growth ar-
rest and DNA-damage-inducible protein 
GADD45-β/γ can also activate STAT4 via MKK6/p38 
pathway (11). After activation, STAT4 enters the nu-
cleus, binds to the STAT4 element and activates its 
target genes. Among these target genes, interferon 
γ(IFN-γ) is the most characterized one. Although it 
has been extensively investigated in immune system 
(12-19) and cancer (20), the roles of STAT4 in the 
pathogenesis of liver diseases are largely unknown. 
This review summarizes the recent advances on the 
functions of STAT4 and its related cytokines involved 
in liver injury, hepatitis, fibrosis and cancer (Figures 
1-3). 
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Figure 1. Functions of IL-12-dependent STAT4. IL-12, synthesized predominantly by dendritic cells, macrophages and human B-lymphoblastoid cells, 
as the major upstream cytokine of STAT4, that can activate STAT4 via stimulating target cells (NK cell, NKT celland T cell) to release IFN-γ. IFN-γ plays 
a crucial role on cell proliferation, NK cell cytotoxicity, Th1 differentiation, liver fibrosis, liver tumor, viral replication and anti-viral therapy response as well 
as inhibiting Fas/FasL mediated apoptosis. 

 
Figure 2.The mainly upstream genes and target genes of STAT4. IL-12, as a major upstream cytokine, stimulate T cell, NK cell and NKT cell to 
release target cytokines or activated some receptors, transcription factors or proteinsby activated STAT4 to regulate Th1 immune response, autophag-
ic-associated necrotic hepatic cell death, histone acetylation or positive feedback loop. IFN-α and IFN-β both play a crucial role on Th1 cell immunity and 
cell proliferation by activated STAT4 via different target genes respectively. IL-2 and IL-17 also can be upstream genes that activate STAT4. 

 

Activation of STAT4 and its downstream 
target genes 

STAT4 is predominately activated by IL-12, 
which mainly regulates tissue inflammation, fibro-
genesis and antiviral defense (21). In CD4+ Th1 cells, 
the binding of IL-12 and its receptor, results in phos-
phorylation of tyrosine 693 and serine 721 of STAT4 

(22). Then phosphorylated STAT4 translocates into 
nucleus, binds to specific DNA sequences, leading to 
the production of inflammatory cytokines, like IFN-γ 
(22). IFN-γ combined with other inflammatory cyto-
kines may induce liver injury associated with Th1 
cellular immunity and autophagy-related necrotic 
hepatocyte death (23). IFN-α can also activate STAT4, 
resulting in tyrosine and serine phosphorylation, 
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DNA binding of STAT4, and consequently transcrip-
tion of its target genes (6). In mast cells, IFN-β may 
activate STAT4 to induce monocyte chemoattractant 
protein 1 (MCP-1) expression (7). IL-2 can also induce 
tyrosine phosphorylation of STAT4 in NK and NKT 
cells (9). It has also been reported that IL-17 can in-
duce STAT4 activation in human leukemic monocyte 
lymphoma cell line U937 (10).  

The development of ChIP (chromatin immuno-
precipitation)-on-Chip technology greatly expanded 
our understanding on the genomic occupancies of 
STAT4. Good SR et al explored that STAT4 target 
genes could beclustered into several subsets by func-
tions, including Th1 phenotype-related cluster (Furin, 
Ifng and Il18r1, Myd88, Gadd45g), TCR signal-
ing-related cluster (LCE1B, Lcp2), other receptor 
(IL-12ra), and cytokine cluster (IL-10, IL-21, IL-24 and 
IL-17f) (24). Ifng is one of the main target genes for 
STAT4, which plays a key role in the IL-12-induced 
differentiation of T cells into the Th1 pathway. Acti-
vator Protein 1 (AP-1) is an important target 
gene,regulated by STAT4. STAT4 can bind with c-Jun, 
and the phosphorylated c-Jun-STAT4 complex effi-
ciently interacts with the AP-1-relevant promoter se-
quence. AP-1 binds to the promoter sequence to elicit 
IFN-γ promoter activation depending on the presence 
of STAT4 (25). The Ets transcription factor ERM is also 
one of STAT4 downstream target genes and ERM is 
Th1-specific which isinduced by IL-12 through the 
STAT4-dependent pathway (26). IFN regulatory fac-
tor-1 (IRF-1) has been well known to be regulated by 
IFN-α. More interestingly, STAT4 also participates in 
the regulation of IRF-1 in two different mechanisms. 
First, STAT4 is required for the IL-12-dependent 
transactivation of IRF1. Second, STAT4 can directly 
bind to the IRF-1 promoter (27). In addition, sup-
pressor of cytokine signaling 3 (SOCS-3) and mono-
cyte chemoattractant protein-1(MCP-1) contribute to 
the human vascular smooth muscle cells (VSMC) 
proliferation by STAT4-dependent pathway (28). An 
interesting paper reported STAT4-binding element in 
the fourth intron of the IL-10 gene. This intronic 
STAT4 motif is a target for cytokine-induced histone 
acetylation, which indicates that STAT4 may play a 
role in regulating histone acetylation via binding 
downstream gene IL-10 (29). 

STAT4 and its related cytokines in liver 
injury 
IL-12 and liver injury 

IL-12 is the major cytokine that can activate 
STAT4, synthesized predominantly by dendritic cells, 
macrophages and human B-lymphoblastoid cells (30). 
It comprises of two subunits, including the light chain 

p35 (IL-12A) and the heavy chain p40 (IL-12B). There 
are other heterodimeric interleukins, such as IL-23, 
IL-27, and IL-35, whose subunits consist of either or 
both the IL-12 p35 or p40 chains (31). The IL-12 re-
ceptor belongs to the hematopoietin receptor super-
family and it is composed of two chains that are 
termed as IL-12Rβ1 and IL-12Rβ2. Ligand binding 
results in heterodimer formation and activation of the 
receptor associated with JAK kinases, Jak2 and Tyk2 
(32). IL-12 activates the JAK2 and Tyk2, leading to 
phosphorylation of STAT4 on tyrosine 693 (6). More-
over, IL-12 can also activate the p38/MKK6 signaling 
pathway that in turn phosphorylates STAT4 on serine 
721 (22). Numerous studies have suggested that IL-12 
acts as a pro-inflammatory cytokine which induces 
liver injury and also inhibits liver tumor growth by 
activating NK and NKT cells to produce IFN-γ (33). 
IL-12-mediated increased IFN-γ production, cellular 
proliferation, enhanced NK cell cytotoxicity, and Th1 
cell differentiation, were all impaired in STAT4 
knockout mice (34, 35). IL-12 therapy enhances type 1 
immunity and induces IFN-γ expression. IL-12 could 
also strongly synergize with other cytokines like IL-18 
to enhance both cytolytic activity and IFN-γ produc-
tion by T, NKT, and NK cells, thereby promoting liver 
inflammation (36, 37). Overexpression of IL-12 in the 
liver by hydrodynamic injection of IL-12 cDNA re-
sulted in liver injury (38). However, prolonged IL-12 
stimulation of NK cells specifically decreased the level 
of activated STAT4 protein and induced apoptosis 
with increasing ROS production in human NK cells 
(39). Deletion of IL-12 suppressed liver inflammation 
in dominant negative TGF-β receptor transgenic mice 
(40), but in concanavalin A(ConA)-induced hepatitis, 
the role of IL-12 remains as a controversial issue (41, 
42). Our recent study showed that disruption of 
IL-12a or IL-12b augmented Con A-induced hepato-
cellular damage (43). Other studies have focused on 
the antiviral role of IL-12. Some data showed that 
IL-12 treatment results in the disappearance of cyto-
plasmic hepatitis B core antigen (44). In contrast, other 
results reveal that IL-12 induces a strong immuno-
suppressive reaction in the liver of chronic wood-
chuck hepatitis virus (WHV) carriers that counteracts 
the antiviral effect of the treatment (45). Moreover, 
clinical data showed that low serum IL-12p40 levels 
are associated with a non-virological response in 
chronic hepatitis C patients whose IL28B polymor-
phism is TG or GG genotypes (46). 

IFN-α/β and liver injury  
Type-I IFN α/β, mainly produced by macro-

phages and fibroblasts, has antiviral, anti-proliferative 
and immune regulatoryactivities (47). Type-I IFN re-
ceptor (IFNAR) is a common cell surface receptor 
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complex, composed of subunits IFNAR1 and IFNAR2. 
The binding of IFNα/β to its cell surface receptor 
leads to the phosphorylation of the transcription fac-
tor STAT1, STAT4 and activates IFN target genes (48). 
Previous work has suggested that type-I IFN signal-
ing is required in the innate immunity-mediated is-
chemia-reperfusion induces liver transplant damage 
(49). Disruption of type-I IFN signaling decreased 
serum alanine aminotransferase (ALT) levels, im-
proved histological architecture, and increased 14-day 
survival in a clinically relevant murine model of ex-
tended hepatic cold followed by orthotopic liver 
transplantation (OLT). The physiological role of type I 
IFN in controlling IFN-γ production remains to be 
fully evaluated. 

STAT4 and liver injury in mouse models 
IFN- γ serves as an important target gene of 

STAT4 and it has been well documented in liver in-
flammatory response, liver injury and inhibition of 
virus replication. Moreover, the activation of STAT4 
was also detected in several models of liver injury 
including Con A-induced T cell hepatitis (1, 50) and 
hepatic ischemia/reperfusion injury (51, 52). The role 
of STAT4 in the pathogenesis of animal liver injury 
models is complicated and summarized below. 

In ConA-induced mouse model, peak STAT4 ac-
tivation in liver was detected at 9 hours (50). Recently, 
Li et al. reported that suppressive oligodeoxynucleo-
tides (ODNs) inhibit the development of Con 
A-induced hepatitis through down-regulation of the 
STAT1/4 and T-bet pathways, suggesting that STAT4 
may be involved in the development of liver injury 
(53). Our studies further found after Con A admin-
istration, STAT4 was observed being activated in 
multiple types of liver immune cells (T cells, NK T 
cells, macrophages and Kupffer cells). Disruption of 
IL-12a, IL-12b, or STAT4 significantly augmented 
ConA-induced liver injury even though the reduced 
production of Th1 and Th2 cytokines. Higher FasL 
expression and increased cytotoxicity against 
hepatocytes in hepatic NKT cells from ConA-treated 
STAT4-/- mice than those from wild-type mice can 
explain this phenomenon. In summary, our results 
show that despite of the up-regulation of 
pro-inflammatory cytokines, STAT4 protects mice 
against acute T-cell hepatitis, which is mediated by 
direct or indirect down-regulation of FasL expression 
on NKT cells (43). 

The function of STAT4 in ischemia/reperfusion 
(I/R) model remains to be controversial. Shen XD et.al 
reported that STAT4-deficient mice were resistant to 
hepatic ischemia/reperfusion injury, suggesting that 
disruption of STAT4 may be protective in I/R in-
duced liver injury progression (52). However, another 

study showed that there was no significant difference 
in the severity of liver injury between STAT4-deficient 
and wild-type mice after liver ischemia/reperfusion 
injury (51). 

STAT4 and its related cytokines in hu-
man liver injury 
IL-12 and viral hepatitis 

IL12B 3'UTR gene polymorphisms may be asso-
ciated with HBV susceptibility (54). Serum low 
IL-12p40 level is relative to non-virological responses 
in chronic hepatitis C patients who take the treatment 
with pegylated interferon and ribavirin (46). Modula-
tion of regulatory T-cell activity in combination with 
IL-12 induces a strong immunosuppressive reaction 
in the liver of chronic WHV carriers which may indi-
cates that IL-12 involves in counteracting the antiviral 
effect (45). Recently, in vivo and in vitro experiments 
have shown that IFN-α-induced regulation of STAT1 
and STAT4 phosphorylation, which plays a role in 
increasing cytotoxicity and decreasing IFN-γ produc-
tion in HCV infection (55). Another study revealed 
that type I IFNs can promote IFN-γ production by 
activating STAT4, but can also inhibit production of 
IL-12. So the efficacy of IFN-α in treatment of hepatitis 
C, may depend in part on the balance of 
IFN-γ-inducing and IL-12-suppressing effect (56). 

STAT4 and viral hepatitis 
The NK cells from chronic hepatitis C patients 

treated with IFN-α have higher level of phosphory-
lated-STAT4 and phosphorylated-STAT1 than those 
from healthy subjects. It suggested that both STAT4 
and STAT1 activation in NK cells may play a crucial 
role in the antiviral response in chronic hepatitis C 
(57). There is evidence suggesting that STAT4 variants 
(rs7574865) might contribute to chronic hepatitis B 
disease progression, and the variants seemed to be 
population specific in Tibetans in China (58).  

STAT4 and drug induced liver injury (DILI) 
The mechanisms of drug-induced liver injury 

remain unclear. An analysis of 285 DILI patients in-
dicated a trend association between STAT4 variants 
(rs7574865) and hepatocellular injury (59). Another 
study which included over 800 patients and over 3000 
control subjects showed there is an association be-
tween a single-nucleotide polymorphisms (SNP) in 
the STAT4 gene and a common type of DILI (hepato-
cellular injury) (60). 

STAT4 and its related cytokines in liver fibro-
sis 

Liver fibrosis is an accompanying response and 
common characteristic of chronic liver disease. The 
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pathologic features of hepatic fibrosis include the ac-
cumulation of extracellular matrix (ECM) proteins 
and the activation of hepatic stellate cells (HSCs). Af-
ter liver injury and inflammation, HSCs become acti-
vated, express alpha-smooth muscle actin (a-SMA), 
and produce large amounts of collagen (61-63). The 
JAK-STAT signaling pathway has been proposed to 
play a central role in liver inflammation and fibrosis 
development. Kong X et al reported that IL-22 induces 
HSC senescence through the activation of STAT3, 
SOCS3, and p53 pathways, thereby inhibiting liver 
fibrosis (64). It has been well studied that 
IL-12-mediated activation of STAT4 plays an im-
portant role in regulating tissue inflammation, fibro-
genesis and antiviral defense (1, 51, 65-67). Cheng et 
al. reported granuloma size was significantly larger 
and granuloma fibrosis remarkably intensified in an-
ti-IL-12-treated mice after schistosome infection. 
These results suggest that IL-12 may play an impedi-
tive role in granuloma formation as well as in liver 
fibrosis (68). However, the roles of STAT4 in HSC 
senescence or activation and also in the pathogenesis 
of liver fibrosis still remain largely unknown. 

STAT4 and its related cytokines in hu-
man liver fibrosis 
Primary biliary cirrhosis 

Using the advent of genome-wide association 
studies, STAT4, IL12A, and IL12RB2 have been iden-
tified to be the risk loci that is associated with devel-
opment of primary biliary cirrhosis (69). 

Liver fibrosis 
A clinical study genotyped 160 transplant pa-

tients with HCV recurrence for STAT4 (rs7574865) 
and determined their fibrotic stage based on patho-
logic analysis. This result indicates STAT4-T-allele is 
associated with development of advanced fibrosis 
(70).  

STAT4 and its related cytokines in liver 
tumor 
IL-12 and liver tumor 

Being the STAT4 upstream cytokine, IL-12 is 
well known to play an important role in the regula-
tion of innate and adaptive immune responses (71). 
IL-12 can induce prolonged IFN-γ production, NK cell 
activation and inhibition of liver metastasis of CT-26 
colon cancer cells. Upon IL-12 administration, STAT4 
activation in NK cells enhanced and IFN-γ production 
increased (72). It has been shown that IL-12 therapy 
can induce regression of primary tumors, inhibit the 
distant metastasis, and prolong the survival of tu-

mor-bearing mice (73-76). Intratumoral gene transfer 
of murine IL-12 enhances lymphocytic infiltration into 
the tumor and significantly reduces the number of 
microvessels and inhibits the growth of HCC (77). A 
recent study indicates that IL12A rs568408 may con-
tribute to the risk of HCC and modify HCC risk asso-
ciated with HBV infection in Chinese patients (78). 
IL-12–mediated anti-tumor effects depend on the 
production of IFN-γ in vivo in several animal models 
(74, 79-82). IL-12 can inhibit tumor angiogenesis 
mainly through IFN-γ-dependent production of the 
chemokine IP-10 (83). Combined GM-CSF and IL-12 
gene therapy induces various types of effectors and 
high levels of IFN-γ, thereby suppresses the growth of 
orthotopic liver tumors (84). 

IFN-a/β and liver tumor 
It is shown that endogenous type I IFN prevents 

the growth of primary carcinogen-induced and 
transplantable tumors but does not act directly on 
tumor cells. Hematopoietic cells, in particular NK 
cells, are critical IFN-α/β targets involving in the an-
titumor responses (85, 86). The combination therapy 
of IFN-α and sorafenib synergistically suppresses 
HCC growth and apoptosis (87).  

STAT4 and human liver tumor 
The studies about STAT4 in liver tumor devel-

opment are very few. Recent studies have shown that 
STAT4 deficiency may contribute to impaired IFN-γ 
production in lymphoma patients after autologous 
peripheral blood stem cell transplantation (PBSCT). In 
fact, STAT4 deficiency in these patients when ac-
quired may also promote lymphoma development 
(88). Chemotherapy-induced STAT4 deficiency could 
be due to the reduced levels of STAT4 mRNA and the 
protein stability (20).  

A genome-wide association study (GWAS) was 
conducted in 2,514 Chinese patients with chronic HBV 
carriers (1,161 HCC cases and 1,353 controls) followed 
by a 2-stage validation among 6 independent popula-
tions of chronic HBV carriers (4,319 cases and 4,966 
controls). The analysis showed that HCC risk was 
significantly associated with loci rs7574865 at STAT4. 
The risk allele G of these loci was strongly associated 
with lower levels of STAT4 mRNA in HCC tumor 
tissues (89). These findings indicate that STAT4 is 
associated with HCC development, although more 
consolidated studies are still needed. 

Conclusions 
In summary, in vivo and in vitro studies from re-

cent decades have suggested that STAT4 and its re-
lated cytokines exhibit complex biological functions in 
regulating hepatic anti-viral responses, inflammation, 



Int. J. Biol. Sci. 2015, Vol. 11 
 

 
http://www.ijbs.com 

453 

proliferation, apoptosis and tumorigenesis. These 
findings can help with the characterization of patho-
physiology and treatments of liver diseases that may 
be associated with STAT4 and its cytokines. However, 

there is still a long way to explore and elucidate 
STAT4 as a therapeutic approach in treating liver 
disease (Figure 3).  

 

 
Figure 3. A complex role of IL-12, IFN-γ and STAT4 in pathogenesis of liver injury, liver fibrosis and liver tumor. In summary, studies from 
animal models and human in the recent decades have suggested that STAT4 and related cytokines, such as IL-12, IFN-α/β exhibit complex biological 
functions, especially in regulating antiviral responses in HCV, liver injury, liver fibrosis and tumorigenesis. 
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