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Abstract 

Alpha-helical transmembrane protein (αTMP) is one of the two major categories of transmembrane 
protein (TMP). They are abundant existing in eukaryotic cells and involved in many biological 
processes. The special physicochemical properties, the structures of αTMP are hard to be 
experimentally solved, but αTMP’s sequential segments are important to determine their 
conformations, so that TM-specific alignment is necessary to benefit their structure prediction. We 
used segment information extracted from topology structure and evolutionary information as 
features to implement a αTMP Segment Alignment method (TMSA). The method was trained using 
one non-redundant dataset and tested using another non-redundant dataset. Comparing the results 
to a general alignment method HHalign, TMSA achieved higher alignment accuracy, and easier to 
recognize the fold of αTMPs. 
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Introduction 
Alpha-helical transmembrane proteins (αTMPs) 

play vital roles in many biological processes as 
transporters or receptors, they respond for 
transporting materials and signals between both sides 
of biological membrane. Therefore, they are major 
drug target currently[1], and related with many 
serious diseases[2], or exist as key nodes in their 
pathways. For the reason, αTMPs become one of 
prime factor in disease treatments, they are the targets 
of most drugs currently on market[3].  

Further understanding of αTMPs structures is 
necessary to study their functions and biological 
mechanisms for drug design. But high-resolution 
αTMP structures are hard to derive, the amount of 
known αTMP structures in Protein Data Bank (PDB) 
are not more than 2%[4]. Facing the rapidly increasing 
sequences, alignment-based structure prediction 
methods are widely used to reduce the gap of 
amounts between the structures and sequences[5]. 
However, the methods applied to globular proteins 

perform poorly on αTMPs due to their special 
physicochemical properties. It was reported that the 
structure prediction is estimated to obtain the 
accuracy as high as that of globular proteins if the 
αTMP alignment achieves the accuracy as it 
counterpart[6]. Due to the absence of such methods, a 
high accuracy αTMP alignment is urgently needed. 

Traditional sequence-to-sequence alignment 
methods, such as BLAST[7], cannot satisfy the high 
accuracy required, so that the sequence-to-structure 
alignment methods[8,9], also called threading, are 
widely used to model the protein structures. These 
state-of-the-art methods abstract many major 
structure-based features into the profile-to-profile 
alignments[10,11] to improve the accuracy, including 
the evolution information, solvent accessibility and 
the secondary structure. For the purpose to improve 
the alignment accuracy for αTMP, these features must 
be taken reconsiderations, and more αTMP -specific 
features are necessarily involved. 
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The αTMPs are obviously different from the 
globular proteins in their conformation character-
istics, they have one or more helices forming helical 
bundles to cross biological membrane. These 
transmembrane helixes (TMHs) are more hydro-
phobic than those helixes in globular proteins. 
Notably, αTMPs in the same fold always have similar 
TMH numbers and the conformations. Here, TMH is 
the TM-segment on the protein sequence, the rest 
parts, namely, non-TM segments of sequence are 
divided to inside segment (existing in cytoplasmic) 
and outside segment (existing in extracellular) 
according to their locations relative to the biological 
membrane. Thus, the segments are the specific pattern 
of αTMPs, which alternatively locate on the sequence 
regularly.  

Topology prediction can be used to identify 
those segments for a αTMP using its sequence as 
input. Various methods have been developed for the 
purpose, where, Hidden Markov Model (HMM) 
based methods achieved big success[12,13,14,15], 
while some other machine learning methods also 
showed the good performance[16,17,18,19,20]. To 
date, αTMP topology prediction methods achieve 
high accuracy, which makes it possible applying 
segment types to the alignment as a TM-specific 
feature. 

In this study, we firstly introduce the segment 
alignment to αTMPs and implement the method 
αTMP Segment Alignment (TMSA). Differing to the 
methods for globular proteins, our method employs 
the topology structure instead of secondary structure, 
so that the segments alignment can be applied. Since 
the solvent accessibility feature is used by topology 
prediction, and the alignment profile is composed of 
only two features: the evolution information and the 
segment information. Correspondingly, the scoring 
function is tailored for the segment alignment, in 
which an additional segment broken penalty is added 
to guarantee the completeness of the segments. Our 
method was compared to a general top-leading 
alignment method HHalign against a non-redundant 
dataset and derived higher alignment accuracy. 

Materials and Methods 
 Training and Testing datasets 

To test the method, we use a complete αTMP 
dataset from Protein Data Bank of Transmembrane 
Proteins (PDBTM)[21], where totally 1366 αTMP are 
embodied. The bitopic αTMPs or those αTMPs shorter 
than 50 amino acids were removed, the left entries 
were clustered using BlastClust with identity less than 
30 mutually. The top two non-redundant clusters 
were selected as training dataset and testing dataset 

(see in Supplementary Table S1), respectively 
compose of 58 and 72 non-redundant entries, these 
two sets have no overlaps.  

 Selected Features 
The selected features are utilized by the scoring 

function to determine the compatibility between any 
two residues which come respectively from target and 
template. Of course, the more features compatible, the 
more likely they are aligned. As mentioned, segment 
and evolution information are selected, the two 
features are compact and complementary with each 
other. The details about them are described as 
following. 

Segment Information: The segment information 
are derived by MEMSAT-SVM[18], one of the best 
topology predictors using a support vector machine 
(SVM) which has been widely used in 
bioinformatics[22,23,24,25] to identify segments on 
the input sequence. MEMSAT-SVM is a stand-alone 
tool to predict αTMP’s topology structure, a protein 
sequence is required as input, and an isometric 
sequence is output as predicted topology structure, in 
which only three characters are used to label the 
topology structure type for each sequential position 
corresponding the input protein sequence, e.g. ‘M’ is 
TM-segment residue, ‘i’ is inside segment, and ‘o’ is 
outside segment. Thus, each residue i on the sequence 
is assigned to an integer value which represents the 
segment type: 

 𝑇𝑇𝑇𝑇(𝑖𝑖) = �
0, TM Segment    

1, Inside Segment  
2, Outside Segment

               (1) 

Evlution Information: Position Specific Scoring 
Matrix (PSSM) profile generated by PSI-BLAST[7] 
derives the evolutionary conservation of sequence 
positions based on large-scale sequence alignment, 
which has had a significant impact on protein fold 
recognition[26]. The evolution information is useful to 
the alignment both for TM and non-TM segments. A 
PSSM profile pm[i, j] is a n×20 matrix, where the
represents the sequence length. Each element in pm[i, 
j] negatively represents the frequency of the residue 
type j at position i.  

 TMSA Method 
The dynamic programming (DP) is the most 

popular paradigm in computational biology[27], also 
the heart of many well-known programs is DP[28]. As 
known, the scoring function is the kernel of the 
dynamic programming, which drives the DP 
forwarding the global optimal result. In this study, the 
scoring function is tailored for the αTMP segment 
alignment, especially the scoring for gap penalty. As 
the result, the optimal path of the DP will be slightly 

n
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different with that of other general methods.  
1) Fitness Scoring: As a part of scoring function, 

the fitness score 𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖, 𝑗𝑗)  evaluates the 
compatibility between target sequence position and 
template sequence position j, is given by the equation, 

𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖, 𝑗𝑗) = −𝑤𝑤1𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑗𝑗) + 𝑤𝑤2𝑆𝑆𝐸𝐸(𝑖𝑖, 𝑗𝑗)+𝑤𝑤𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖    
(2) 

where the SEG(i, j) is the segment fitness score of 
the two positions, and the EV(i, j) is their fitness score 
of evolution conservation, w1 and w2 are the weights of 
two fitness scores, while wshift is a to-be-determinate 
constant that avoids the unrelated residues 
aligned[29]. The segment fitness score is defined 
below: 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑗𝑗) = �
2,    𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇(𝑖𝑖) = 𝑇𝑇𝑇𝑇(𝑗𝑗) = 0
1,    𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇(𝑖𝑖) = 𝑇𝑇𝑇𝑇(𝑗𝑗) ≠ 0
−1,    𝐹𝐹𝑒𝑒𝐹𝐹𝐹𝐹                   

       (3) 

The evolution fitness score is calculated 
according to the equation 

𝑆𝑆𝐸𝐸(𝑖𝑖, 𝑗𝑗) = ∑ (𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖[𝑖𝑖, 𝑘𝑘] × 𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡[𝑗𝑗, 𝑘𝑘])20
𝑘𝑘=0   

 (4) 

where pmtarget[i, k] is PSSM value of residue type k 
at position i on the target sequence, as well pmtemplate[i, 
k] follows the similar meaning. 

2) Gap Penalty Scoring: A segment-dependent 
gap penalty is employed. Satisfying the segment 
alignment, the TM segments and non-TM segments 
are respectively denoted the different open gap 

penalties optm, opnon-tm and extended gap penalties 
eptm, epnon-tm, so that the TM segments are harder to be 
broken during the aligning. 

3) Dynamic Programming: We use a local-global 
algorithm to optimize the alignment path for the 
requirement of segment alignment. With the scoring 
function above, the DP procedure of TMSA can find 
the reasonable alignment path. The segments with the 
same type are aligned preferentially, while different 
segment types are hard to match unless they are 
extremely compatible with the evolutionary 
conservation. Assuming a target protein A has a 
topology structure shown as the top in the Fig. 1, 
while the topology of template protein B shows in the 
left, it is hard to align correctly without the guiding of 
segment types, because the properties of TM 
segments are very similar, such as sequence patterns 
and solvent accessibilities. But our DP algorithm 
conquers the problem which can be found by the 
alignment path shown in the figure. The second TMH 
of target, but not the first one, aligns to the first TMH 
of template due the mismatch of their previous 
non-TM segments. Therefore, our DP algorithm is 
designed for the αTMP segment alignment. 

4) Parameterizations: All the parameters used in 
the scoring function (w1, w2, wshift, optm, opnon-tm, eptm, 
epnon-tm,) are trained using the same method as on our 
non-redundant training dataset[30], but the 
parameters are optimized according to the best 
TMscore[31]. 

 

 
Figure 1. The optimized alignment path derived by the dynamic programming algorithm. The aligned segments are marked using the polylines with the corresponding 
colors. 

i
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Results and Discussions 
We pairwise aligned all the protein pairs in the 

testing dataset, by which the performance of the 
TMSA is evaluated, due to the absence of αTMP 
alignment methods, the results are compared to a 
general alignment method HHalign. And then the 
correlation between the output rawscore of TMSA 
and the protein structures will be further discussed to 
show its ability for the final purpose. 

Alignment Accuracy 
The alignment accuracy can be evaluated by two 

different benchmarks, the accuracy rate and structure 
similarity, we adopted the both benchmarks to show 
the experimental results. The first one (ACC) uses the 
golden standard structure alignment to count the rate 
of correctly aligned residues, here TMalign[32] is 
employed as the golden standard. The second one 
simply calculates the structure similarity between the 
aligned pair, and various methods can be applied for 
the purpose. We use the TMscore due to its high 
performance and accuracy. 

To present the performance of TMSA, the 
alignment accuracies of both TM segments and 
non-TM segments are calculated respectively, as well 
the overall performance is exhibited aside. As shown 
in Table 1, the comparison is made using the average 
alignment accuracy derived by all the testing pairs. 
The results show that, TMSA achieves higher 
accuracies than HHalign with all the three segment 
types, whatever which evaluation method is used, so 
the two criterions are consistent to present the 
alignment accuracy. It is almost 10 percent that TMSA 
over-performs the HHalign with TMscore, and the 
margin enlarges to 11 percent with ACC. In addition, 
TMSA achieves the even higher accuracy aligning TM 
segments than non-TM segments, while the gap 
shown in the results of HHalign is inconspicuous. The 
reason mainly because our method adopts the stricter 
strategies to guarantee the TM segments to be better 
aligned, while the non-TM segments are easier to be 
broken inserting gaps. Nevertheless, the alignment for 
non-TM segments is still more accurate of TMSA 
comparing to its counterpart.  

 

Table 1. Alignment accuracies comparing with HHalign 

Methods ACC (%) TMscore 
T N O T N O 

TMSA 64.5 59.6 62.1 0.463 0.414 0.436 
HHalign 51.9 52.6 51.7 0.355 0.338 0.342 
T: TM segments, N: Non-TN segments, O: Overall 

 
Comparing the features used in the two 

alignment methods, the major difference is the TMSA 
employs the topology structures instead of secondary 

structure and solvent accessibility. For αTMPs, 
topology structure more clearly presents the overall 
structural properties, and indicates their 
conformations. Furthermore, the sequence pattern of 
αTMP is much especial and regular. Therefore, the 
segment alignment method can enormously improve 
the accuracy. With the increasing quantity of αTMPs, 
the topology prediction will be more accurate, which 
can further derive the segment alignment methods.  

Alignment Scores and Structure Similarity 
TMSA generates a rawscore for each alignment 

which negatively relates to the structure similarity of 
the target and template. The proteins obtained smaller 
rawscore are more possible to have similar 
conformations. As an example, the Fig. 2 points out 
the rawscores derived by chain D of query protein 
Succinate Dehydrogenase (PDB_ID: 1NEK:D)[33] 
aligned with all proteins in the testing dataset. The 
most left top point responses to the query protein 
aligned to itself, so that it obtained the best TMscore 
value of 1.0, which means the aligned proteins are 
completely matched with the tertiary structures. As 
well it obtained the smallest rawscore. The rest 
templates basically ordered regularly by their 
rawscores and TMscores, where the lower TMscore 
responds to bigger rawscore. However, the points 
distribute in the right-bottom of the diagram are too 
intensive to present such correlations, because the 
corresponding proteins are much different in 
conformation with the query protein. With this case, 
rawscores derived by TMSA are showed negatively 
correlated with the structure similarities, thus the 
protein fold can be recognized by ranking the 
rawscores of the templates. 

Fold Recognition in Superfamily level 
Since the superfamily indicates the closer 

structures than the fold, to better present the 
alignment accuracy, we adopted the classifications 
found in Orientations of Proteins in Membranes 
(OPM) database[34]. Because several αTMPs have not 
been classified to any superfamily, only a few super 
families exist in the testing set. The TMSA can 
recognize the entries which belong to the same 
superfamily by ranking the alignment rawscores. It is 
most important to select the high-quality templates 
for protein structure modeling, where those templates 
must have the similar structures to the target proteins, 
so that structure modeling step could compose the 
structure-unknown target protein by those 
structure-known template proteins. 

For a given target, the smaller rawscore indicates 
the responding template is more similar to the target 
in the structure. Therefore, the templates that have 



Int. J. Biol. Sci. 2018, Vol. 14 
 

 
http://www.ijbs.com 

905 

significant smaller rawscores than the average for a 
target could be the same fold. As shown in Figure 3, 
several entries were found in the same superfamily 
using the TMSA. The Figure 3 (a) shows the entries 
come from superfamily G-protein coupled receptors 
(ID: 1.1.01.02); the entries in Fig. 3 (b) belong to 
superfamily pentameric ligand-gated ion channels 
(ID: 1.1.26); the entries in Fig. 3 (c) and (d) are 
respectively from superfamily ammonia and urea 
transporters (ID: 1.1.19) and ligand/cation symporters 
(ID: 1.1.18). The superposed parts between the 
proteins are the aligned parts. It can be found that 
some non-TM segment are not matched in the four 
pairs, or even the TMHs, but they have overall similar 
conformations, which is the most important criteria to 
classify the TMPs. 

Conclusions 
This article describes a novel 

sequence-to-structure alignment 
method tailoring for αTMP, TMSA, in 
which the segment alignment is firstly 
introduced to the study. To the end, 
the topology structures are employed 
in the method to describe the proteins’ 
conformations instead of the 
secondary structures and solvent 
accessibilities that widely used for 
globular proteins alignment. 
Evolutionary information derived 
from sequence is used with the 
segment information to scoring the 
compatibility between two sequence 
positions, and a segment-dependent 
gap penalty has been applied in 
scoring function. We trained the 
method using a non-redundant 
dataset, and then pairwise aligned all 
pairs of protein in our testing dataset, 
which has no overlaps with training 
dataset. The testing results shows the 
method performs well for αTMP 
comparing to a top-leading alignment 
tool HHalign, and high structure 
similarity have been shown between 
the aligned pairs. The raw score 
generated by the method is proved 
negatively correlating to the structure 
similarity of the templates, which 
indicates that the method can be used 
in fold recognition of αTMP. 
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