SUPPLEMENTAL INFORMATION

Wang et al.

1. Supplemental Material and Methods

Plasmid construction. For human miRNA overexpressing plasmids, primers were designed based on the genomic sequences from the miRBase (microrna.sanger.ac.uk), with the forward primers (Table S2) carrying a *HindIII* site and the reverse primers (Table S2) carrying a Xbal site respectively. Pre-miRNA gene fragments were individually PCR-amplified using genomic DNA prepared from human GC cell BGC823 with Pyrobest DNA Polymerase (TaKaRa). The resultant DNA fragments were subcloned into pFlag-CMV2, using the *HindIII* and *XbaI* sites. The insertion sequences of the resultant plasmids were confirmed by sequencing. To construct lentiviral vectors overexpressing miR-15a-3p or miR-16-1-3p, human miR-15a or miR-16-1 gene DNA fragment was PCR amplified from human BGC823 cell genomic DNA with the primers listed in Table S2. The PCR-amplified fragments were inserted to a lentiviral vector pLV-EF1α-MCS-IRES-Puro (pLV-ctrl) to generate pLV-miR-15a or pLV-miR-16-1. To construct lentiviral vector overexpressing Twist1, human Twist1 gene DNA fragment was PCR amplified from pHA-Twist1 plasmid with the primers listed in Table S2. The PCR-amplified fragment was inserted to a lentiviral vector pLV-EF1a-MCS-IRES-Puro (pLV-ctrl) to generate pLV-Twist1.Viral vector pLV-miR-15a, pLV-miR-16-1, pLV-Twist1 or pLV-ctrl as well as three lentivirus packaging plasmids (pMDL, pVSVG and pREV) were co-transfected into HEK293T cells. pLV-EF1α-MCS-IRES-Puro, pMDL, pVSVG and pREV were kind gifts from Prof. Jiahuai Han from Xiamen University. Media containing lentiviruses (LV-miR-15a, LV-miR-16-1, LV-Twist1 and LV-ctrl) were collected every 24 h for 3 times and the lentiviruses were purified by ultra-speed centrifugation.

The resulting plasmids are shown in Figure S4 in the Supplemental information section. hGH-pA, poly-A for human growth hormone gene; Luc, luciferase; SV40-pA, SV40 poly-A.

2. Supplemental figure and table legends

Figure S1 Overexpression of miR-15a-3p and miR-16-1-3p significantly reduced MMP2 and MMP9 activity. BGC823 cells were transfected with miRNA expression

plasmids or control plasmid as indicated. Cell medium was harvested for Gel Zymography analysis 24 h after the transfection.

Figure S2 miR-15a-3p, miR-16-1-3p and *Twist1* mRNA expression in human GC clinical samples. (A) miR-15a-3p expression was significantly down-regulated in human GC tissues. (B) miR-16-1-3p expression was significantly down-regulated in human GC tissues. (C) Twist1 mRNA expression was significantly up-regulated in human GC tissues. Abbreviations: T, GC tissue; N, adjacent noncancerous gastric tissue; 18S rRNA and U6 mRNA were calibrated for qPCR analysis.

Figure S3 Twist1 mRNA expression in clinical tumor samples as reported in microarray studies [1-6]. Data were downloaded from the Oncomine database (www.oncomine.org) and used for the plot without any further processing. T, tumor tissue; N, adjacent noncancerous tissue; NS, not significant; **, p < 0.01; ***, p < 0.001, all compared to the normal controls. (A) dot plots showing *Twist1* mRNA expression in clinical GC samples as studied by D'Errico M [1]. (B) dot plots showing *Twist1* mRNA expression in clinical lung cancer samples as studied by Hou J [2]. (C) dot plots showing *Twist1* mRNA expression in clinical pancreas cancer samples as studied by Badea L [3]. (D) dot plots showing *Twist1* mRNA expression in clinical colon cancer samples as studied by Kaiser S [5]. (F) dot plots showing *Twist1* mRNA expression in clinical brain cancer samples as studied by Murat A [6]. (G) dot plots showing *Twist1* mRNA expression in clinical ovarian cancer samples as studied by The Cancer Genome Atlas.

Figure S4 Schematic graphs for the plasmids used in the current study. See the Materials and Methods section for more details.

 Table S1 A list of chemically-synthesized and HPLC-purified miRNA mimics and

 miRNA inhibitor purchased from Genepharm (Shanghai, China).

 Table S2 Plasmids and the primers used for their construction. Lic, ligation independent cloning.

 Table S3 A list of the primers used for qPCR analyses of mRNAs and miRNAs. LNA,
 locked nucleic acid.

Table S4 A list of the antibodies used for immunoblots (IB) in current study.

Figure S2

Figure S3

Figure S4

CMV2 prmt	Flag hGH pA	
		pFlag-CMV2
	Hindill Xbal	
CMV2 prmt	Flag hGH p	A
	— <mark>— Mir-15a —</mark> ———	
	201 bp	pmiR-15a
	Hindlil Xbal	
CMV2 prmt	Flag hGH pA	
	1 74 D Ø	
EF1a prmt	Flag SV40 pÅ	
		pLV-EF1a-MCS-IRES-Puro
Ba	m HI Smal	
EF1a prmt	Flag hGH p	A
		nl V-miR-15a
Ba	201 DD	per init rou
EF1a prmt		
	Mir-16-1	
	174 bp	pLV-miR-16-1
Ba	m HI	Smal
EF1a prmt		FlaghGH pA
	- IWISTI	
	609 bp Sacl HindIII	pLV-Twist1
SV40 prmt	SV40 pA	
		nGL3 Control
	Sacl	HindIII
SV40 prmt		SV40 pA
	luc - 3'UTR	
	585 bp	pTwist1-3'UTR-luc
	Sacl	Hindlif p15a-3p-MRE-WT-luc
SV40 prmt		SV40 pA
	453 bp	p15a-3p-MRE-MT-luc
	Sacl	
SV40 prmt		p16-1-3p-MRE-WT-luc
	luc - 3'UTR	
	438 bp	p16-1-3p-MRE-MT-luc

Table S1

Name	Sequence (5'→3')	Supplier	
	UUCUCCGAACGUGUCACGUTT	GenePharma, Shanghai	
mimics-ctrl	ACGUGACACGUUCGGAGAATT		
miR-15a-3p	CAGGCCAUAUUGUGCUGCCUCA	CanaDharma Shanahai	
mimics	AGGCAGCACAAUAUGGCCUGUU	Gener narma, Shanghai	
miR-16-1-3p	CCAGUAUUAACUGUGCUGCUGA	CanaDharma Shanahai	
mimics	AGCAGCACAGUUAAUACUGGUU	Gener narma, Shanghai	
inhibitor-ctrl	CAGUACUUUUGUGUAGUACAA	GenePharma, Shanghai	
miR-15a-3p		CanaDharma Shanahai	
inhibitor	UGAUGCAUCACAAUAUGUCCUU	Gener narma, Shanghai	
miR-16-1-3p		CanaDharma Shanahai	
inhibitor	UCAUCAUCACAUUUAAUACUUU	Gener narma, Shanghai	

					Inser	
Plasmid	Backbone vector	Template	Primer sequence (from5'→3')	Gene ID	t size	
					(bp)	
pmiR-15a	pFlag-CMV2	BGC823	Forward: GAC <u>AAGCTT</u> TAGGCGCGAATGTGTGTTTAA	MI0000069	201	
		genomic DNA	Reverse: GAC <u>TCTAGA</u> TATTTACGTGCTGCTAAGGCA	2 ATTTACGTGCTGCTAAGGCA (miRBase)		
pmiR-16-1	pFlag-CMV2	BGC823	Forward: GAC <u>AAGCTT</u> AGGATCTGATCTTCTGAAGAA	MI000070	174	
		genomic DNA	Reverse: GAC <u>TCTAGA</u> CATTAAAACACAACTGTAGAG	(miRBase)	1/4	
pTwist1-3'UTR-luc	pGL3-control	BGC823 cDNA	Forward: ATA <u>GAGCTC</u> CCTAGATGTCATTGTTTCCAG	NM_00047	585	
			Reverse: CGC <u>AAGCTT</u> GACACCGGATCTATTTGCATT	4.3		
p15a-3p-MRE-WT-luc	pGL3-control	BGC823 cDNA	Forward: ATA <u>GAGCTC</u> CCTAGATGTCATTGTTTCCAG	NM_00047	450	
			Reverse: CGC <u>AAGCTT</u> TGCAGGCCAGTTTGATCCCAG	4.3	453	
p15a-3p-MRE-MT-luc	pGL3-control	BGC823 cDNA	Forward: ATA <u>GAGCTC</u> CCTAGATGTCATTGTTTCCAG	NM_00047	450	
			Reverse: CGC <u>AAGCTT</u> TGCACGGCAGTTTGATCCCAG	4.3	435	
p16-1-3p-MRE-WT-luc	pGL3-control	BGC823 cDNA	Forward: ATA <u>GAGCTC</u> CCTAGATGTCATTGTTTCCAG	NM_00047	429	
			Reverse: CGC <u>AAGCTT</u> TCCCAGTATTTTTATTTCTAA	4.3	430	
p16-1-3p-MRE-MT-luc	pGL3-control	BGC823 cDNA	Forward: ATA <u>GAGCTC</u> CCTAGATGTCATTGTTTCCAG	NM_00047	438	

			Reverse: CGC <u>AAGCTT</u> TCCCTGAAATTTTATTTCTAA	4.3		
			Forward (Lic):			
pLV-miR-15a	pLV-EF1a-MCS-IRE	BGC823	AGAGAATTCGGATCCTAGGCGCGAATGTGTGTTTAA	MI0000069	201	
	S-Puro	genomic DNA	Reverse (Lic):	(miRBase)	201 se)	
			CCATGGCTCGAGCCCTATTTACGTGCTGCTAAGGCA			
pLV-miR-16-1			Forward (Lic):			
	pLV-EF1a-MCS-IRE	BGC823	AGAGAATTCGGATCCAGGATCTGATCTTCTGAAGA	MI0000070	174	
	S-Puro	genomic DNA	Reverse (Lic):	(miRBase)	1/4	
			<u>CCATGGCTCGAGCCC</u> CATTAAAACACAACTGTAGAG			
pLV-Twist1			Forward (Lic):			
	pLV-EF1a-MCS-IRE	all A Truigt1	AGAGAATTCGGATCCATGATGCAGGACGTGTCCAGC	NM_00047	600	
	S-Puro	priA-Twisti	Reverse (Lic):	4	009	
			<u>CTTCCATGGCTCGAG</u> CTAGTGGGACGCGGACATGGA			

Table S3

Gene	Gene ID	Primer sequence $(5' \rightarrow 3')$	Amplicon (bp)	
miR-15a-3p	MIMAT0004488	Reverse transcription:	64	
		GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACTTGAGGC		
		Forward: GGGGCAGGCCATATTGTG (LNA)		
		Reverse: TGCGTGTCGTGGAGTC		
miR-16-1-3p M		Reverse transcription:		
	MIMAT0004489	GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACTTCAGCA	()	
		Forward: GGGGCCAGTATTAACTGT (LNA)	64	
		Reverse: TGCGTGTCGTGGAGTC		
U6	NR_004394.1	Reverse transcription: CGCTTCACGAATTTGCGTGTCAT		
		Forward: GCTTCGGCAGCACATATACTAAAAT (LNA)	89	
		Reverse: CGCTTCACGAATTTGCGTGTCAT		
Twist1	NM_000474.3	Forward: AAGCTGCAGCTATGTGGCTCACG	217	
		Reverse: AATCACTGTCCACGGGCCTGTCT	317	
18S rRNA	NR_003286.2	Forward: CGACGACCCATTCGAACGTCT	102	
		Reverse: CTCTCCGGAATCGAACCCTGA	102	

Table	e S4
-------	------

Antibody	Cat#	Dilution/ Working concentration	Supplier
		1:5000	Pierce
Goat anti-Mouse IgG	31430		Biotechnology, Inc.,
			Rockford, IL, USA
Goat anti-Rabbit IgG	31360	1:5000	Pierce
			Santa Cruz
anti-α-tubulin	sc-5286	1:5000	Biotechnology, Inc.,
			CA, USA
anti-β-actin	sc-47778	1:5000	Santa Cruz
	-1-40254	1.2000	Abcam, Cambridge,
anti-1 w1511	a049234	1:3000	London, UK
anti-N-cadherin	ab18203	1:3000	Abcam
anti-Fibronectin	ab6328	1:2000	Abcam
anti-α-SMA	ab66050	1:3000	Abcam

Reference List

1. D'Errico M, de Rinaldis E, Blasi MF, Viti V, Falchetti M, Calcagnile A, et al. Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer. 2009; 45: 461-9.

2. Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010; 285: 21496-507.

3. Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology. 2008; 55: 2016-27.

4. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell. 2005; 8: 393-406.

5. Kaiser S, Park YK, Franklin JL, Halberg RB, Yu M, Jessen WJ, et al. Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer. Genome Biol. 2007; 8: R131.

6. Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, et al. Stem cell-related "self-renewal" signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol. 2008; 26: 3015-24.