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Abstract 

Matrix metalloproteases (MMPs) are a family of zinc-dependent proteinases that play complex and 
diverse roles in metabolism, which are vital for physiological development. In this paper, we present 
a novel method to identify peptide binding to seven matrix metalloproteases. First, we propose a 
novel sampling criteria for constructing a training set for each new peptide motif. Then, we select 
nine physicochemical properties of amino acids and compute their auto-cross covariance to 
effectively extract features for both natural and non-natural amino acids. Finally, we adopt random 
forest to predict binding values of each peptide motif respectively with seven MMPs. Our method 
verifies on 1300 known peptide motifs binding to seven MMPs and achieved preeminent 
Pearson-product-moment correlation coefficient (PCC) and root mean squared error (RMSE) on all 
seven MMPs, especially of 0.9181 and 9.3827 on MMP-7. We predict binding values of 4000 peptide 
motifs and identify peptides preferentially bind to MMP-2 and MMP-7. We herein report 4 novel 
inhibitor candidates of Asp-Ile-Phe, Asp-Ile-Tyr, Asp-Ile-Lys and Hser-Gly-Phe with high potency 
and selectivity binding to MMP-2, as well as 6 novel inhibitor candidates of Chg-Ile-Ile, Chg-Ile-Leu, 
Chg-Ile-Glu, Chg-Ile-Met, Chg-Val-Ile and Chg-Val-Leu selectively binding to MMP-7. Our findings 
facilitate the identification of inhibitors with good potency as well as desirable selectivity, providing 
significant insights of candidate inhibitor drugs. 

Key words: MMPs, peptide inhibitors, auto-cross covariance, random forest  

Introduction 
Matrix metalloproteases (MMPs) are a family of 

zinc-dependent proteinases that play complex and 
diverse roles in metabolism, which are vital for 
physiological development. It has been revealed that 
MMP-2 and MMP-7 directly accelerate tumori- 
genesis, which means these enzymes as vital disease 
targets [1]. On the other side, some members in the 
MMP family often confer protective effects in various 
human diseases, improving host resistance towards 
cancer and other abnormalities [2]. For example, 
knocking-out certain MMPs (MMPs-3, -8 and -9) has 
been found directly linked to tumor proliferation in 
animal models of several cancers, emphasizing the 
positive roles mediated by selective members of the 

MMP family [3]. Hence, there have accordingly been 
intense interests in developing effective small- 
molecule drugs with strong selectivity against specific 
negative members of this class of enzymes.  

Nevertheless, MMPs have highly conserved 
mechanisms and share some active sites. Several 
MMP inhibitors which were at first selected and 
optimized on the basis of good potency came into 
extensive phase III clinical trials, only to be discovered 
ineffective because of problems arising from a lack of 
selectivity [4]. This raises a major impetus and a big 
challenge to develop compounds with not only good 
potency but also high selectivity [5]. Ideally, such 
inhibitors should inhibit only target MMPs (MMP-2 
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and MMP-7) responsible for the relevant disease, 
while minimally affecting any anti-target MMPs 
(MMP-3, MMP-8 and MMP-9), which may be 
beneficial for human-being.  

There have been several experimental strategies 
proposed in order to address these pressing challe-
nges. Rao et.al proposed a well-accepted strategy 
involving grafting short peptide chains to zinc 
binding groups (ZBG) [6]. Yao and colleagues 
presented an effective experimental strategy to 
generate clustered enzymes “fingerprints” through 
high-throughput screening of focused inhibitors 
libraries [7]. They have adopted the hydroxamate 
(CONH-O-) group that chelates strongly to the metal 
center at the enzyme active site and permuted across 
the 𝑃𝑃1 , 𝑃𝑃2  and 𝑃𝑃3  positions, creating a diverse 
repertoire of 1400 individual inhibitor scaffolds by 
adopting the split-pool directed sorting synthesis 
method. In the library, the 𝑃𝑃1 consists of 6 natural 
amino acids and 5 non-natural amino acids (CPA3, 
CHG, HPE, 𝑆𝑆𝑓𝑓, HSER) [8] (respectively set as single 
letters of U, B, Z, 𝑆𝑆𝑓𝑓, J), which are made of substituted 
succinyl hydroxamate ZBG (highlighted in pink) as 
shown in Scheme 1. The 𝑃𝑃2 , and 𝑃𝑃3  positions 
respectively consist of 20 natural amino acids. As a 
result, they reported a data set acquired by seeing a 
comprehensive panel of 1400 peptide hydroxamates 
respectively for seven different MMPs, providing 
unique insights to inhibitor design and preference 
within this important group of enzymes. However, 
variation at three positions of hydroxamates peptide 
can cause differences in binding affinities in total of 
4400 possibilities. A large part of binding values of 
these samples, which can provide nontrivial insights 
and assistance for inhibitor design, is still missing. 
Using experimental method to obtain all the missing 
sequences is expensive, time-consuming and 
labor-extensive. Hence, we construct a computational 
model to predict MMP-specific binders from 
experimental data. 

In this paper, we propose the first computational 
method to identify and analyze MMPs hydroxamates 
peptides’ binding specificity. First, we propose a 
sampling criteria to construct a training set for each 
new peptide motif. Then, we select nine 
physicochemical properties of amino acids, which can 
effectively describe the differences among amino 
acids and can also be obtained across non-natural 
amino acids. We also proposed features of auto-cross 
covariance [9, 10], extracting correlative properties of 
amino acids in any two positions. Finally, we adopt 
random forest to predict binding values of each 
peptide motif respectively with seven MMPs. On 
MMP-7, our method has achieved overall Pearson- 
product-moment correlation (PCC) and root mean 

squared error (RMSE) values of 0.9181 and 9.3827. The 
high values of PCC and RMSE of our method on all 
seven MMPs have proven the rationality and 
effectiveness of our computational method. In the 
end, we find 4 novel peptides that selectively bind to 
MMP-2, including Asp-Ile-Phe, Asp-Ile-Tyr, Asp-Ile- 
Lys and Hser-Gly-Phe. We also identify 6 novel 
peptides with high selectivity binding to MMP-7 of 
Chg-Ile-Ile, Chg-Ile-Leu, Chg-Ile-Glu, Chg-Ile-Met, 
Chg-Val-Ile and Chg-Val-Leuor, providing instructive 
insights for further experiment design and detection 
of highly selective inhibitors of MMPs. 

Methods 
We present the first computational method of 

MMPs peptide-binding specificity identification. For 
each MMP, we have 1400 peptide motifs with 
experimental binding affinity values, treated as 
known in this study. To identify binding values of 
4400 peptide sequences binding to seven MMPs, we 
firstly propose a sampling criteria to construct an 
affinity-based training set for each peptide motif. 
Then we select 9 physicochemical properties of amino 
acids to describe each peptide motif. We also use 
auto-cross covariance to extract correlative properties 
of amino acids in any two positions. Finally, we 
consider Random Forest to predict affinity values of 
peptide motifs. The method is shown in Figure 1. 

Data set 
Yao and co-workers proposed a small but highly 

diversified 1400-member peptide library [7]. The 
library was prepared in two parts. First, a 400- 
member sub-library containing a leucine side chain at 
𝑃𝑃1 position (represented with single-letter code L) was 
constructed with permutations of all 20 natural amino 
acids across 𝑃𝑃2 and 𝑃𝑃3 positions. Second, an additional 
1000-member set was constructed with the remaining 
10 amino acids at 𝑃𝑃1′ position containing side chains of 
both natural and non-natural amino acids (Scheme 1). 
The 𝑃𝑃2 and 𝑃𝑃3 positions in this set were systematically 
permuted with 10 proteinogenic amino acids, 
specifically nonpolar (Ala, Leu, Phe, Trp), charged 
polar (Glu, Lys, His) and uncharged polar (Gln, Ser, 
Tyr) amino acids. Yao experimented the 1400 peptides 
and obtained their binding values respectively with 
seven MMPs to identify selective peptide [7]. 

For each MMP, there are 11 × 20 × 20 = 4400 
possibilities of inhibitor peptides in total. There could 
still be a significant number of peptides with high 
potency and selectivity in the remaining untested 
3000 peptides. Hence, we construct a regression 
model to predict binding values of non-experimental 
peptides to find effective peptides with high potency 
and selectivity. For each MMP isoform, we have 1400 
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peptide motifs with experimental binding affinity 
values. However, as the physicochemical properties 
of the amino acid with sulfone side chain (𝑆𝑆𝑓𝑓 ) are 
unobtainable, the peptide motifs containing an 𝑆𝑆𝑓𝑓 
can’t be effectively described or further be used as 
training data. Thus we forgo 𝑆𝑆𝑓𝑓 and the peptides with 
𝑆𝑆𝑓𝑓. As a result, we use 1300 peptide motifs as training 
samples to predict the non-experimental peptides. 
The non-experimental peptides which can be effectiv-
ely predicted are also the ones without 𝑆𝑆𝑓𝑓on 𝑃𝑃1 posi-
tion. There are, hence, 10 × 20 × 20 = 4000 peptides’ 
binding values predicted by our regression model. 

 

 
Scheme 1. The optional non-natural and natural amino acids for 
three positions. The 𝑃𝑃1 consists of 11 non-natural and natural amino acids 
made of substituted succinyl hydroxamate ZBG (highlighted in pink). Each was 
assigned a unique single-letter code (inset). 

 

 
Figure 1. The overall method flow. 

 

Sampling Criteria 
We propose a sampling criteria to build a 

predictor for each new peptide motif. If all 1300 
peptide motifs are used to construct a regression 
model, the predictor would be confused due to 

importing many irrelevant peptide sequences. Here, 
we exploit a similarity-based sampling approach. All 
20 natural amino acids and 5 non-natural amino acids 
are divided into 5 categories [11, 12]: amino acids with 
positive charged side chains, amino acids with 
negative charged side chains, amino acids with polar 
uncharged side chains, amino acids with hydrophobic 
side chains and special cases. The details are shown in 
Table 1. 

 

Table 1. Five categories of 20 natural amino acids and 5 
non-natural amino acids 

Category Amino Acids 
Amino acids with positive charged side chains R, H, K, B 
Amino acids with negative charged side chains D, E, J, Z  
Amino acids with polar uncharged side chains S, T, N, Q 
Amino acids with hydrophobic side chains A, I, L, M, F, W, Y, V 
Special cases C, G, P, U, 𝑆𝑆𝑓𝑓 

 
We propose an evaluation of similarity between 

two peptide samples based on the similarity φ  of 
amino acid categories. We calculate the similarity 
between the training peptide sample 𝑆𝑆𝐴𝐴and the target 
peptide sequence 𝑆𝑆𝑇𝑇  as follows: 

sim(𝑆𝑆𝐴𝐴, 𝑆𝑆𝑇𝑇) = 

φ(𝑆𝑆𝐴𝐴1, 𝑆𝑆𝑇𝑇1) + φ(𝑆𝑆𝐴𝐴2 , 𝑆𝑆𝑇𝑇2) + φ(𝑆𝑆𝐴𝐴3, 𝑆𝑆𝑇𝑇3)    (1) 

where 𝑆𝑆𝐴𝐴𝐴𝐴 , 𝑆𝑆𝑇𝑇𝐴𝐴  respectively denotes correspond-
ing amino acid on the i-th position of training and 
target peptide; φ(∗,∗)  represents the amino acid 
similarity: if two amino acids belong to the same 
category, the similarity φ on this position is 1, 
otherwise is 0. 

For each target sequence motif, we choose 
samples which have similarity values of at least 1 
(sim(𝑆𝑆𝐴𝐴, 𝑆𝑆𝑇𝑇) ≥ 1), which means each sample at least 
has one position’s amino acid belonging to the same 
category with amino acid on the corresponding 
position of target peptide. Compared with other 
random-based sampling approach, the similarity- 
based sampling strategy takes similarity into 
consideration and hence filter the irrelevant samples. 

Feature Extraction 
The computational methods have been widely 

used for classifying peptides or predicting binding 
values of small-molecules containing natural amino 
acids. [13, 14, 15, 16, 17]. However, there have been 
challenges employing computational methods to 
peptides containing non-natural amino acids because 
it’s hard to extract effective features to describe and 
differentiate non-natural amino acids. We herein 
propose two kinds of features in this study to 
effectively describe both non- and natural amino 
acids: one extracts nine physicochemical properties 
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for each position and this produces 27 features; the 
other extracts correlation of amino acids in any two 
positions of auto-cross covariance, nine features for 
every two positions, thus leads to another 27 features. 

Physicochemical Properties 
We compute 9 physicochemical properties [18] 

of all 20 amino acids and 4 non-natural amino acids 
(B, J, T, U) to describe each peptide motif using 
E-dragon [19] and MOE programs [20]. The amino 
acid with sulfone side chain 𝑆𝑆𝑓𝑓 has been omitted, due 
to its physicochemical properties unable to be 
computed. These 9 physicochemical properties consist 
of Molecular Weight (MW), Sum of Atomic Van Der 
Waals Volumes (SV), Sanderson Electronegativity 
(SE), Polarizability (P), Number of hydrogen bonds 
(HB), Eccentric Connectivity Index (CSI), Eccentricity 
(ECC), Sphericity (SPH), Hydrophilic factor (HY). 
Details are shown in Table 2. These nine 
physicochemical properties are normalized to zero 
mean and unit standard deviation [21, 22, 23]. The 
first kind of 27 features can be extracted from these 
normalized properties as follows: 

𝑃𝑃𝐴𝐴,𝑗𝑗′ =
𝑃𝑃𝑖𝑖,𝑗𝑗−𝑃𝑃𝑗𝑗
𝑆𝑆𝑗𝑗

        (2) 

where 𝑃𝑃𝑗𝑗  represents the mean of the j-th 
property, 𝑃𝑃𝐴𝐴,𝑗𝑗  is the j-th property of the i-th amino 
acid, 𝑆𝑆𝑗𝑗 is the corresponding unit standard deviation. 

 

Table 2. Nine physicochemical properties of 20 natural amino 
acids and 5 non-natural amino acids.  

AA MW SV SE P HB CSI ECC SPH HY 
ALA A 90.12 7.11 14.35 7.58 2 24 16 0.576 3.794 
GLY G 75.08 5.21 10.52 5.44 2 19 13 0.828 2.870 
IIE I 132.21 11.90 23.00 12.86 2 61 37 0.557 2.926 
LEU L 132.21 11.90 23.00 12.86 2 63 38 0.500 2.926 
PRO P 116.16 9.71 18.23 10.34 2 51 27 0.651 2.001 
VAL V 118.18 10.31 20.12 11.10 2 43 27 0.410 3.150 
PHE F 166.22 14.31 24.12 15.10 2 131 68 0.831 2.456 
TRP W 205.26 17.30 28.22 18.11 3 195 95 0.852 3.198 
TYR Y 182.22 14.82 25.44 15.56 3 157 82 0.787 3.446 
ASP D 134.13 9.13 18.00 9.49 4 63 38 0.708 4.320 
GLU E 148.16 10.73 20.89 11.25 4 85 50 0.770 4.068 
ARG R 176.26 14.59 28.36 15.50 4 139 79 0.863 8.560 
HIS H 156.19 12.10 21.55 12.59 4 106 55 0.644 3.857 
LYS K 148.24 13.20 26.04 14.25 2 98 57 0.836 6.438 
SER S 106.12 7.62 15.68 8.03 4 36 23 0.652 4.875 
THR T 120.15 9.22 18.56 9.80 4 43 27 0.450 4.508 
CYS C 122.19 8.20 15.43 9.23 2 36 23 0.668 4.875 
MET M 150.25 11.39 21.19 12.75 2 74 44 0.810 3.032 
ASN N 133.15 9.62 18.78 10.04 4 63 38 0.734 5.574 
GLN Q 147.18 11.21 21.66 11.80 4 85 50 0.787 5.271 
CHG B 158.25 14.50 26.88 15.63 2 101 53 0.477 2.587 
HSER J 120.15 9.22 18.56 9.80 4 54 33 0.735 4.508 
HPE Z 180.25 15.90 27.00 16.86 2 163 84 0.762 2.342 
CPA3 U 157.24 14.20 25.94 15.24 2 106 55 0.595 1.574 
MW, Molecular Weight; SV, Sum of Atomic Van Der Waals Volumes; SE, 
Sanderson Electronegativity; P, Polarizability; HB, Number of hydrogen bonds; 
CSI, Connectivity Index; ECC, Eccentricity; SPH, Sphericity; HY, Hydrophilic 
factor. 

Auto-Cross Covariance  
We also use auto-cross covariance to extract 

correlation of amino acids in any two positions. 
Auto-cross covariance (ACC) can get two kinds of 
variables, auto cross (AC) between the same 
descriptor, and cross covariance (CC) between two 
different descriptors. In this study, we only use AC 
variables in order to avoid generating too large 
number of variants. We modify the AC variables to 
get correlation of amino acids in any two positions as 
follows: 

 𝐴𝐴𝐴𝐴(𝑚𝑚,𝑛𝑛,𝑗𝑗) = 

�𝑋𝑋𝑚𝑚,𝑗𝑗 −
1
3
∑ 𝑋𝑋𝐴𝐴,𝑗𝑗3
𝐴𝐴=1 � × (𝑋𝑋𝑛𝑛,𝑗𝑗 −

1
3
∑ 𝑋𝑋𝐴𝐴,𝑗𝑗3
𝐴𝐴=1 )    (3) 

where m, n are different position of a peptide 
and j is the j-th property of residues, 𝑋𝑋𝐴𝐴,𝑗𝑗 is the j-th 
property of residue on the i-th position. 

Random Forest  
The training algorithm for random forest [24, 25, 

26] applies the general technique of bagging. Given a 
training set of 𝑋𝑋 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛  with responses 𝑌𝑌 =
𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛, bagging repeatedly and randomly selects 
a sample for B times with replacement of the training 
set and fits trees to these samples: 

For b = 1, 2, …, B: 
• Sample, with replacement, n training examples 

from X, Y; call these 𝑋𝑋𝑏𝑏, 𝑌𝑌𝑏𝑏. 
• Train a regression tree 𝑓𝑓𝑏𝑏 on 𝑋𝑋𝑏𝑏, 𝑌𝑌𝑏𝑏. 

After training, predictions for unseen samples 
𝑥𝑥′can be obtained by averaging the predictions from 
all the individual regression trees on 𝑥𝑥′: 

𝑓𝑓 =  1
𝐵𝐵
∑ 𝑓𝑓𝑏𝑏(𝑥𝑥′)𝐵𝐵
𝑏𝑏=1      (4) 

We calculate a five-fold cross-validation and 
permute from 100 to 5000 with step of 1 to get the 
optimal number of regression trees for random forest 
regression model. We create an ensemble of 1500 
regression trees for predicting non-experimental 
peptides’ binding values. 

Results 
The 𝑃𝑃1′  position contains 5 non-natural amino 

acids, one of which has a side chain of sulfone (𝑆𝑆𝑓𝑓). 
Among the 1400 experimented samples, there are 10 x 
10= 100 peptides with 𝑆𝑆𝑓𝑓  on 𝑃𝑃1  position and 10 
proteinogenic amino acids permuted on 𝑃𝑃2  and 𝑃𝑃3 
positions. Among the 4400 peptides totally in the 
library, there are 20 x 20 =400 peptides with 𝑆𝑆𝑓𝑓 on 𝑃𝑃1 
position and 20 natural amino acids permuted on 𝑃𝑃2′  
and 𝑃𝑃3  positions. Due to the physicochemical 
properties of 𝑆𝑆𝑓𝑓 , the total number of experimental 
samples which can be used is 1300; the total number 
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of sequences which regression model can predict is 
4000. In this section, we complete three kinds of 
experiments. First, our method verifies on the 1300 
known peptide motifs binding to seven distinct but 
highly homologous MMPs. Second, our method tests 
on 4000 peptide sequences to predict binding affinity 
values. Third, we identify peptides that preferentially 
bind to MMP-2 and MMP-7 over other MMPs. 

Effectiveness of the regression model  
To test the effectiveness of our method, we verify 

1300 peptide motifs binding to seven MMPs 
respectively with Leave-one-out validation and 
two-fold cross-validation (to avoid overfitting) 
combining with 1500-tree random forest regression 
model. The Pearson-product-moment correlation 
coefficient (PCC) and the root mean squared error 
(RMSE) are used to evaluate performance: 

PCC = �1 − ∑ (𝑒𝑒𝑖𝑖−𝑝𝑝𝑖𝑖)2𝑁𝑁
𝑖𝑖=1
∑ (𝑒𝑒𝑖𝑖−�̅�𝑒)𝑁𝑁
𝑖𝑖=1

    (5)  

RMSE = �∑ (𝑒𝑒𝑖𝑖−𝑝𝑝𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

|𝐷𝐷|
      (6)  

where D contains all relevant binding motifs, �̅�𝑒 is 
the average binding affinity, 𝑒𝑒𝐴𝐴 denotes experimental 
binding affinity value of the i-th peptide sequence, 𝑝𝑝𝐴𝐴  
denotes the predicted affinity value of the i-th peptide 
sequence. An accurate predictor will get PCC=1, 
RMSE=0. 

When employing Leave-one-out Validation, for 
each predicted peptide, we use 1299 peptide motifs 
with experimental binding affinity values as training 
data, removing the predicted one. When adopting the 
two-fold cross validation, we split the 1300 peptide 
motifs into two folds. We respectively use each fold as 
training set and the other fold as validation set. The 
validation results of identifying peptide motifs 
binding to MMPs are shown in Table 3. On all the 
seven MMPs isoform, our method achieved signifi-
cant PCC and RMSE. The performance of 2-fold 
cross-validation is slightly lower than leave-one-out 
validation, but it is still satisfactory and can prove the 
effectiveness of our regression model. 

Effectiveness of the Sampling Criteria  
When adopting the sampling criteria, we only 

select relevant samples for building the predictor. The 
average number of relevant samples for each peptide 
motif is 1069, which means, for each predicted 
peptide, we use around 1069 samples as training set. 
Around 230 samples on average are irrelevant 
samples and were excluded by the sampling criteria. 
To test the effectiveness of the Sampling Criteria, we 
verify the 1300 peptide motifs binding to seven MMPs 
with 1500-tree random forest regression model 

respectively trained with the relevant samples and 
irrelevant samples. The validation results are shown 
in Table 4, which shows the effectiveness of our 
sampling criteria. 

Comparison to Computational Methods  
In this study, we use Random Forest as 

regression model, which gets a better result and costs 
less time compared with other techniques. The 
quantitative comparison with other techniques, such 
as Neural Network with one hidden layer and 100 
nets, Lasso Regression, Kernel Ridge Regression are 
as shown in Table 5. 

On the MMP-2 isoform, Random Forest has 
achieved overall PCC and RMSE values of 0.8212 and 
17.7916; Lasso Regression has PCC and RMSE values 
of 0.5547 and 25.9458; Ridge Regression with 
Gaussian Kernel has PCC and RMSE values of 0.7240 
and 21.5097; Neural Network with one hidden layer 
has RMSE values of 33.6099. For seven MMPs, our 
method using Random Forest outperformed other 
excellent regression techniques. 

Comparison to Experimental Methods 
We produce a position-specific scoring 

histogram [27] among the top 50 binding-value motifs 
against each individual MMP isoform to reflect 
specialty for each position as shown in Figure 2. For 
each MMP protein, we select its binding peptides with 
top 50 binding values predicted by our regression 
model. Then we analyze the frequency of appearance 
of each amino acid on each position among the top 50 
predicted peptides of the specific MMP. The x axis 
denotes nominal positions of a binding peptide from 
𝑃𝑃1 to 𝑃𝑃3. The y axis and the height of a letter denotes 
its frequency of appearance on this position, 
implicating its contribution of binding value to the 
position. From the 1300 samples, for peptides binding 
adherently with MMP-2, 𝑃𝑃1 Tyrically has conservative 
amino acids of Leu and Hpe (amino acid with an 
aromatic side chain of long-Phe), 𝑃𝑃2′  is Tyrical of 
amino acid Trp; for peptides binding adherently with 
MMP-7, 𝑃𝑃1 Tyrically has a conservative amino acid of 
CPA3 with a unique hydrophobic side chain. 
Actually, as we can see from Figure 2, peptide motifs 
with Leu on 𝑃𝑃1 position are conservatively with the 
high binding values with all seven MMPs, which 
conforms the significant pattern that inhibitors with 
high potency against MMPs family are highly 
homogenous. 

In order to better visualize more detailed 
contributions of different positions, potencies from 
each of the 𝑃𝑃1 , 𝑃𝑃2 , 𝑃𝑃3  side chains in the inhibitor 
library are averaged and graphically presented in 
Figure 3. Each picture represents one position of a 
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MMP isoform. The y-axis denotes the average binding 
values of peptides which have the specific amino acid 
Tyre on this position. The x-axis denotes the 
appearance of amino acid Tyre on this position. We 
select the top 10 amino acids with highest mean 
binding values on 𝑃𝑃2  and 𝑃𝑃3  positions. We have 
identified top 3 amino acids with highest mean 
binding values on each position as shown in Table 6. 

Our method is compared with the experimental 
method of Yao [7]. They also identified amino acids 
with highest averaged binding values as shown in 
Table 6. On 𝑃𝑃1  position, they averaged all 1400 
peptides to get 11 mean values of each amino acid 
Tyre. However, on 𝑃𝑃2  and 𝑃𝑃3  positions, they only 
averaged binding values of the 10 kinds of amino 
acids, which has permutated across 11 kinds on 𝑃𝑃1. So 
they got values of a relatively similar trend across 10 
kinds of amino acids respectively within 𝑃𝑃2  and 𝑃𝑃3 . 
We averaged all 24 kinds of amino acids of 1400 
samples in Figure 3. And as shown in Figure 3 and 
Table 6, on 𝑃𝑃1 position, our computational results are 
consistent with the previous experimental works on 
MMPs binding peptide motifs, proving the reliability 
of our method. On 𝑃𝑃2  and 𝑃𝑃3  positions, our mean 
values of the 10 kinds of amino acids (Ala, Leu, Phe, 
Trp, Glu, Lys, His, Gln, Ser, Tyr) are consistent with 
experimental method, although some of which are 
omitted from Figure 3, due to their relatively low 
mean values. Our computational results also show 
that Gly is also a conservative amino acid on 𝑃𝑃3 when 
Leu on 𝑃𝑃1 position. 

Prediction on 4000 peptide sequences  
In the predicted library of 4000 peptides, we 

produce a position-specific scoring histogram among 
the top 100 binding-values motifs against each 
individual MMP isoform to reflect specialty for each 
position as shown in Figure 4. For each MMP protein, 
we select its binding peptides with top 100 binding 
values predicted by our regression model. Then we 
analyze the frequency of appearance of each amino 
acid on each position among the top 100 predicted 
peptides of the specific MMP. From the 4000 samples, 
for peptides binding adherently with MMP-2, 𝑃𝑃1 
Tyrically has conservative amino acids of Leu and 
Hpe, which is consistent with analyze result of 1300 
samples; for peptides binding adherently with 
MMP-7, 𝑃𝑃1 Tyrically has a conservative amino acid of 
Leu. Our predicted result of 4000 sequences manifests 
peptides with Hpe and Leu amino acids on 𝑃𝑃1 
conservatively have high binding values with seven 
MMPs. However, these peptides can’t be used as 
inhibitors as they will also inhibit beneficial MMPs. So 
in the next part we will identify peptides with high 
selectivity. 

Specificity of MMP-2 and MMP-7 binding 
peptide motifs 

From the analysis of Figure 4, we can only 
identify which amino acid Tyre on each position has 
the highest potency against the MMP isoform, which 
are highly conserved. What would really benefit us is 
to identify peptides with not only high potency but 
also high selectivity, which bind coherently against 
specific MMPs, namely MMP-2 and MMP-7, while 
showing little binding values against other MMPs. So 
from the 4000 peptide motifs binding values results 
predicted by our computational method, we 
respectively identify peptides with selectivity to bind 
MMP-2 and MMP-7. 

 

Table 3. Validation on 1300 peptide motifs using random forest 
with 1500 trees. 

 Leave-One-Out Validation Two-fold Cross-Validation 
PCC RMSE PCC RMSE 

MMP-2 0.8212 17.7916 0.7836 19.3735 
MMP-3 0.7682 17.2379 0.7117 18.9166 
MMP-7 0.9181 9.3827 0.9053 10.0559 
MMP-8 0.8910 12.4845 0.8756 13.2831 
MMP-9 0.9124 12.0189 0.8893 13.4283 
MMP-13 0.8708 16.2411 0.8448 17.6808 
MMP-14 0.7247 16.7657 0.6910 17.5881 

 

Table 4. Validation on 1300 peptide motifs using random forest 
with 1500 trees with Sampling Criteria. 

 Training Set with Relevant Samples Training Set with 
Irrelevant Samples 

PCC RMSE RMSE 
MMP-2 0.8195 17.8608 35.1576 
MMP-3 0.7680 17.2457 29.8699 
MMP-7 0.9181 9.3803 29.5143 
MMP-8 0.8908 12.4952 33.2383 
MMP-9 0.9095 12.2094 37.6389 
MMP-13 0.8680 16.4052 44.0620 
MMP-14 0.7246 16.7671 25.9060 

 

Table 5. Validation of binding values of inhibitors of MMP-2 with 
distinct computational methods. 

 PCC RMSE 
Lasso Regression 0.5547 25.9458 
Neural Network - 33.6099 
Ridge Regression with Gaussian Kernel 0.7240 21.5097 
Random Forest 0.8212 17.7916 

 

Table 6. Comparison with Experimental method of top average 
binding values on 𝑷𝑷𝟏𝟏 position 

 Yao Ours 
MMP-2 Z Z 
MMP-3 Sf, U, Z U, Z 
MMP-7 U U 
MMP-8 Z, L Z 
MMP-9 Z Z 
MMP-13 Z Z 
MMP-14 L L 

 



Int. J. Biol. Sci. 2018, Vol. 14 
 

 
http://www.ijbs.com 

869 

 
Figure 2. Position-specific scoring histogram on top 50 binding-value motifs of 1300 samples against seven MMPs. For each MMP protein, we select 
its binding peptides with top 50 predicted binding values among 1300 library. Each bar represents the frequency of appearance of each amino acid Tyre on each 
position among the top 50 predicted binding peptides of the specific MMP. The x axis denotes nominal positions of a binding peptide from 𝑃𝑃1 to 𝑃𝑃3. The y axis and the 
height of a letter denotes its frequency of appearance on this position, implicating its contribution of binding value to the position. 

 

 
Figure 3. Averaged inhibition contributions across permuted 𝑷𝑷𝟏𝟏, 𝑷𝑷𝟐𝟐 and 𝑷𝑷𝟑𝟑 positions. Each bar represents averaged inhibition values of relevant residue 
across 1300-member library. The asterisk (*) highlights the residue contributing to the highest inhibition average in each graph.  

 
We filter peptides with high selectivity of 

MMP-2, which have binding values with MMP-2 
higher than 60, and have binding values with other 
MMPs less than 20. We successfully obtain 5 inhibitor 
candidates of Asp-Ile-Phe, Asp-Ile-Tyr, Asp-Ile-Lys 

and Hser-Gly-Phe as shown in Table 7. Detailed 
binding values are shown in Table 8. We also filter 
peptides with high selectivity of MMP-7, which have 
binding values with MMP-7 higher than 60, and have 
binding values with other MMPs less than 30. We 
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successfully obtain 6 inhibitor candidates of Chg-Ile- 
Ile, Chg-Ile-Leu, Chg-Ile-Glu, Chg-Ile-Met, Chg-Val- 
Ile and Chg-Val-Leu as shown in Table 7. Detailed 
binding values are shown in Table 9. 

From the inhibitors with high selectivity of 
MMP-2 we find, only one peptide, Hser-Leu-His, 
labeled with an asterisk (*), is identified in the 
experimental method. Our computational method 
finds 4 novel peptides with high selectivity toward 
MMP-2, and 6 novel peptides with high selectivity 
toward MMP-7, a known target in pancreatic cancer 
and intestinal adenoma. As we can see in Table 7, our 
results of inhibitor candidates of MMP-2 confirms the 
conclusion of experimental methods that 𝑃𝑃1  side 
chains containing Asp (D) and Hser (J) were found as 
inhibitors with strong selectivity to perturb MMP-2 
[7]. For peptides with high selectivity toward MMP-7, 
Chg amino acid on 𝑃𝑃1  position showed strong 
selectivity. On 𝑃𝑃2  position, Val and Ile, which both 
have hydrophobic side chains of alkyls, also showed 
preference to bind to MMP-7. Our findings, which 
although is by no means exhaustive, facilitated the 
identification of inhibitors with good potency as well 
as desirable selectivity, providing significant insights 
of candidate inhibitor drugs. 

 

Table 7. Inhibitors predicted by computational method with high 
potency and selectivity with MMP-2 and MMP-7 

No. MMP-2 MMP-7 
1 HSER-LEU-HIS * CHG-ILE-ILE 
2 ASP-ILE-PHE CHG-ILE-LEU 
3 ASP-ILE-TYR CHG-ILE-GLU 
4 ASP-ILE-LYS CHG-ILE-MET 
5 HSER-GLY-PHE CHG-VAL-ILE 
6  CHG-VAL-LEU 

 

Table 8. The binding values against MMPs of inhibitors with high 
selectivity of MMP-2 predicted by computational method 

 MMP-2 MMP-3 MMP-7 MMP-8 MMP-9 MMP-13 MMP-14 
Hser-Leu-His 60.5067 19.7844 16.7174 1.22158 9.5357 1.6049 8.3165 
Asp-Ile-Phe 65.9515 16.5326 18.1990 0.39054 15.2081 1.7737 11.3050 
Asp-Ile-Tyr 66.5144 18.0813 17.9488 0.10264 15.7835 0.9748 8.8563 
Asp-Ile-Lys 61.4983 14.9883 17.0719 0.51577 10.3562 3.1173 14.9769 
Hser-Gly-Phe 64.4088 17.8065 16.4288 2.24950 13.1266 5.9196 13.8823 

 

Table 9. The binding values against MMPs of inhibitors with high 
selectivity of MMP-7 predicted by computational method 

 MMP-2 MMP-3 MMP-7 MMP-8 MMP-9 MMP-13 MMP-14 
Chg-Ile-Ile 24.7546 21.6090 64.3935 8.0101 24.6581 21.9287 24.5430 
Chg-Ile-Leu 19.2488 18.2610 62.8014 6.1657 24.1854 24.0525 22.9100 
Chg-Ile-Glu 63.9129 27.2415 60.7542 18.0563 17.8181 2.32008 25.0958 
Chg-Ile-Met 48.4514 29.6585 63.2750 15.3248 21.0132 11.3537 22.0503 
Chg-Val-Ile 22.8662 24.8929 61.1206 7.2634 19.4140 19.4965 21.4045 
Chg-Val-Leu 18.8152 23.2073 60.0980 5.5433 18.4461 21.3667 19.1914 

 
 

 
Figure 4. Position-specific scoring histogram on top 100 binding-value motifs of 4000 samples against seven MMPs. For each MMP protein, we select 
its binding peptides with top 100 predicted binding values among 4000 library. Each bar represents the frequency of appearance of each amino acid Tyre on each 
position among the top 100 predicted binding peptides of the specific MMP. The x axis denotes nominal positions of a binding peptide from 𝑃𝑃1 to 𝑃𝑃3. The y axis and 
the height of a letter denotes its frequency of appearance on this position, implicating its contribution of binding value to the position. 
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Future Work 
From the predicted binding values of our 

computational method, we identify 4 novel peptides 
with high selectivity toward MMP-2 of Asp-Ile-Phe, 
Asp-Ile-Tyr, Asp-Ile-Lys and Hser-Gly-Phe. We also 
identify 6 novel peptides with high selectivity toward 
MMP-7 of Chg-Ile-Ile, Chg-Ile-Leu, Chg-Ile-Glu, 
Chg-Ile-Met, Chg-Val-Ile and Chg-Val-Leu. Future 
work will be done to experimentally test the real 
binding values of these 10 inhibitors to verify its 
potency and selectivity. 

Abbreviations 
MMPs: matrix metalloproteases; PCC: pearson- 
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