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Abstract 

With the fast development of wearable medical device in recent years, it becomes critical to 
conduct research on continuously measured physiological signals. Entropy is a key metric for 
quantifying the irregularity and/or complexity contained in human physiological signals. In this 
review, we focus on exploring how entropy changes in various physiological signals in 
cardiovascular diseases. Our review concludes that the direction of entropy change relies on the 
physiological signals under investigation. For heart rate variability and pulse index, the entropy of a 
healthy person is higher than that of a patient with cardiovascular diseases. For diastolic period 
variability and diastolic heart sound, the direction of entropy change is reversed. Our conclusion 
should not only give valuable guidance for further research on the application of entropy in 
cardiovascular diseases but also provide a foundation for using entropy to analyze the irregularity 
and/or complexity of physiological signals measured by wearable medical device. 
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Introduction 
Cardiovascular disease has become a major 

disease that threats to our human life. Although 
diabetes, hypertension and other diseases can’t 
immediately lead to death, but the autonomic nervous 
system disorders caused by them also have a huge 
threat to our human life. So how to detect 
cardiovascular disease becomes very important. The 
commonly used detection methods including 
dynamic blood pressure detection technology, 
dynamic electrocardiogram detection technology, 
cardiovascular ultrasound technology, positron 
emission computed tomography and so on. Following 
the fast development of wearable medical device, 
entropy based on continuously measured 
physiological signals could become a tool for disease 
detection because of its capacity of capturing the 
feature of nonlinear dynamics.  

Entropy was proposed by the German physicist 
Clausius in 1865. Entropy was originally used to 

describe a state of substance: "energy degradation". It 
has a wide range of applications in thermodynamics. 
At that time entropy is only a physical quantity that 
can be measured by the change of heat and its 
meaning is not clear. Until the development of the 
statistical physics and information theory [1], the 
meaning of entropy was gradually explained clearly: 
entropy is the "internal chaos" of a system. Now, 
entropy has important applications in cybernetics [2], 
probability theory [3], number theory [4], astrophysics 
[5], life sciences [6] and other fields [7], and it has also 
been extended to the more specific definition in 
different specific disciplines. In biological dynamics, 
entropy can measure the irregularity or complexity of 
a person’s physiological signals. In this area, 
approximate entropy [8, 9] and sample entropy [6, 10] 
are the most commonly used although other 
entropies, such as fuzzy entropy [11], tone entropy 
[12, 50] and so on, have been proposed for some 
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specific situations. Multi-scale entropy has been 
proposed to measure the entropy in different levels or 
scales of data [6].  

For research in diseases, entropy is most 
commonly used to assess the irregularity and/or 
complexity of heart rate variability (HRV) [13] which 
is measured by electrocardiogram (ECG) although it 
can also be used to measure that of 
magnetocardiography (MCG), pulse, diastolic heart 
sound and other physiological signals. HRV is the 
physiological phenomenon of variation in the time 
interval between heartbeats (i.e., R-R interval) [14]. 
HRV represents a quantitative measure which uses 
the mean and standard deviation of a continuous 
normal R-R interval to reflect the degree and 
regularity of changes in heart rate. It determines heart 
rate’s effect on cardiovascular activity [15]. At present, 
the analysis methods of HRV mainly include linear 
analysis (time domain analysis [16], frequency 
domain analysis [17]) and nonlinear analysis. The 
time domain analysis mainly analyzes the mean and 
standard deviation of the R-R period. Frequency 
domain analysis mainly uses Fourier transform and 
automatic regression analysis model to analyze the 
high frequency band and low frequency band. 
Nonlinear analysis of HRV is much more 
complicated. It is under fast development recently. 
Entropy analysis belongs to the nonlinear analysis. 

Currently, there are many researches on the 
application of entropy in the irregularity or 
complexity of heart rate. Early research in this area 
focused on healthy subjects. For example, Ryan et al. 
[18] used approximate entropy to find that women's 
heart rate is higher than the men’s in the same 
conditions. Pikkujamsa et al. [19] used approximate 
entropy to study the impact of age on the heart rate, 
and concluded that the heart rate complexity of young 
people is higher than that of the elderly. Costa et al. 
[20] also summarizes the rule that the heart rate 
complexity measured by multi-scale sample entropy 
decreases with the increase of age or with disease. 
With further development and application of entropy, 
researchers have applied entropy for disease 
diagnosis, prognosis and related problems, so that 
entropy and other nonlinear dynamic indicators can 
be used as a diagnosis tool in cardiovascular disease, 
respiratory disease, diabetes mellitus and other 
disease.  

There are many articles applying entropy on 
cardiovascular diseases, covering a wide range from 
disease detection, classification to prognosis and so 
on. They used different physiological signals and 
different entropy calculation methods. For example, 
many ECG data and latest entropy articles can be 
found in the website http://physionet.org/. 

Although there are many studies in this area, the 
present review mainly classifies the linear index of 
HRV [17, 21], introduces the nonlinear index of HRV 
[22, 23], or focuses the application of entropy for the 
research of aging and aging related diseases [24]. They 
don’t summarize the application of entropy in 
cardiovascular disease in detail, especially in terms of 
disease classification. Our review focuses on the 
application of entropy for the cardiovascular diseases 
diagnosis. We aim at addressing the question about 
how the entropy changes in cardiovascular diseases 
and come out summarized results in general. 
Specifically, we focus on three categories: coronary 
artery disease (CAD), hypertension, and diabetic 
complications. For different diseases, we discuss 
whether we can have a general summarized result on 
the entropy feature of the disease.  

For this review, we searched EMBASE, PubMed, 
and Google Scholar for the application of entropy in 
cardiovascular disease until January 2017. The key 
words for searching were entropy, coronary heart 
disease, hypertension, diabetes, cardiovascular. Then 
we selected the articles with the disease diagnosis for 
the review. After duplication removed, a total of 191 
potentially relevant articles in the initial database 
search were identified. Finally, 25 studies met the 
selection criteria, including 12 studies for CAD, 7 
studies for hypotension, 6 studies for diabetes (Figure 
1). 

Entropy for coronary heart disease 
The artery atherosclerotic lesion causes stenosis 

or obstruction of the blood vessel lumen. It will result 
in myocardial ischemia, hypoxia or necrosis, which 
leads to heart disease finally. CAD also includes 
cardiovascular stenosis or occlusion caused by 
inflammation, embolism. CAD diagnosis depends on 
the typical clinical symptoms. Combined with 
myocardial injury markers and auxiliary examination, 
the doctors found evidence of myocardial ischemia or 
coronary artery occlusion and determined whether 
there is myocardial necrosis. The most commonly 
used methods of detecting myocardial ischemia 
include routine ECG [25], ECG loading tests and 
radionuclide myocardial imaging. The further 
examination includes coronary angiography, 
intravascular ultrasound and so on. Entropy and 
other kinetic parameters can be used as an aid to 
detect coronary artery disease and surgical prognosis. 

Combined with other nonlinear kinetic 
parameters, entropy can be used to distinguish 
patients with CAD from healthy people and roughly 
determine the severity of the disease in the early 
detection of CAD. Some literatures attempted to use 
entropy for automatic classification of CAD [26]. 
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Some literatures compared the autonomic function of 
patients with CAD, diabetes and healthy control 
group. These literatures found that the patients have 
more cardiac autonomic neuropathy (CAN) than the 
healthy control group. 

In the distinction between patients with CAD 
and healthy people, there are many physiological 
signals and many types of entropy to use (Table 1). 
From Table 1 we can see that the most frequently 
measured physiological signal is HRV (mainly 
measured by ECG). Wang et al. [27], Acharya et al. [28] 
and Makikallio et al. [29, 30] Pivatelli et al. [31] all used 
electrocardiogram data to derive heart rate variability 
and draw relevant conclusion. However, they used 
different methods to calculate entropy on HRV, where 
Wang et al. [27] used multi-scale sample entropy, 
Acharya et al. [28] used sample entropy, and 
Makikallio et al. [29, 30], Pivatelli et al. [31] used 
approximate entropy. They all got the conclusion that 
the entropy of HRV in patients with coronary heart 
diseases is lower than the healthy people. This trend 
of change is also displayed in Figure 1 with data 

extracted from the studies in five articles [17, 28, 29, 
30, 31].  

Guo Rui et al. [32, 33] measured the pulse of the 
experimental subjects. Their first article used the 
sample entropy based on the test pattern 
decomposition and their second article used the 
sample entropy based on 45° diagonal distribution’s 
recursive quantitative analysis. They measured the 
pulse of people with coronary heart disease and those 
without disease. Their first article directly reached the 
result that the pulse entropy of patients with coronary 
heart diseases is less than that of healthy people, thus 
the pulse irregularity decreased after the illness. In 
their second article, the sample entropy of patients 
with coronary heart disease based on 
diagonal-recursive graph is higher than that of the 
healthy control group. It means that CAD patients’ 
recursive map entropy has more diagonal structure 
than that of the control group. They have higher 
regularity and certainty. It shows that, when the 
entropy of the physiological system decreased, 
regularity increased.  

 

 
Figure 1. Literature search flow diagram 
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Table 1. Entropy studies for comparison between healthy people and the patients with coronary artery disease. 

Physiological signal Entropy method Study subject Conclusion 
Heart Rate Variability Sample entropy[28] 10 patients and 10 healthy people Healthy people have a higher entropy than 

patients 
Approximate entropy [29, 30, 31] 38 patients and 38 healthy people  
Muti-scale sample entropy[27] 6 patients and 6 healthy people 

Cardiac Magnetic Field Mapping Relative entropy[36] 101 patients and 59 healthy people Healthy people have a lower entropy than 
patients 

Sample entropy[26] 10 patients, 6 recruit patients Healthy people have a higher entropy than 
patients 

Pulse of traditional Chinese medicine Sample entropy[32] 
Based on Empirical Mode 
Decomposition 

225 patients and 117 healthy people Healthy people have a higher entropy than 
patients 

Sample entropy[33] Recursive 
quantitative analysis 

63 patients and 61 healthy people 

Diastolic heart sound 
 

Path length entropy[35] 15 patients and 16 healthy people Healthy people have a lower entropy than 
patients 
 

Approximate entropy[34] 30 patients and 10 healthy people 
Fuzzy Entropy[11] 28 patients and 30 healthy people 

 
Ji et al. [11] found that for short-term HRV 

sequence, entropy can’t distinguish healthy people 
from sick patients well. Consequently he used 
diastolic period variability (DPV) and refined fuzzy 
entropy to get the result that the patients with 
coronary heart diseases have higher DPV entropy. 
The reason is explained as follows: the increased 
Fuzzy Entropy of DPV might suggest abnormal 
beat-to-beat systolic intervals fluctuations in patients 
with coronary artery stenosis which leads to 
irregularity in the DPV series. Akay et al. [34] used 
approximate entropy to measure diastolic heart sound 
of patients and obtained the conclusion that the 
entropy of diastolic heart sound in patients with 
coronary heart diseases is higher than that in healthy 
people. In fact, the diastolic sound of healthy people 
should be stable. If the heart sound intensity has a 
great volatility and high entropy, the heart has the 
disease. The sensitivity of this method is 77%, 
indicating that entropy of diastolic heart sound can be 
used to differentiate healthy subjects from patients 
with coronary heart disease. Griffel et al. [35] applied 
the Path Length Entropy to the same measurements, 
and the same conclusion was reached. They used 
cardiac diastolic sounds because the diastolic period 
is much longer than the systolic period in the 
heartbeat of the cardiac cycle and it is easier to 
measure.  

Gapelyuk et al. [36] used relative entropy [37] to 
study the myocardial magnetic field localization, and 
obtained the result that, for the heart magnetic map, 
the relative entropy of the healthy human is lower 
than that of the sick person. Since the relative entropy 
represents the degree of fitting of the two 
distributions, the distribution of the measured RQS or 
STT interval waves is closer to the standard normal 
wave and the relative entropy is lower. This is 
different from other entropy measurements. They got 
the results: the relative entropy of healthy people is 
close to 0, while the relative entropy of the patient is 

in the vicinity of 0.2. The result is the same as what 
should come out theoretically. Steinisch et al. [26] also 
explored the entropy of the magnetic map data, but 
used sample entropy instead of relative entropy.  

It is worth noting that entropy is part of the 
nonlinear dynamic index. Entropy can be used in a 
wide range including ECG data, MCG data and so on, 
but its calculation methods are diverse, such as 
sample entropy, approximate entropy and so on. 
Different methods may be suitable for different 
physiological signals. We also see in the previous 
literature that it can’t directly conclude that low 
entropy means healthy, so we need a concrete 
analysis of the situation. 

Through our review on the entropy studies, we 
obtain the following summarized results. For the 
studies on HRV and pulse, the entropy in a healthy 
person is higher than that in a patient. For the DPV 
and diastolic heart sound, the entropy in a healthy 
person is lower than that of a patient. For the 
magnetic cardiogram, we need to distinguish the type 
of entropy: the relative entropy is higher in patients, 
the sample entropy is higher in healthy people.  

Entropy for hypertension 
Hypertension is a common chronic disease. It’s 

also the most important risk factors of cardiovascular 
disease. Hypertension is divided into primary 
hypertension and secondary hypertension. In this 
review, we focus on the primary hypertension and its 
complications. We mainly compared the special 
populations: pregnant women with hyperthyroidism 
and their neonatal cardiac entropy. We also compared 
the entropy of the autonomic dysfunction caused by 
hypertension.  

For hypertension and diabetes, the researchers 
compared the cardiac entropy in a specific population 
(pregnant women and their newborns). Park et al. [38] 
calculated the HRV through approximate entropy and 
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compared with pregnant women with pregnancy- 
induced hypertension, gestational diabetes mellitus, 
anemia and healthy pregnant women's heart rate 
entropy. They found that the heart rate entropy of 
pregnant women is lower than healthy pregnant 
women. If the pregnant women bore newborns, the 
babies’ heart rate entropy was also lower than normal. 
The anemia patients had the lowest cardiac entropy. 

Tejera et al. [39] calculated both approximate 
entropy and sample entropy of HRV. They compared 
the cardiac entropy of pregnant women with 
pregnancy-induced hypertension, congenital 
eclampsia, and healthy pregnant women. The results 
confirmed that for pregnant women with the same 
time of pregnancy, healthy pregnant women have the 
highest entropy and congenital eclampsia patients 
have the lowest entropy. 

Kul Yum et al. [40] calculated the approximate 
entropy of HRV in newborns with pulmonary 
hypertension and normal neonates. The entropy in the 
newborns with neonatal pulmonary hypertension is 
lower than that in normal neonates. They associated 
pulmonary artery pressure with it, and found that 
pulmonary hypertension induced by left- to-right 
shunt lesions suppresses both periodic and complex 
heart rate oscillation. The mean pulmonary artery 
pressure can be predicted by calculating the 
approximate entropy of heart rate variability.  

For the CAN caused by hypertension, many 
articles investigated the autonomic nervous function 
in patients with essential hypertension. They took the 
R-R interval power spectrum analysis, and used the 
ECG method to obtain low-frequency band (LFB) and 
high frequency band (HFB) through the maximum 
entropy every 10 minutes [41]. The LFB and HFB 
represent parasympathetic activity, sympathetic 
nerve activity and parasympathetic activities 
respectively. 

From Table 2, Kohara et al. [42] aimed at 
middle-aged patients and young patients. Both LFB 
and HFB were significantly lower in elderly 
hypertensive patients than that in middle-aged 

patients. They also aimed at non-dipper patients and 
dipper patients [43]. The findings indicate that 
compared with dipper patients, non-dipper 
hypertensive patients were characterized with a 
decreased physiological circadian fluctuation on 
autonomic functions. Kawamura et al. [44] did the 
same research for Kazak non-dipper patients and 
dipper patients, and got the same conclusion. Kohara 
et al. also used maximum entropy power spectrum to 
compare the patients with essential hypertension 
relationship between autonomic nervous activity and 
the left ventricular mass index [45]. The conclusion is 
that the left ventricular mass index is negatively 
correlated with the total low frequency and total high 
frequency. 

The general conclusion is: when calculating the 
HFB and LFB by using the maximum entropy power 
spectrum, the lower the frequency means the worse 
the autonomic nerve function. The older people are 
worse than the young people; the patients with dipper 
hypertension are worse than the non-dipper patients; 
patients with a high left ventricular mass index 
(indicative a severe cardiovascular disease) are worse 
than those with a low left ventricular mass index. 

Entropy for analyzing cardiac autonomic 
never function damage caused by 
diabetes 

Strictly speaking, diabetes is not a cardiovascular 
disease. In this review, we mainly focus on one of the 
most important complications of diabetes: cardiac 
autonomic nervous system dysfunction. This is 
related to cardiovascular activity and there are many 
relevant research literature, so we also discussed it in 
this review. 

The present article mainly uses the diabetes’ 
HRV data to analyze the cardiac autonomic nerve 
function damage caused by diabetes. From the Table 
3, we can see that Souza et al. [46], Marwaha et al. [47], 
and Li et al. [48] measured the HRV data in diabetic 
patients and healthy people as experimental and 
control groups, but they used different entropy: 

 

Table 2. Entropy studies for comparison between healthy people and the patients with hypertension  

Physiological signal Entropy method Study subject Conclusion 
ECG Maximum entropy power 

spectrum 
30 middle-aged (aged≤59 years) patients and 
the 27 elderly (aged≥60 years) patients [42] 

The entropy of frequency band is significantly lower in 
elderly hypertensive patients than in middle-aged patients 

  31 dipper patients and 31 non-dipper patients 
[43] 

The entropy of frequency band is significantly lower in 
dipper patients than in non-dipper patients 

44 the Kazaks patients dipper patients, 
47 non-dipper patients [44] 
53 hospitalized essential hypertensive patients 
with different left ventricular mass index [45] 

Patients with a high left ventricular mass index have lower 
entropy values than patients with a low left ventricular mass 
index. Note, high indicates severe cardiovascular disease 
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Shannon entropy, improved multiscale sample 
entropy, approximate entropy, respectively. They got 
the same conclusion: the HRV entropy of diabetic 
patients is lower than the healthy control group. 
Combined as other nonlinear dynamical parameters, 
entropy can be served as an additional supplemental 
tool for the conventional autonomic tests. Then Wu et 
al. [49] and Karmakar et al. [50] focused on diabetic 
patients with mild and severe diabetes, but they use 
different entropy and different measurement data. In 
the end, they got the same conclusion. Wu measured 
the pulse conduction time. They used multiscale 
cross-approximate entropy for their analysis, whereas 
Karmakar measured ECG data by using tone entropy. 

Their conclusion is: with the increase in the severity of 
disease, the HRV entropy is significantly lower. 
Khandoker et al. [51] used sample entropy to calculate 
the entropy of HRV. They found the same conclusion. 

In summary, although the calculation method of 
entropy is different, the results are similar. That is, for 
entropy of HRV, higher entropy value means 
healthier people. We further display this feature by 
extracting summarized data from the 5 articles [46-50] 
and drawing a figure (Figure 3). From Figure 3, we 
can see clearly that no matter what the type of entropy 
is, the entropy of HRV in a healthy person is higher 
than that in a patient with diabetes. 

 

Table 3. Entropy studies for comparison between healthy people and the patients with diabetes-induced cardiac autonomic neuropathy 
(CAN). 

Physiological signal Entropy method Study subject Conclusion 
Heart Rate Variability Shannon entropy 20 patients with type 1 diabetes mellitus (DM) and 

23 healthy people. [46] 
Healthy people have a higher entropy than 
patients 

Improved multiscale sample 
entropy 

16 patients with type 2 DM, 
15 healthy people [47] 

Healthy people have a higher entropy than 
patients 

Approximate entropy 63 patients with type 2 DM, 
29 healthy people [48] 

Healthy people have a higher entropy than 
patients 

Sample entropy 9 diabetic patients with CAN, 
8 diabetic patients without CAN [51] 

Patients without CAN have a higher 
entropy than patients with CAN 

RR interval 
Pulse conduction time 

Multiscale cross-approximate 
entropy 

32 young healthy people, 
36 healthy upper middle-aged people,31 patients 
with well controlled type 2 DM, 24 patients with 
poorly controlled type 2 DM [49] 

Healthy people have a higher entropy than 
patients; 
Young people have a higher entropy than 
elderly 

ECG Tone entropy 55 patients alive after 8 years of study, 
18 patients with cardiac related mortality [50] 

Patients with severe disease have lower 
entropy than those with mild disease 

 
 

 
Figure 2. Entropy of heart rate variability in studies for coronary artery disease (CAD). In each bar, the standard error of the mean in each group is represented by 
the vertical line above the mean. Comparison 1 uses the multiscale sample entropy and doesn’t have the data for standard error from the study in article [27]. 
Comparison 2 uses approximate entropy whereas comparison 3 uses sample entropy; both for the same data in the study in article [28]. Comparison 4 uses 
approximate entropy for the study in article [29]. Comparison 5 uses approximate entropy for the study in [31].  
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Figure 3. Entropy of heart rate variability in studies for cardiac autonomic nervous system dysfunction of diabetes. In each bar, the standard error of the mean in each 
group is represented by the vertical line above the mean. Comparison 1 uses the Shannon entropy for the study in [46]. Comparison 2 uses the improved multiscale 
sample entropy for the study in [47]. Comparison 3 use the approximate entropy for the study in [48]. Comparison 4 use the multiscale cross approximate entropy 
for the study in [29]. Comparison 5 use the tone entropy for the study in [50]. Comparison 1 is for comparing type 1 diabetes with healthy people, and the remaining 
pairs are for comparing type 2 diabetes with healthy people.  

 

Conclusion and Future Aspect 
For the upcoming era of digital medicine, the 

continuous monitoring of human’s physiological 
signals and associated entropy analysis are getting 
more and more critical. Currently, there are many 
studies for cardiovascular diseases in this area [c.f., 6, 
8-12, 24, 26, 27-50]. However, as far as we know, no 
one has published a sophisticated review specifically 
on the entropy analysis of cardiovascular diseases. 
There are key questions to be answered only through 
reviews on all available relevant studies. For example, 
one review focusing on the application of entropy for 
aging and aging related diseases [24] mentions that, 
for HRV, the entropy of a healthy person is higher 
than that of a patient with cardiovascular diseases in 
general? Is it true based on all the major related 
research in this area? How about the entropy of other 
physiological signals such as DPV and heart sound? 
Thus, in this article, we conduct a sophisticated 
review to address these key questions. Through our 
review, we obtained the following summarized 
results based on the available relevant studies that we 
searched through literature. 

For HRV, in the three major disease areas (i.e., 
coronary heart disease, hypertension, diabetes 
complications), no matter how the entropy calculation 
method is used (namely, whether Shannon entropy, 
sample entropy, approximate entropy, tone entropy 
or maximum entropy power spectrum is used), the 
entropy of healthy people is higher than that of the 
patients and the entropy decreases as the severity of 
the disease increases (Tables 1-3). For the pulse index, 
the results on the entropy analysis is the same as those 
for HRV. For DPV in CAD, the Fuzzy entropy of the 

healthy people is lower than that of the patients. For 
diastolic heart sound, the entropy of a healthy person 
is lower than that of a patient whether the entropy is 
assessed by approximate entropy or path length 
entropy. For MCG, whether a healthy person has a 
higher entropy value than a CAD patient relies on the 
used entropy. A healthy person has a higher entropy 
value when using sample entropy but a lower value 
when using relative entropy than a patient (Table 1).  

The explanation for the above summarized 
results can be complicated. One explanation for a 
higher entropy of HRV in a healthy person relative to 
a cardiovascular patient is to use heart autonomic 
nerve function: higher entropy, better heart 
autonomic nerve function [13]. One explanation for a 
lower entropy of DPV in a healthy person relative to a 
CAD patient is that CAD patients may have abnormal 
beat-to-beat systolic intervals fluctuations which leads 
to irregularity in the DPV series [11]. For MCG, the 
data are high-dimensional, consequently it must go 
through a process of dimensional reduction before 
entropy can be calculated. When the data is reduced 
to one dimension, sample entropy and similar 
entropy can be calculated. The entropy results are 
similar to those of HRV. Relative entropy is calculated 
in the case where the data are reduced to three 
dimensions as compared to a reference distribution 
coming from healthy people. If the distribution is 
similar to the reference distribution, the relative 
entropy is low. If the two distributions are completely 
coincident, the entropy is 0. Thus, the relative entropy 
of a patient should at least no less than that of a 
healthy person [37]. Therefore, the relative entropy 
actually measures different things as sample entropy 
and other regular entropy does. With this in mind, the 
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entropy results for MCG is actually similar to those 
for HRV.  

Multiple studies used entropy to distinguish 
between a healthy person and an ill person with good 
performance in some situations [cf. 26, 31, 34-36, 
50-51]. For example, Akay et al. [34] used approximate 
entropy of diastolic heart sounds to distinguish 
between CAD and non-CAD patients and obtained 
sensitivity of 77%, a specificity of 80%, and an overall 
accuracy of 78%. Steinisch et al. [26] used sample 
entropy of MCG to distinguish between CAD patients 
and healthy people and obtained good performance: 
99% sensitivity, 97% specificity, 98% accuracy, 96% 
and 99% positive and negative predictive values 
respectively [26]. To distinguish between CAN and 
non-CAN patients, Khandoker et al. [51] obtained 
82.35% accuracy, 100% sensitivity and 62.5% 
specificity when using sample entropy of HRV alone 
and 88.24% accuracy, 100% sensitivity and 75% 
specificity when using the combination of sample 
entropy and Poincaré plot.  

However, the use of entropy for discrimination 
and classification does not have a broad utility yet 
based on all available literature. One reason may be 
that, although a variety of entropy measures have 
been proposed, none of them have a broad utility in 
all the major physiological signals. One of the entropy 
measures, sample entropy, tends to get more and 
more popular among all the available entropy 
measures. However, the calculation of sample 
entropy requires the adjustment of multiple 
parameters such as embedding dimension and 
tolerance and different settings on these parameters 
may lead to different results. Consequently, entropy 
alone can hardly be used as a clinically valid 
diagnosis tool at present. In addition, different 
entropies may be suitable for different physiological 
signals. Thus, currently, it is more practical to explore 
the overall trend of entropy change in different 
disease statuses as we did in this review. In the future, 
research can be conducted to explore better and more 
stable entropy measures with broader usage in 
various major physiological signals.  

In all, through the summarized results coming 
out of our review on the application of entropy in 
cardiovascular diseases, we conclude that the 
direction of entropy change heavily relies on the 
physiological signals under investigation. We 
confirmed that, for HRV, the entropy of a healthy 
person is higher than that of a patient with 
cardiovascular diseases in all existing literature that 
we have searched. This is also true for pulse index. 
However, for DPV and diastolic heart sound, the 
direction of entropy change is reversed: the entropy of 
a healthy person is lower than that of a CAD patient. 

These above results hold regardless of the different 
types of entropy to be used in the studies. For MCG, a 
healthy person has a higher entropy value than a 
CAD patient if using regular entropy such as sample 
entropy. Our conclusion should not only give 
valuable guidance for further research on the 
application of entropy in cardiovascular diseases but 
also provide a foundation for using entropy to 
analyze the entropy of physiological signals measured 
by wearable medical device. 
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