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Abstract 

In recent years, gene fusion detection for cancer treatment has become increasingly important since 
more therapeutic agents have been developed to suppress fusion kinases. Although a number of 
tools have been developed to detect gene fusions from DNA sequencing data, most of them are not 
sensitive enough for processing the data from the samples with low tumor DNA composition, like 
cell-free tumor DNA. In this paper, we will introduce GeneFuse, a tool to detect and visualize gene 
fusions with high sensitivity and specificity. GeneFuse focuses on the curated gene fusions, which are 
available in COSMIC (the Catalogue of Somatic Mutations in Cancer) database. For each detected 
fusion, GeneFuse reports its genome locus, inferred protein forms, and supporting sequencing 
reads. The fusion detection results are visualized in an HTML page for cloud-friendly validation. 
GeneFuse is an open source tool available at GitHub: https://github.com/OpenGene/GeneFuse 
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Introduction 
Fusion genes are chimeras of two different genes 

that originated from genomic structural rearrange-
ments, transcription read-through, or abnormal RNA 
splicing [1-3]. In recent years, the landscape of gene 
fusions in many cancer types has been elucidated with 
the development of next generation sequencing 
(NGS). The gene fusion events are quite common in 
prostate, lymphoid, soft tissue, breast, gastric, and 
lung cancers [4-10]. Many of them are associated with 
oncogenesis and tumor progression, and some even 
are identified as driver mutations among several 
cancer types [11-12]. The enrichment of knowledge in 
this aspect further facilitates clinical cares. Some 
fusion genes are good biomarkers for cancer 
diagnosis, prognosis, and treatment guidance. The 
BCR-ABL, TMPRSS2-ERG, EML4-ALK, and KIF5B- 
RET are good examples [13-16]. 

To date, several algorithms and tools have been 
developed to detect gene fusions from NGS data. 
Some of them rely on the entire or targeted genome 
sequencing method, while others depend on the 

RNA-seq [17-19]. Both of them need the alignment 
step, where sequencing reads are aligned to a 
reference using mapping tools such as Burrows 
Wheeler Alignment (BWA) [20] and Bowtie [21]. For 
example, FACTERA [18] first discovers improperly 
paired reads from the alignment result, then clusters 
the closet exons of discordant reads into distinct 
gene-gene groups, and finally finds the breakpoints to 
locate gene fusions. DELLY [22] is another structural 
variant detector that can discover gene fusions from 
BAM files. First, it implements paired-end mapping 
analysis from the alignment result to find read pairs 
with abnormal orientation or insert size. Secondly, the 
identified paired-end clusters are interpreted as 
breakpoint-containing genomic intervals, which are 
screened for split-read support to map the genomic 
rearrangements at single-nucleotide resolution. 
Finally DELLY will merge the supporting read pairs 
and annotate them against the reference genome. The 
mapping-based gene fusion detectors have several 
advantages. For example, they can scan for all possi-
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ble gene fusions and are able to detect novel ones. 
However, the mapping-based detectors also 

have disadvantages since their detection results are 
heavily dependent on the alignment results output by 
the sequence aligner. If the aligner cannot detect 
accurate clips and chimeras, the mapping-based 
fusion detection algorithms may not work properly. 
However, misalignments can happen often for the 
reads containing fusions. On the other hand, clips and 
chimeras can also happen often for the normal reads 
that don’t contain any fusions. These factors can affect 
the sensitivity and specificity of these fusion callers. 
False positives can happen often at repetitive regions. 
Meanwhile false negatives can also happen often 
when they process data from the samples with low 
tumor DNA composition, like cell-free tumor DNA. 

For clinical applications, instead of finding a lot 
of gene fusions with unknown clinical significance 
and large uncertainty, it is better to search for gene 
fusions known to be responsive for clinical treatmen-
ts. Motivated by the need to detect clinical significant 
gene fusions with high sensitivity and specificity, we 
developed GeneFuse, which can directly detect gene 
fusions from the raw FASTQ files to eliminate the 
affect of alignment result. GeneFuse only focuses on 
the fusion genes with known clinical significance, 
which can be found from the COSMIC (the Catalogue 
of Somatic Mutations in Cancer) database. 

GeneFuse is also able to visualize the detected 
fusions by rendering them with the supporting reads 
and inferred fusion protein structures. The novel 
fusion visualization can improve the interpretability 
of the results, and is important for experienced 
bioinformatician and data interpreter to manually 
validate the fusions. For each detected fusion, 
GeneFuse reports its genome locus, inferred protein 
forms, and supporting sequencing reads. The fusion 
detection results are visualized in an HTML page for 
cloud-friendly validation. 

Implementation 
The basic idea of GeneFuse is to search for the 

reads that can be well mapped to two different genes 
for its left part and right part, but cannot be entirely 
mapped to any position of the whole reference 
genome. A read that matches the two genes of a 
fusion at its fusion point is called a supporting read, 
and the duplicated supporting reads of each fusion 
will be grouped as a single unique supporting read. A 
fusion will be qualified if it has enough unique 
supporting reads. The overall design and algorithm 
components will be presented in following sections. 

Overall Design 
The program flow of GeneFuse can be divided 

into four major steps: indexing, matching, filtering, 
and reporting. Fig. 1 demonstrates how GeneFuse 
works. 

Indexing 
A CSV file, which lists the genome regions of 

target fusion genes and their exons, is needed to 
extract gene sequences from reference genome. 
GeneFuse has provided two CSV files giving the 
curated gene fusion lists from COSMIC database for 
hg19/GRCh37 and hg38/GRCh38 respectively. 
COSMIC is one of the most complete databases, 
providing almost all of the validated human cancer 
gene fusions. Although COSMIC database is sufficient 
for most clinical research, GeneFuse still provides a 
gene list generation utility to customize the target 
fusion genes. 

GeneFuse will extract the sequences from the 
reference genome within the fusion gene regions. A 
k-mer (all possible substrings of length k, k=16 in this 
implementation) of all these sequences will be 
computed, and each element of the k-mer is 
associated with a list of genome coordinates that it 
matches. A hashmap will be used to store the associa-
tion between k-mer and the genome coordinate, and it 
will be used for mapping a read to the target genes. 

Matching 
In the matching step, a set of sequences is 

computed for each read by collecting its all 
subsequences with a length of k. Then the associated 
genes of this read can be found by mapping the 
subsequences to the genome coordinate using the 
index computed in the last step. If the left part and 
right part of a read can be mapped to two different 
genes, the read will be segmented to two regions. The 
read will be considered as a match candidate if its left 
region and right region are both long enough (Tregion = 
20 by default), and simultaneously meets such 
condition that the bases that are out of both regions 
are less than a certain threshold (Tummapped = 10 by 
default). All of the fusion match candidates will be 
stored in a list and will be filtered in the next step.  

Sequence length is also a factor that affects 
mutation detection. To obtain a longer sequence, 
GeneFuse tries to merge each pair of reads for 
paired-end sequencing data. For a read pair R1 and R2, 
rcR2 is computed as the reverse complement of R2. The 
merging algorithm searches for the largest overlap of 
R1 and rcR2, while their overlapped subsequences are 
entirely identical. If the overlapped region is longer 
than a threshold (by default, Tlen = 30 bp), we consider 
them as overlapped and merge them to a single read. 
We can obtain longer sequences after merging read 
pairs, and continue the matching process even if the 
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mutation point locates on the edge of reads. If one pair 
of reads cannot be merged, GeneFuse will process 
them. Although a sequencing library with large insert 
sizes would prohibit the overlap of read pairs, it will 
not cause a significant impact on performance since 
GeneFuse can individually process a read pair as two 
single-end reads. 

Filtering 
Once the fusion match candidate list is prepared, 

enumerating all subsequences of the reads supporting 
the fusions forms a new k-mer. Then the entire 
reference genome will be scanned for searching the 
same k-mer elements, and the matched genome 

coordinates will similarly be stored to build a new 
global index G. For each read in the fusion match 
candidate list, it will be mapped to G to check whether 
it can be well aligned to a reference genome. If a read 
could be mapped to a reference genome, it is removed 
from the fusion match candidate list. 

Other filters – like low complexity filter and 
match quality filter – will also be applied to eliminate 
false callings. Furthermore, if one read is mapped to 
two segments of one single gene, it will be treated as a 
deletion, and removed if the deletion length is too 
short. 

 

 
Fig. 1. The program flow of GeneFuse. Four steps are included in the workflow: indexing, matching, filtering, and reporting. In the indexing step, a hashmap of 
mapping to genes is computed. In the matching step, reads are mapped to the genes using the computed hashmap, and those that can be mapped to two genes are 
saved to fusion matches. In the filtering step, each fusion match is filtered by its read complexity, match quality, and other factors. Finally, in the reporting step, the 
detected fusions are validated, and the supporting reads for each fusion are piled up and rendered to an HTML page. The input and output files are then highlighted 
in grey. 
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Reporting 
In the reporting step, the fusion matches will 

first be clustered as fusion results by the fusion points. 
For each fusion result, its fusion position will be 
located and its breakpoint will be tuned to find a 
better separation of fused reads. The supporting reads 
for each fusion result will then be sorted and the 
duplicated reads will be grouped as a single unique 
read. Each fusion result’s unique supporting read 
number will be compared to a threshold (Tunique = 2 by 
default), and the ones passing the filter will be 
considered as qualified fusions, for which the exon or 
intron of the fusion breakpoint will be located. 

GeneFuse provides reports in two formats: plain 
text report and HTML report. The text format report is 
a standard FASTA file, which provides the fusion 
information in the comment lines and the read 
sequences in the sequence lines. This FASTA file is 
very convenient for further validation using 
sequence-searching systems like BLAST. For HTML 
report, all the supporting reads of each fusion are 
piled up and all the fusions are rendered in a single 
HTML page. Fig. 2 demonstrates a result of a 
CD74-ROS1 fusion. 

Results and Discussion 
We conducted some experiments to compare 

GeneFuse with FACTERA and DELLY since they are 
two widely used gene fusion callers.  

Sensitivity and specificity 
To evaluate the performance of GeneFuse, we 

applied it to 10 NSCLC cell-free DNA samples 
covering our 1.6 Mb custom panel, six of which 
harboring known rearrangements (EML4:exon6-ALK 
exon20; EML4:exon13-ALK exon20) confirmed by 
digital droplet PCR (ddPCR), and GeneFuse was able 
to detect all of them. On the contrary, none could be 
detected in the four ALK wild-type samples, yielding 
a sensitivity and specificity of 100 % for both in 
detecting the ALK fusion events. We tested the same 
dataset with FACTERA v1.4.4 and DELLY v0.7.6. The 
results are shown in Table 1. 

Speed evaluation 
To evaluate the speed of GeneFuse, we 

conducted an experiment with 13 different FASTQ 
paired-end files. Since FACTERA and DELLY require 
sorted BAM files as input, we also recorded the 
alignment time and BAM sorting time, which were 
performed with BWA and Picard, respectively. 
GeneFuse was run with almost all the druggable gene 
fusions including the major forms of ALK, ROS1, RET, 
NTRK1, NTRK3, and BCR-ABL1 fusions. The result 
showed that GeneFuse took much less time than 

(BWA + Picard + FACTERA) or (BWA + Picard + 
DELLY). The results are shown in Table 2. 

 

Table 1. The results of GeneFuse in detecting the EML4-ALK 
fusion events in 10 cfDNA samples compared to DELLY and 
FACTERA. With the ddPCR result as the golden standard, it was 
observed that GeneFuse had the highest sensitivity. 

Sample 
ID 

Fusion type ddPCR GeneFuse DELLY FACTERA 

cfDNA_
001 

EML4:exon6-
ALK exon20 

detected detected detected detected 

cfDNA_
001 

EML4:exon13
-ALK exon20 

detected detected detected detected 

cfDNA_
002 

Wild Type Not detected Not 
detected 

Not 
detected 

Not 
detected 

cfDNA_
003 

Wild Type Not detected Not 
detected 

Not 
detected 

Not 
detected 

cfDNA_
004 

Wild Type Not detected Not 
detected 

Not 
detected 

Not 
detected 

cfDNA_
005 

Wild Type Not detected Not 
detected 

Not 
detected 

Not 
detected 

cfDNA_
006 

EML4:exon6-
ALK exon20 

detected detected detected detected 

cfDNA_
006 

EML4:exon13
-ALK exon20 

detected detected Not 
detected 

detected 

cfDNA_
007 

EML4:exon6-
ALK exon20 

detected detected detected detected 

cfDNA_
007 

EML4:exon13
-ALK exon20 

detected detected Not 
detected 

detected 

cfDNA_
008 

EML4:exon6-
ALK exon20 

detected detected detected detected 

cfDNA_
008 

EML4:exon13
-ALK exon20 

detected detected Not 
detected 

detected 

cfDNA_
009 

EML4:exon6-
ALK exon20 

detected detected Not 
detected 

detected 

cfDNA_
009 

EML4:exon13
-ALK exon20 

detected detected Not 
detected 

Not 
detected 

cfDNA_
010 

EML4:exon6-
ALK exon20 

detected detected detected detected 

cfDNA_
010 

EML4:exon13
-ALK exon20 

detected detected detected detected 

 

Table 2. The speed evaluation result of GeneFuse against 
FACTERA and DELLY. The file size in the first column is the sum 
of read1 and read2 base numbers. BWA-MEM was run with 4 
threads, while GeneFuse was also run with 4 threads. The 
druggable targets can be found from the GeneFuse github 
repository. 

File size 
(bases) 

BWA 
MEM 

Picard 
sort  

FACTE
RA 
step 

DELLY 
step 

BWA+
Picard+
FACTE
RA 

BWA+
Picard+
DELLY 

GeneFuse 
with 
druggable 
targets 

6.48 G 0:28:44 0:11:15 0:05:38 0:04:52 0:45:37 0:45:51 0:05:30 
7.26 G 0:30:10 0:11:59 0:06:00 0:05:09 0:48:09 0:48:18 0:05:39 
9.13 G 0:49:37 0:17:51 0:05:43 0:08:23 1:13:11 1:16:51 0:08:26 
7.48 G 0:41:32 0:13:54 0:06:47 0:11:18 1:02:13 1:07:44 0:07:25 
7.33 G 0:40:52 0:14:04 0:06:46 0:10:59 1:01:42 1:06:55 0:07:34 
7.19 G 0:43:11 0:14:46 0:03:35 0:05:22 1:01:32 1:04:19 0:07:00 
7.38 G 1:01:12 0:13:39 0:09:51 0:10:50 1:24:42 1:26:41 0:09:47 
7.80 G 1:00:45 0:14:46 0:06:42 0:07:17 1:22:13 1:23:48 0:10:07 
7.46 G 0:54:54 0:14:08 0:06:34 0:08:45 1:15:36 1:18:47 0:09:50 
8.14 G 1:05:04 0:14:56 0:08:20 0:08:42 1:28:20 1:29:42 0:10:45 
8.53 G 0:52:06 0:15:58 0:03:43 0:03:19 1:11:47 1:12:23 0:07:57 
9.75 G 0:48:30 0:18:04 0:04:27 0:04:11 1:11:01 1:11:45 0:08:55 
9.42 G 0:47:52 0:17:46 0:06:03 0:04:25 1:11:41 1:11:03 0:09:27 
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Fig. 2. A screenshot of a GeneFuse's pile-up result. The demonstrated fusion is CD74-ROS1, which is an important druggable target for lung cancer. From the title, 
we can find that it is the third detected fusion in this report. The inferred fusion protein below the title shows it has 3 exons from CD74 gene, and 33 exons from 
ROS1 gene. The supporting reads are presented in a table, and the fusion breakpoint is given in the first row of the table, while the reference sequences are given in 
the second row. For each supporting read, the color of its bases indicates the quality score (green and blue indicate high quality, red indicates low quality). An online 
report can be found at http://opengene.org/GeneFuse/report.html 

 
Conclusion 

In the clinical application of analyzing cancer 
sequencing data, it is essential to detect druggable 
mutations and fusions with low MAF from ultra-deep 
sequencing data. The existing tools, like DELLY and 
FACTERA, are not sensitive enough, and are lacking 
the function of visualizing detected fusions. As a fast 
and lightweight tool aimed at detecting target gene 
fusions from raw FASTQ data, GeneFuse has high 
sensitivity and can visualize detected fusions by 
generating HTML-based read pile-up visualizations. 
It will further put the gene fusion testing to clinical 
applications. 
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