Supporting information

Figure S1. Observation of vimentin rearrangement in HFF cells infected with*T. gondii.* HFF cells were infected with *T. gondii* RH strain for 18 h or uninfected (controls), and then fixed with paraformaldehyde. An indirect immunofluorescence assay (IFA) was performed. The results of IFA demonstrate that host cell vimentin was rearranged and accumulated around the *T. gondii* parasitophorous vacuoles (arrowheads). This phenomenon was not observed in uninfected cells.

Figure S2. Host cell vimentin had no obvious effect on the proliferation of *T. gondii*. A. qRT-PCR was performed to verify the knockdown of vimentin in HFF cells treated with siRNA (t test, *** $p \le 0.001$). B. Knockdown of vimentin was also demonstrated by Western Blot. C. Number of tachyzoites per parasitophorous vacuole (PV) in untreated, ctrl siRNA-treated, and vimentin siRNA treated cells. The number of vacuoles containing one, two, four, or eight parasites was visualized under a fluorescence microscope (100×). Means ± SD combined from three independent experiments, each performed in triplicate, were analyzed by two-way ANOVA. No significant difference was found among these three groups, hence these data clearly demonstrated that vimentin expression levels did not affect the proliferation of *T. gondii*.

Table S1. Plasmids used in this study

Table S2. Primers used in this study

Table S3. Information of siRNA used in this study

Table S4. Formula information of Sensitized Emission method used in this study.

Plasmid	Description	Used for
pBlunt-Vim	The coding sequence (CDS) of vimentin was cloned into pEASY-Blunt (TransGen Biotech, Beijing, China)	Amplification template of vimentin for subsequent experiments
pEYFP-Vim	The CDS without TAA was cloned into pECFP-C1	EDET
pECFP-ROP18	The CDS without TAA was cloned into pEYFP-C1	
pcDNA3.1-vim-HA	Vimentin with HA tag was cloned into pcDNA3.1(+)	Vimentin expression in cells
pcDNA3.1-ROP18- flag	ROP18 with 3×flag tag was cloned into pcDNA3.1(+)	ROP18 expression in cells
pSAG1::Cas9- U6::sgROP18	Cas9 expressed from the SAG1 promoter and CRISPR gRNA targeting ROP18 produced from the U6 promoter	CRISPR plasmid targeting rop18
pSAG1::Cas9- U6::sgROP18-in	Cas9 expressed from the SAG1 promoter and CRISPR gRNA targeting ROP18 produced from the U6 promoter	CRISPR plasmid targeting <i>rop18</i> for the knockin of eGFP-flag
pBlue-5'-ROP18- homo	A 990bp fragment upstream the gRNA target in <i>rop18</i> gene cloned into the vector pBlue-script II SK(-)	
pBlue-5'-3'- ROP18-homo	A 850bp fragment downstream the gRNA target in <i>rop18</i> gene cloned into the vector pBlue-5'-ROP18-homo	Homologous template for the disruption of <i>T. gondii</i> rop18
pBlue-5'-3'- ROP18-homo- DHFR-TS	DHFR-TS cassette for drug screen flanked by two homology arms cloned into the vector pBlue-5'-3'-ROP18-homo	
pBlue-donor- eGFP-ROP18	Fragments upstream and downstream the gRNA, eGFP-FLAG, DHFR-TS, SAG1-3'-UTR were cloned into the vector pBlue-script II SK(-)	Homologous template for the tagging of endogenous <i>rop18</i> with GFP
pBlue-p24	Fragment p24 promoter was cloned into p Blue-script II SK(-)	
pBlue-p24-eGFP	Fragment eGFP-SAG1-3'-UTR was cloned into pBlue-p24	To generate <i>T. gondii</i> RH/GFP parasite
pBlue-p24-eGFP- DHFR-TS	Fragments DHFR-TS was cloned into pBlue- p24-eGFP	
pET28a-vim	Vim was cloned into the vector pET28a(+)	Purification of protein vimentin
pGEX-ROP18	ROP18 (starting from Glu83 based on the second ATG) with tag of flag and his was cloned into the vector pGEX-4T-2	Purification of protein ROP18
pGEX-6-His	His tag was inserted into plasmid pGEX-4T-2	Purification of protein

Table S1. Plasmids used in this study

CST	
931	

Table S2. Primers used in this study

primers	Sequence	Used for	
Vimentin-F	ATGTCCACCAGGTCCGTGTC	To amplify fragment of vimentin for	
Vimentin-R	TTATTCAAGGTCATCGTGATGCTG	pBlunt-Vim cloning	
Vierentie F /	ACGCGTCGACATGTCCACCAGGT		
vimenun-F	CCGTGTC	To emplify from out of vine out in for	
	TCCCCGCGGTTAAGCGTAATCTGG		
Vimentin-HA-R	AACATCGTATGGGTATTCAAGGTC	perp-vim cioning	
	ATCGTGATGCTGAG		
00010 5	ACGCGTCGACATGTTTTCGGTACA		
ROP18-F	GCGGCC		
	TCCCCGCGGTTACTTATCGTCATC		
	GTCTTTGTAATCAATATCATGATCC	To amplify fragment of rop18 for	
ROP18-flag-R	TTGTAGTCTCCGTCGTGGTCCTTAT	pECFP-ROP18 cloning	
0	AGTCTTCTGTGTGGAGATGTTCCT		
	GC		
	CCCAAGCTTATGTCCACCAGGTCC		
Vimentin-F"	GTG	To amplify fragment of vimentin for	
	CGCGGATCCTTAAGCGTAATCTGG	pcDNA3.1-vim-HA cloning	
Vimentin-HA-R'	AACATCG		
	CCCAAGCTTATGTTTTCGGTACAG		
ROP18-F'	CG	To amplify fragment of ROP18 for	
		pcDNA3 1-ROP18-flag cloning	
ROP18-flag-R'	GICTIIG		
		05 mutagenesis changing the gRNA	
SgRop18-F	TAGAGCTAGAAATAGC	in nSAG1CAS9-116sgl IPRT for the	
SgRon18-R		disruption of ron18	
Jenopio n	GCCGACCGAACGCCTCTCGAGTT	05 mutagenesis changing the gRNA	
SgROP18-F-in		in nSAG1CAS9-116sgl IPRT for the	
		knockin of eGEP-	
SgROP18-R-in	AACTTGACATCCCCATTTAC	FLAG fused to ron18	
	CCCAAGCTTGCAGTTGCACAGGG		
5'-homo-F-ROP18	ACGACG	To amply fragment of 5'-homo for	
5'-homo-R-ROP18	CGGATATCAGAGGTGGCCGCTGT	the knockout of ron18	
3'-homo-F-ROP18	TTCTCC	To amply fragment of 3'-homo for	
	GCTCTAGAGGATGCTGGCTGTCC	the knockout of ron18	
3'-homo-R-ROP18			
DHFR-TS-F	GTAATC	To amply fragment of DHFR-TS drug	
		screen cassette for the knockout of	
DHFR-TS-R		rop18	
Flhama E DOD10 in			
5 -NOMO-F-KOP18-IN		To amply fragment of 5'-homo to tag	
	GAALICIGAC	endogenous <i>rop18</i> with eGFP-FLAG	
5'-homo-R-ROP18-in			
egfP-f-in	ILICCACACAGAAGGCGCGCCAT	I to amply tragment of eGFP for the	

	GGATGGTGAGCAAGGGCGAG	knockin of eGFP-FLAG
eGFP-R-in	CGTCATCGTCTTTGTAATCAATATC	
	ATGATCCTTGTAGTCTCCGTCGTG	
	GTCCTTATAGTCCTTGTACAGCTC	
	GTCCATGCC	
	TGATATTGATTACAAAGACGATGA	
SAG1-3'-UTR-F-in	CGATAAGTAGTTAATTAATCACCG	To amplify fragment of SAG1-3'-UTR
	TIGTGCTCACTTCTCAAATCG	for the knockin of eGFP-FLAG
sAG1-3'-UTR-R-in	CCTGGCGAAGCTTAGCTCCACCG	
DHFR-TS-F-in		To amplify fragment of DHFR-TS
		drug screen cassette for the knockin
DHFR-TS-R-in	TATGACGATTTAAATACGTAGGAA	of eGFP-FLAG
3'-homo-F-ROP18-in		To even life for even at a f 2/ hours a to
	AICGICAIAAGCGAAIIAAAACAG	to amplify fragment of 3 -nomo to
2 home D DOD19 in	GGIGGCGGCCGCICIAGAACIAG	Lag endogenous <i>rop18</i> with eGFP-
3 -nomo-k-kOP18-in	IGGAILCGIAGTIGTICAIAIGAA	FLAG
Donor knockout E		To amplify fragment of hemologous
Donor knockout P	GCAGITGCACAGGGACGACG	to amplify fragment of homologous
	CACATCACIGIGIGIGIACAIGC	PCR1
	GAAIGACAIGCIAGCGIICAAC	
PCR2-F		PCR2
	GACIGGAIAGGIACATICGAACG	
	GAGACIGICACAGCICGICG	PCR3
	GEGACAGICAGAAAIICIAICEAG	
PCR4-F-III		PCR4
PCRO-F-III		PCR5
PCRO-F-III		PCR6
PCRO-R-III		
P24-F	CTECTECT	
		To amplify the promoter of P24
P24-R		
AGED-SAG1-3'-LITR-E		
		To amplify fragment of eGFP-SAG1-
eGFP-SAG1-3'-UTR-R	ATTG	3'-UTR
	GUTUTAGAAAGUTUGUUAGGUT	
DHFR-TS-F'	GTAAATC	To amplify fragment of DHFR-TS
		drug screen cassette for the
DHFR-TS-R'		generation of RH/GFP
actin a F		Human actin amplification for gPT
actin q r		
		Human vimentin amplification for
vini-q-i		
actin_KM_E	GCCTTCCTTCTTGGGTATGGAA	Mouse actin amplification for apt
actin-KM-P		
		Mouso vimontin amplification for
	JUJAAAAAUUU	

vim-full-E	GCATCATATGTCCACCAGGTCCGT	
VIIII-IUII-F	G	To amplify fragment of vimentin for
vim full P	CCCGGATCCTTATTCAAGGTCATC	pET28a-Vim cloning
VIIII-IUII-N	GTGATGC	
DOD19 his F	CGGGATCCATGGAAAGGGCTCAA	
RUP10-IIIS-F	CACC	To amplify fragment of ren18 for
	ACGCGTCGACTTAGTGATGATGAT	nCST POP18 cloning
ROP18-his-R	GATGATGCTTGTCATCGTCATCCTT	past-kopis cioning
	G	
	TCATCACTAAGTCGACTCGAGCGG	
G21-HIS-F	CCGC	To insert 6×His into pGST-4T-2 for
	TGATGATGATGGGATCCACGCGG	the purification of GST
G21-HIS-K	AACCAGATC	

Table S3. Sequences of vimentin specific siRNA

siRNA	sequence
	CAGACAGGAUGUUGACAAUGCGUCU
SIRINAL	AGACGCAUUGUCAACAUCCUGUCUG
siRNA2	GGCACGUCUUGACCUUGAACGCAAA
	UUUGCGUUCAAGGUCAAGACGUGCC
siRNA3	AAACUAGAGAUGGACAGGUUAUCAA
	UUGAUAACCUGUCCAUCUCUAGUUU

Table S4. Formula of Sensitized Emission method

Variable	Meaning of variable
а	Donor(CFP) channel image of Donor excited, with Donor only dyed (Background
	correction done)
b	Acceptor (YFP) channel image of Donor excited, with Donor only dyed (Background
	correction done)
С	Acceptor channel image of Donor excited, with Acceptor only dyed (Background
	correction done)
d	Acceptor channel image of Acceptor excited, with Acceptor only dyed (Background
	correction done)
е	Donor channel image of Donor excited, with Donor and Acceptor dyed (Background
	correction done)
f	Acceptor channel image of Donor excited, with Donor and Acceptor dyed (Background
	correction done)
g	Acceptor channel image of Acceptor excited, with Donor and Acceptor dyed
	(Background correction done)
DSBT ¹	Donor Spectral Bleed-through
ASBT ²	Acceptor Spectral Bleed-through
PFRET ³	Precision FRET (Correction done FRET image)
Ψ_{dd}	(HV of Donor) (Spectral sensitivity of Donor)
Ψ_{aa}	$\left(\frac{1}{\text{HV of Acceptor}}\right) \times \left(\frac{1}{\text{Spectral sensitivity of Accptor}}\right)$
Qa	Acceptor quantum yield
Q _d	Donor quantum yield
R ₀	Forster Distance

¹ DSBT= $\left(\frac{b}{a}\right) \times e$; ²ASBT= $\left(\frac{c}{d}\right) \times g$; ³PFRET=f-DSBT-ASBT;

FRET Efficiency=1-
$$\left[\frac{e}{e+PFRET\times\left(\frac{\Psi_{dd}}{\Psi_{aa}}\right)\times\left(\frac{Q_{d}}{Q_{a}}\right)}\right]$$

Distance=R₀{ $\left(\left(\frac{1}{E}\right)-1\right)^{1/6}$

Supplemental Materials and Methods

Antibodies used in this study

Monoclonal primary antibodies

Mouse (mAb) anti-vimentin (Abcam, ab8978, 1:2000); rabbit (Rb) anti-vimentin (Abcam, ab92547, 1:2000); mAb anti-DDDDk (ABclonal, AE005, 1:2000) and Rb anti-beta-actin (CST, 4970, 1:1000) were used for Western Blotting (WB). mAb anti-vimentin (1:250), mAb anti-SAG1 (1:50) and Rb anti-vimentin (1:250) were used for immunofluorescence (IF). mAb anti-vimentin (1:100); anti-FLAG® M2 (Sigma, F1804, 1:100); and anti-DDDDK (1:100) were used for Co-IP.

Polyclonal primary antibodies

Rb anti-DDDDK (ABclonal, AE004, 1:2000); Rb anti-Phospho Ser/Thr (Abcam, ab17464, 1:1000), Rb anti-ROP2 (1:1000) were used for WB. Anti-ROP2 (1:100) was used for IF.

Secondary antibodies

Secondary antibodies conjugated with HRP, goat anti-mouse IgG-HRP (Santa Cruz, sc2005, 1:2000) and goat anti-rabbit IgG-HRP (Santa Cruz, sc2004, 1:2000) were used for WB detection and those conjugated with goat anti-rabbit IgG, F(ab')₂-TRITC (Santa Cruz, sc3841, 1:200), goat anti-rabbit IgG-FITC (Santa Cruz, sc2012, 1:200), and goat anti-mouse IgG-R (Santa Cruz, sc2092, 1:200) were used for IF.

Plasmid construction

Vimentin cDNA was amplified by PCR with *Pfu* DNA polymerase (TransGen Biotech) using the primers indicated in Table S2 and cloned into pEASY-Blunt (TransGen Biotech) for plasmid construction. To perform fluorescence resonance energy transfer (FRET) experiments, vimentin and ROP18 cDNA fragments were inserted into the *Sall/Sac*II sites of the plasmids pEYFP-N1 and pECFP-C1, respectively. Vimentin-HA and ROP18-3×flag were cloned into pcDNA3.1 (+) digested with *Hind*III/*Bam*HI.

To disrupt the *rop18* gene in the RH strain, a CRISPR plasmid, pSAG1::CAS9-U6::sgROP18, was generated by replacing the UPRT targeting gRNA in pSAG1::CAS9-U6::sgUPRT [1] with a specific *rop18* targeting gRNA sequence, by Q5 DNA polymerase mutagenesis (NEB). A homologous template (pBlue-5'-3'-ROP18-homo-DHFR-TS) was also generated to promote efficient recombinant insertion of the DHFR-TS cassette into the *rop18* locus and disrupt the expression of *rop18*. To generate this homologous template, 5'-homo, 3'-homo, and DHFR-TS cassette were amplified using RH genomic DNA and plasmid pYFP-LIC-DHFR (Addgene, 83114), respectively as templates, using the primers indicated in Table S2. Briefly, a 990bp fragment homologous to the sequence upstream of the gRNA target *rop18* gene was cloned into the *Hind*III/*EcoR*V sites of the pBlue-script SK II (-) plasmid to generate pBlue-5'-ROP18-homo, and an 850bp fragment homologous to the downstream of the gRNA target *rop18*gene was then cloned into the *Bam*HI/*Xba*I sites of pBlue-5'-ROP18-homo to form pBlue-5'-3'-ROP18-homo. Next, a DHFR-TS cassette was cloned into the *EcoRV/Bam*HI sites of the pBlue-5'-3'-ROP18-homo plasmid to form a recombinant plasmid which was used for electrotransformation of tachyzoites.

To generate the recombinant RH strain expressing C-terminally eGFP-FLAG-tagged ROP18, a CRISPR plasmid, pSAG1::CAS9-U6::sgROP18-in, expressing an sgRNA targeting downstream of the TAA stop codon of the *rop18* gene was first generated. Second, a recombinant plasmid containing homologous template for the eGFP-FLAG fusion expression at the C-terminus of ROP18 and insertion of a DHFR-TS cassette was generated. To construct this plasmid, fragments of the 5'-homo-in, 3'-homo-in, and DHFR-TS cassette were amplified from genomic DNA of RH strain and pYFP-LIC-DHFR, eGFP, and SAG1-3'-UTR plasmids were amplified using pSAG1::CAS9-U6::sgUPRT as template; all primers are provided in Table S2. In brief, a 996bp fragment (5' flanking region) homologous to the sequence upstream of the *rop18* stop codon (TAA), a 1038bp fragment (3' flanking region) homologous to sequence downstream of the *rop18* sgRNA target site, eGFP, SAG1-3'-UTR, and the DHFR-TS cassette were amplified and inserted into pBlue-script II SK(-), using NEBuilder[®] HiFi DNA Assembly Master Mix (NEB, E5520).

To generate the pBlue-p24-eGFP-DHFR-TS plasmid, the *p24* promoter was amplified from RH strain parasites and eGFP-SAG1-3'-UTR and DHFR-TS were amplified using the templates described above with the primers indicated in Table S2. Briefly, *p24* promoter, eGFP-SAG1-3'-UTR, and DHFR-TS fragments were cloned into the *Apal/Bam*HI, *Bam*HI/*SpeI* and *Xbal/Not*I sites of the plasmid pBluescript II SK(-), respectively. The recombinant plasmid was then linearized with *ApaI* prior to transfection into parasites, to generate a strain ectopically expressing GFP, RH/GFP.

DNA and siRNA transfection

Cos7 cells were seeded in 6-well plates and 3 µg of plasmid DNA per well were used for transfection with Lipofectamine[®] 2000 (Invitrogen, 11668019), following the protocol provided by the manufacturer. For transfection of cells in T-75 culture flasks and 12-well plates, 18µg or 1µg (per well), respectively, of plasmid DNA were used.

Three vimentin specific siRNAs, VIMHSS111286 (siRNA1), VIMHSS111287 (siRNA2), and VIMHSS187671 (siRNA3) (Invitrogen), and a negative control siRNA (12935-300, Invitrogen) were transfected into HFF cells using Lipofectamine® 2000 reagent following the protocol provided by the manufacturer. Information of used siRNAs was shown in Table S3. Before transfection, red fluorescent control siRNA (Invitrogen, 14750100) was used to optimize the transfection conditions and 90pmol/well (3µl/well) Lipofectamine® 2000 was used in subsequent experiments. After siRNA transfection for different periods of time (1, 2, 3, 5, and 7d), cells were collected to extract total RNA and protein to identify the transcription and expression levels of vimentin. After evaluation by qRT-PCR and western blotting, the most efficient siRNA (siRNA2) was chosen for use in subsequent experiments.

Purification of recombinant ROP18, vimentin and GST

rop18 was amplified from *T. gondii* RH strain genomic DNA, starting from Glu83, based on the second ATG [2]. Nucleotides encoding the 6× His tag were incorporated into the reverse primer to generate a *rop18* cDNA encoding a protein with 6×His residues at the C-terminus. The ROP18-His fragment was then subcloned into pGEX-4T-2, and expressed as a fusion protein with an N-terminal GST tag, in *E.coli* BL21-CodonPlus (DE3)-RIPL (Microgene, Shanghai, China), by overnight induction with 1mM isopropyl- β -D-thiogalactopyranoside (IPTG) at 18°C [2, 3]. Cells were lysed and the GST-ROP18-His fusion protein purified using a Ni-NTA fast start kit (Qiagen), according to the manufacturer's instructions. Nucleotides encoding the 6× His tag were cloned into plasmid pGEX-4T-2 at the 3′ terminal of GST nucleotides by Q5 DNA polymerase mutagenesis (NEB) and this recombinant plasmid was transformed into *E. coli* BL21 cells. Bacterial expression of GST was then induced with 1mM IPTG at 37°C for 4h and then purified by Ni-NTA fast start kit as above description.

Full-length human vimentin cDNA was cloned into the pET28a (+) vector and this recombinant plasmid was transformed into *E. coli* BL21 (DE3) cells. Bacterial expression of vimentin was then induced with1mM IPTG at 37°C for 4h. Cells were collected by centrifugation, resuspended in PBS with protease inhibitors (TransGene, China), and lysed by sonication. Vimentin was purified as previously described [4]. Briefly, lysates were centrifuged and the insoluble fraction resuspended in 20ml dissolving buffer 1 (Triton X-100, 200mM NaCl, 10mM EDTA, 50mM Tris-Cl, pH 8.0), homogenized and re-centrifuged at10,000g for 20min at 4°C three times. The pellet was resuspended in dissolving buffer 2 (10mM EDTA, 50mM Tris-Cl, pH 8.0), homogenized and re-centrifuged as previously indicated. After resuspension in dissolving buffer 3 (8M urea, 200mM EDTA, 5mM DTT, 200mM Tris-Cl, pH 8.0) and incubated overnight at 4°C, soluble vimentin was collected by centrifugation (27,300g for 30min at 4°C) and the urea removed from the samples by stepwise dialysis into dialysis buffer 1 (4M urea, 5mM DTT, 10mM Tris-Cl, pH 8.0) for 4h, followed by dialysis buffer 2 (2M urea, 5mM DTT, 10mM Tris-Cl, pH 8) for another 4h, and

finally dialysis buffer 3 (10mM Tris-Cl, pH 7.0) overnight. The dialysis product was then centrifuged at 1,000g at 4°C for 10min, the supernatant was collected for further analysis with precipitate discard.

References:

1. Shen B, Brown KM, Lee TD, et al. Efficient gene disruption in diverse strains of *Toxoplasma gondii* using CRISPR/CAS9. MBio. 2014; 5: e01114-14.

2. Fentress SJ, Steinfeldt T, Howard JC, et al. The arginine-rich N-terminal domain of ROP18 is necessary for vacuole targeting and virulence of *Toxoplasma gondii*. Cell Microbiol. 2012; 14: 1921-33.

3. Steinfeldt T, Konen-Waisman S, Tong L, et al. Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent *Toxoplasma gondii*. PLoS Biol. 2010; 8: e1000576.

4. Fogl C, Mohammed F, Al-Jassar C, et al. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin. Nat Commun. 2016;
7: 10827.