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Abstract 

Osteopontin (OPN), a multifunctional protein, is involved in numerous pathological conditions 
including inflammation, immunity, angiogenesis, fibrogenesis and carcinogenesis in various tissues. 
Extensive studies have elucidated the critical role of OPN in cell signaling such as regulation of cell 
proliferation, migration, inflammation, fibrosis and tumor progression. In the liver, OPN interacts 
with integrins, CD44, vimentin and MyD88 signaling, thereby induces infiltration, migration, 
invasion and metastasis of cells. OPN is highlighted as a chemoattractant for macrophages and 
neutrophils during injury in inflammatory liver diseases. OPN activates hepatic stellate cells (HSCs) 
to exert an enhancer in fibrogenesis. The role of OPN in hepatocellular carcinoma (HCC) has also 
generated significant interests, especially with regards to its role as a diagnostic and prognostic 
factor. Interestingly, OPN acts an opposing role in liver repair under different pathological 
conditions. This review summarizes the current understanding of OPN in liver diseases. Further 
understanding of the pathophysiological role of OPN in cellular interactions and molecular 
mechanisms associated with hepatic inflammation, fibrosis and cancer may contribute to the 
development of novel strategies for clinical diagnosis, monitoring and therapy of liver diseases. 
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Introduction 
Osteopontin (OPN), also known as secreted 

phosphoprotein, was first described in 1979 [1], and 
also independently identified as bone sialoprotein [2], 
early T-lymphocyte activation-1 (Eta-1) [3] later. 
Subsequently, numerous studies have reported that 
OPN plays a critical role in various organs under 
pathological conditions. In the liver, OPN normally 
exists in the bile duct epithelium physiologically [4]. 
In 1999, liver pathological expression of OPN was first 
confirmed in Kupffer cells, hepatic macrophages and 
hepatic stellate cells (HSCs) in necrotic areas after 
carbon tetrachloride intoxication, where OPN was 
indicated to contribute to infiltration of macrophages 
into the necrotic areas [5]. In the following years, OPN 
was found to be involved in many liver diseases such 
as acute liver failure (ALF) [6, 7], nonalcoholic fatty 
liver diseases (NAFLD) [8], alcoholic liver diseases 
(ALD) [9], liver fibrosis with chronic hepatitis B (CHB) 

[10], chronic hepatitis C (CHC) [11, 12]. Furthermore, 
OPN was suggested as a better prognostic marker for 
early hepatocellular carcinoma (HCC) than 
alpha-fetoprotein (AFP) [13]. In this review, we will 
focus on the role of OPN in liver biology and discuss 
potential approaches to diagnosis and clinical trials 
(Fig. 1). 

The Structure of OPN and its Receptors 
OPN is located on chromosome 4 region 22 

(4q22.1) in humans and is composed of about 300 
amino acids (314 in human, but 297 in mouse). The 
multi-functionality of OPN is due to varied 
post-translational modifications such as 
phosphorylation, sulfation, glycosylation and 
protelytic cleavage. OPN contains an 
arginine-glycine-asparate (RGD) domain, which binds 
with high affinity to integrins such as αvβ1, αvβ3, αvβ5, 
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αvβ6, α8β1, α5β1 [14-17]. Next to the RGD motif is the 
serine-valine-valine-typrosine-glycine-leucine-arginin
e (SVVYGLR) sequence in humans or 
serine-leucine-alanine-tyrosine-glycine-leucine-argini
ne (SLAYGLR) sequence in mice and rats, which is 
exposed upon cleavage with thrombin and interacts 
with α4β1, α9β1, α4β7 integrins [18-20]. Additionally, 
another integrin αxβ2, which is neither RGD nor 
SVVYGLR dependent, has been reported to mediate 
the effects of OPN [21, 22]. In addition to interacting 
with integrins, OPN has also been reported to bind to 
the spliced variant forms of CD44, notably v6 and v7, 
but the specific binding domain in OPN remains 
elusive [23]. Most recently, two new proteins, 
vimentin and MyD88, were found to interact with 
OPN by coimmunoprecipitation [24, 25]. 

OPN in Acute Liver Injury 
In humans, OPN correlates with the degree of 

liver necrosis during acute liver injury [6, 7]. Patients 
with high serum OPN levels have a significantly 
poorer prognosis than patients with low serum OPN 
[6]. However, very high levels of plasma OPN are 
associated with good outcomes [7]. Whether OPN 
protects from disease progression in the setting of 
acute liver injury needs more investigation. 

In animal models, OPN usually acts as a 
chemoattractant for macrophages and neutrophils. In 
carbon tetrachloride-intoxicated and Propionibacterium 
acnes-treated rats, OPN contributes to infiltration of 
monocytes and macrophages in the liver [5, 26]. In 

addition, MMP-cleaved OPN mediates hepatic 
neutrophil accumulation in the early phase of liver 
injury during obstructive cholestasis after bile duct 
ligation (BDL) in mice [27]. In drug-induced liver 
diseases, mice with both endogenous and exogenous 
blockade of OPN are less susceptible to 
acetaminophen and survive acetaminophen (APAP) 
overdose [28, 29]. In OPN deficient mice, neutrophil 
infiltration and macrophage accumulation are 
impaired, and release of pro-inflammatory cytokines 
is inhibited; yet, OPN deficiency augments CYPs 
genes in APAP metabolism in vivo [29]. Similarly, 
upon exposure to diethylnitrosamine (DEN), another 
hepatotoxic drug, OPN deficiency enhances 
susceptibility and abrogates estrogen-mediated 
hepatoprotection against DEN via augmenting 
oxidative stress and keeping CYP2A5 expression in 
mice [30]. Recently, a few studies suggest that OPN 
acts as a protector during inflammatory liver injury. 
OPN have been found to inhibit activation of NF-κB 
and ameliorate production of IL-6 and TNFα in 
macrophages, thus promoting survival of hepatocytes 
in DEN-induced liver injury [25]. Likewise, in hepatic 
injury induced by ischemia/reperfusion (I/R), OPN 
in macrophages limits IL-6, TNFα, IL-1β and toxic 
iNOS production; meanwhile, OPN silence in 
hepatocytes decreases anti-apoptotic Bcl2 and ATP 
levels to aggravate the injury [31]. 

OPN in autoimmune and viral Hepatitis 
 Similar to that in acute injury, plasma OPN 

levels are significantly elevated in 
patients with hepatitis including acute 
hepatitis, chronic hepatitis and 
fulminant hepatitis [32, 33]. 
Transgenic mice expressing OPN in 
hepatocytes can develop mononuclear 
cell and CD8 positive cell infiltration 
in the liver after 12 weeks of age, and 
plasma ALT activity and focal necrosis 
in hepatic lobules increase after 24 
weeks, which may be a useful model 
for autoimmune hepatitis [34]. 
ConA-induced hepatitis mimics T 
cell-mediated liver diseases including 
autoimmune hepatitis and viral 
hepatitis. In 2004, Diao et al. first 
uncovered that OPN cleaved by 
thrombin enhanced NKT cell 
activation and neutrophil infiltration 
and activation to augment 
ConA-induced hepatitis [35]. Later, 
OPN was found to interact with β3 
integrin to induce IL-17 expression 
depending on p38, JNK, NF-κB 

 
Figure 1. Double-edged sword functions of OPN in liver pathogenesis. I/R: ischemia/reperfusion; 
DEN: diethylnitrosamine; TAA: thioacetamide; ALD: alcoholic liver diseases; NAFLD: non-alcoholic 
fatty liver diseases; HCC: hepatocellular carcinoma. 
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pathways to aggravate ConA-induced hepatitis [36]. 
Both silence and exogenous blockade of OPN protects 
ConA-treated mice from fulminant hepatitis [37, 38]. 

 OPN production is also up-regulated in CHB 
and CHC patients [36, 39]. OPN is shown to improve 
the maturation and functioning of DCs in response to 
HBV antigens [40]. Yet, in patients infected with HCV, 
OPN may directly promote HCV replication [39]. 

OPN in Granuloma Formation 
Granuloma formation is a host response against 

persistent irritants. In β-glucan-induced hepatic 
granuloma formation, OPN does not affect the size 
and the number of granulomas, but induces IL-12 and 
IFNγ at early stages. Nevertheless, at late stages, OPN 
increases the size and the number of hepatic 
granulomas due to enhanced immune cells 
recruitment including macrophages, CD4 T cells and 
DCs into the liver and increased TNFα production 
[41]. Otherwise, OPN neutralization reduces 
granulomatous response and liver damage via 
impaired chemotactic function and inflammatory 
response [42], which suggested that OPN neutralizer 
acts as the immunosuppression therapy for liver 
injury with granulomatous responses. 

OPN in Liver Repair 
 We have reported that in a model of 

regenerating liver after partial hepatectomy (PHx), 
OPN promoted inflammatory response and activated 
IL-6/Stat3 pathway in the early phase to facilitate 
hepatocyte proliferation [43]. Recently, gene 
expression profiling after hepatectomy showed that 
81genes participating in the OPN-mediated pathway 
were significantly changed, 65 of which were 
up-regulated. All of the 81 genes were mainly 
associated with stress response, inflammatory 
response, cell activation, proliferation, adhesion and 
migration [44]. Elevation of OPN in oval cell-activated 
regeneration is more significant than that in 
PHx-induced regeneration, indicating that OPN 
might be specifically activated in the induction of oval 
cells to contribute to liver repair [45]. 

 Under pathological conditions, OPN involves in 
Hh signaling and acts in a paracrine and autocrine 
manner to enhance liver progenitor cell response and 
fibrogenic liver repair during carbon 
tetrachloride-induced liver fibrosis and/or MCD 
diet-induced NASH fibrosis [46, 47]. Yet in 
thioacetamide(TAA)-induced fibrosis, OPN delays 
resolution due to sustained fibrillar collagen-I 
deposition and decreases hepatocyte proliferation in 
vivo and in vitro [48, 49]. Further investigation of 
OPN’s role in pathological repair is still needed. 

OPN in Alcoholic Liver Diseases 
 Hepatic expression and serum levels of OPN are 

markedly elevated in patients with alcoholic hepatitis 
(AH), alcoholic cirrhosis and end-stage ALD [50, 51]. 
OPN is also progressively increased in liver fibrosis 
and association with the stages of fibrosis [9]. Serum 
levels of OPN are correlated with the disease severity 
of AH patients [50]. Otherwise, OPN deficiency mice 
are protected from alcohol (ethonal)-induced liver 
injury [50].  

Although OPN levels are not elevated in hepatic 
alcoholic steatosis patients, expression of OPN in a 
rodent model of alcoholic steatohepatitis (ASH) has 
been confirmed [52]. OPN interacts with neutrophil 
α4β1 and α9β1 integrins, contributing to hepatic 
neutrophil transmigration and activation to lead to 
further injury in the rat ASH model [53]. Furthermore, 
female rats are more susceptible to ALD during ASH, 
which might be due to higher neutrophil infiltration 
mediated by OPN [54]. 

However, in some other established studies, 
OPN may play a protective role. OPN deficiency 
facilitates the development of AH from chronic ASH, 
which is a distinct spectrum of ALD with intense 
neutrophilic inflammation and high mortality, and 
promotes the intensity of neutrophil infiltration in the 
AH model [55], indicating that OPN is protective for 
AH. Ge et al. established that OPN could bind to 
gut-derived LPS and prevent macrophage activation, 
reactive oxygen, nitrogen species generation, and 
TNFα productionin mice fed the ethonal 
Lieber-DaCarli diet [56]. Furthermore, by blocking 
LPS translocation in vivo, milk OPN was reported to 
diminish ethonal-mediated liver injury and protect 
from early alcohol-induced liver injury [56, 57]. In 
general, further investigations are still needed to 
clarify the function and therapeutic values of OPN in 
ALD. 

OPN in Non-Alcoholic Fatty Liver 
Diseases 

 In patients with NAFLD, serum levels of OPN 
are elevated and serve as the independent predictor of 
portal inflammation [8]. Notably, hepatic OPN 
expression is also strikingly increased in 
obesity-induced liver steatosis with CD44 and 
correlates with liver triglyceride accumulation [58]. 
Hepatic NKT-derived OPN promotes fibrogenesis 
during NASH via facilitation of HSC activation and 
neutralization of OPN with RNA aptamers attenuates 
these fibrogenic responses [59, 60]. In addition, in 
OPN deficient mice, obesity-driven hepatic 
inflammation and macrophage accumulation are 
blocked. OPN deficiency also protects against 
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obesity-induced hepatic steatosis via enhanced 
hepatic insulin signaling by promoting IRS-2 
phosphorylation and preventing up-regulation of 
FOXO1 and its gluconeogenic target genes [61]. 
Similarly, OPN neutralization decreases 
obesity-associated inflammation in liver and reverses 
transcriptional signaling associated with insulin 
resistance and glucose homeostasis [62]. Hence, OPN 
may be an ideal target for treatment of NAFLD. 

OPN in Fibrosis 
Various studies have reported that OPN 

secretion or hepatic OPN expression predicts severe 
degrees of fibrosis in patients with HBV or HCV 
infection, ALD, or schistosomiasis mansoni and might 
serve as a prognostic index for the progression of 
hepatic fibrosis to cirrhosis and HCC [9, 10, 12, 63, 64]. 
Hepatic OPN expression correlates with TGFβ 
expression, portal space neutrophil related 
inflammation, and portal hypertension in liver 
fibrosis in humans [9, 64]. Similar to clinical data, 
hepatic OPN expression is significantly increased and 
drives fibrogenic response in mice with various 
animal models including BDL, carbon tetrachloride or 
TAA treatment, and MCD, CDE or DDC diet [49, 
65-67]. DNA hypomethylation of OPN enhancer 
during onset of early-stage liver fibrosis has been 
detected, which is confirmed to precede the 
up-regulation of OPN expression to induce the onset 
of fibrosis [68]. Interestingly, transgenic mice 
overexpressing OPN in hepatocytes are able to 
develop spontaneous liver fibrosis over time (1 year) 
[69]. During the pathogenesis of fibrosis, HSC-derived 
OPN interacts with αvβ3 on the HSCs to activate the 
PI3K/pAkt/NF-κB signaling cascade to up-regulate 
collagen-I and to modulate the HSC pro-fibrogenic 
phenotype [69]. OPN also enhances ductular reaction 
and scarring in liver fibrotic mice and activates the 
oval cell compartment to differentiate to BECs, which 
then signals HSCs via OPN and TGFβ [49]. In 
addition, OPN is up-regulated by oval cells in hepatic 
fibrotic patients and is confirmed to enhance viability 
and wound healing by modulating TGFβ signaling in 
cultured oval cells. OPN neutralization reverses 
epithelial-mesenchymal-transition (EMT) in oval cells 
and attenuates fibrogenesis in mouse model of liver 
fibrosis [47]. Most recently, OPN is found to increase 
NADPH oxidase activity and inhibit histone 
deacetylases 1/2 promoting HMGB1 acetylation and 
translocation in HSCs, where then HMGB1 
up-regulates collagen-I via RAGE and activates the 
PI3K-pAkt1/2/3 pathway [63]. In general, the 
fibrogenic role of OPN in liver diseases has been 
confirmed via significant research over the years. 
However, targeting OPN for resolution of fibrosis still 

remains controversial due to its opposing effects on 
different pathological conditions of fibrosis as 
discussed above. 

OPN in Hepatocellular Carcinoma 
 The research for the relationship between OPN 

and HCC has been popular and studied intensively. 
OPN is markedly elevated in the plasma of HCC 
patients, and has been identified as a diagnostic 
biomarker that could also improve AFP performance 
in HCC surveillance among patients with HBV or 
HCV-related cirrhosis [13, 70]. OPN has good 
sensitivity in AFP-negative HCC, indicating OPN as a 
better marker in the early stage of HCC [13]. OPN 
expression significantly correlates with 
clinicopathological features of HCC patients with 
HBV and/or HCV such as capsular infiltration, 
vascular invasion, lymph node metastasis and TNM 
stages [71, 72]. A study of Korean HBV-related 
cirrhosis and HCC has showed that genetic 
polymorphisms in the OPN gene are associated with 
HBV clearance and the age of HCC occurrence [73]. 
Accordingly, the SNPs -156 and -443 of OPN are 
associated to susceptibility to HCC [74]. Additionally, 
another study agreed that allele T/T and/or T/C 
rather than C/C at nt -443 not only significantly 
enhanced metastasis, but was also associated with 
overall survival and time to recurrence [75]. Other 
than in HCC with HBV or HCV, OPN is not a useful 
diagnostic marker for HCC in alcoholic cirrhotic 
patients, particularly in the early stages, which limits 
OPN to become a significant diagnostic marker for 
HCC [76]. 

 Overexpression of OPN is found to lead to 
intrahepatic metastasis, early recurrence and poorer 
prognosis of surgically resected HCC [77, 78]. 
Similarly, OPN positive expression facilitates 
recurrence and reduces patient survival after liver 
transplantation for HCC [79]. Therefore, OPN may be 
a useful marker for detecting early recurrence of HCC 
after surgery [80, 81]. 

 OPN signals cell proliferation, EMT, invasion 
and metastasis in HCC. It mediates increase in cell 
proliferation depending on CD44, and a form of 
OPN-A exerts the greatest proliferative effect [82]. In 
addition, OPN interacts with CD44 receptor to 
enhance HGF-induced scattering and invasion [83] 
and activates c-Met to promote HCC progress [84]. 
The binding of secreted OPN from HCV-infected cells 
to integrinαvβ3 and CD44 leads to elevation of reactive 
oxygen species and activation of Ca2+ signaling and 
downstream cellular kinases such as MAPK, JNK, 
PI3K, FAK, and Src, all of which promote EMT, cell 
migration and invasion to enhance tumor progression 
and metastasis in HCC [85, 86]. OPN is also able to 
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bind to vimentin and increase vimentin stability 
through inhibition of its protein degradation to 
improve EMT in HCC cells [24]. On the other hand, 
OPN silence in HCC cells results in suppression of αv, 
β1 and β3 integrin expression, inhibition of NF-κB 
signaling activation, and blockade of Bcl-2/Bcl-xL and 
XIAP expression with increased Bax expression, thus 
inducing mitochondria-mediated apoptosis [87]. 
Lentiviral-mediated miRNA against OPN induces a 
significant decrease in MMP-2 and uPA expression 
and leads to an obvious suppression of both in vitro 
invasion and in vivo metastasis of HCC cells [88]. RNA 
aptamers against OPN binding markedly decrease 
EMT and HCC tumor growth [89]. However, in a 
mouse model of DEN-induced hepatocarcinogenesis, 
intracellular OPN in macrophages interacts with the 
pivotal TLR signaling protein MyD88 to function as 
an endogenous negative regulator of TLR-mediated 
immune response to ameliorate production of 
pro-inflammatory cytokines, subsequently impeding 
liver carcinogenesis [25]. Overall, OPN shows 
promise as a diagnostic marker for HCC, but further 
confirmation of its potential therapeutic value for 
HCC is urgently required. 

OPN in Intrahepatic Cholangiocarcinoma 
 Since 2004, Terashi et al. reported that decreased 

expression of OPN is considered to be a reliable 

indicator for tumor aggressiveness in intrahepatic 
cholangiocarcinoma (ICC), and negative expression of 
OPN protein is significantly related to lymphatic 
permeation, perineural invasion, intrahepatic 
metasitasis and lymph node metastasis, leading to a 
lower overall survival [90]. However, another study 
in 2013 had opposing views that stromal 
overexpression of OPN correlates with a poor 
diagnosis in patients with ICC, suggesting that OPN 
may be an independent prognostic marker for ICC 
[91]. 

Conclusion 
 OPN exists in various hepatic cells including 

BECs, Kupffer cells, activated HSCs, NKT cells, 
injured hepatocytes and HCC cells. OPN is involved 
in hepatic inflammation after acute or chronic liver 
injury, ALD, NAFLD, fibrosis and cirrhosis (Fig. 2). 
OPN is also linked to liver repair. Large amounts of 
literatures shed light on the specific diagnostic and 
prognostic implication of OPN in HCC, mostly with 
HBV and HCV. Overall, OPN exacerbates the 
progression of liver diseases under most pathological 
conditions via interacting with αv integrin, CD44, 
vimentin or MyD88, which suggests OPN as an 
appropriate and desired therapeutic target against 
liver diseases. 

 
Figure 2. OPN regulation in liver diseases. In liver, OPN interacts with integrins to deteriorate the development of liver inflammation, injury and fibrogenesis. In 
carcinogenesis, OPN promotes proliferation, survival, migration, invasion, metastasis and EMT in HCC cells by binding to αv integrins, CD44 and vimentin. Otherwise, 
OPN binds to LPS or MyD88 to inhibit the progress of inflammation. Besides, OPN protects hepatocytes from injury and facilitates hepatocytes proliferation in model 
of PHx. 
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Abbreviation 
AFP: alpha-fetoprotein; AH: alcoholic hepatitis; 

ALD: alcoholic liver disease; ALF: acute liver failure; 
ALT: alanine aminotransferase; APAP: 
acetaminophen; ASH: alcoholic steatohepatitis; ATP: 
adenosine triphosphate; Bax: Bcl-2 associated X 
protein; Bcl: B-cell lymphoma; BDL: bile duct ligation; 
BEC: biliary epithelial cell; CDE: choline-deficient 
ethionine-supplemented; CHB: chronic hepatitis B; 
CHC: chronic hepatitis C; ConA: concanavalin A; 
CYP2A5: cytochrome P450, family 2, subfamily A, 
polypeptide 1; DC: dendritic cell; DDC: 
3,5-diethoxycarbonyl-1,4-dihydrocollidine; DEN: 
diethylnitrosamine; EMT: epithelial-mesenchymal- 
transition; Eta: early T-lymphocyte activation-1;FAK: 
focal adhesion kinase; FOXO1: Forkhead box O1; 
HBV: hepatitis B virus; HCC: hepatocellular 
carcinoma; HCV: hepatitis C virus; HGF: hepatocyte 
growth factor; Hh: hedgehog; HMGB1: high-mobility 
group box-1; HSC: hepatic stellate cell; ICC: 
intrahepatic cholangiocarcinoma; IFN: interferon; IL: 
interleukin; iNOS: inducible nitric oxide synthase; 
IRS-2: insulin receptor substrate-2; I/R: 
ischemia/reperfusion; JNK: c-Jun N-terminal kinase; 
LPS: lipopolysaccharide; MAPK: mitogen-activated 
protein kinase; MCD: methionine-choline deficient; 
MMP: matrix metalloproteinase; MyD88: myeloid 
differentiation factor 88; NAFLD: nonalcoholic fatty 
liver disease; NASH: non-alcoholic steatohepatitis; 
NF-κB: nuclear factor-κB; NKT: natural killer T; OPN: 
osteopontin; PHx: partial hepatectomy; PI3K: 
phosphoinositide 3-kinase; RAGE: receptor for 
advanced glycation end-products; RGD: 
arginine-glycine-asparate; SLAYGLR: serine-leucine- 
alanine-tyrosine-glycine-leucine-arginine; SNP: single 
nucleotide polymorphism; Spp1: secreted 
phosphoprotein 1; Stat: signal transducer and 
activator of transcription; SVVYGLR: serine-valine- 
valine-typrosine-glycine-leucine-arginine; TAA: 
thioacetamide;  TGF: transforming growth factor; 
TLR: Toll-like receptor; TNF: tumor necrosis factor; 
TNM: tumor-node-metastases; uPA: urokinase 
plasminogen activator;XIAP: X-linked inhibitor of 
apoptosis protein. 
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