
Int. J. Biol. Sci. 2019, Vol. 15 
 

 
http://www.ijbs.com 

1148 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  BBiioollooggiiccaall  SScciieenncceess  
2019; 15(6): 1148- 1160. doi: 10.7150/ijbs.33400 

Research Paper 

Causal Cortical Network for Arithmetic Problem- 
Solving Represents Brain’s Planning Rather than 
Reasoning  
Zhishan Hu*, Keng-Fong Lam*, Yu-Tao Xiang, Zhen Yuan 

Faculty of Health Sciences, University of Macau, Macau SAR, China  

*These authors contributed equally to this work 

 Corresponding author: Prof. Zhen Yuan; Email: zhenyuan@um.edu.mo  

© Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license 
(https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. 

Received: 2019.01.22; Accepted: 2019.04.04; Published: 2019.05.07 

Abstract 

Arithmetic problem-solving whose components mainly involve the calculation, planning and 
reasoning, is an important mathematical skill. To date, the neural mechanism underlying arithmetic 
problem-solving remains unclear. In this study, a scheme that combined a novel 24 points game 
paradigm, conditional Granger causality analysis, and near-infrared spectroscopy (fNIRS) 
neuroimaging technique was developed to examine the differences in brain activation and effective 
connectivity between the calculation, planning, and reasoning. We discovered that the performance 
of planning was correlated with the activation in frontal cortex, whereas the performance of 
reasoning showed the relationship with the activation in parietal cortex. In addition, we also 
discovered that the directional effective connectivity between the anterior frontal and posterior 
parietal cortex was more closely related to planning rather than reasoning. It is expected that this 
work will pave a new avenue for an improved understanding of the neural underpinnings underlying 
arithmetic problem-solving, which also provides a novel indicator to evaluate the efficacy of 
mathematical education. 
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Introduction 
Our human beings differ from most other 

animals in arithmetic problem-solving that is distinct 
from the calculation. Calculation involves the retrieval 
of arithmetic facts or the operation of digits, whereas 
arithmetic problem-solving denotes the goal-directed 
arithmetic activities that mediate between the existing 
and desired situations (1,2). Meanwhile, the 
calculation plays an essential role in the cognitive 
processing of arithmetic problem-solving, which also 
strongly depends on the number processing. 

To date, although the neural substrates of 
calculation have been well documented (3), the neural 
mechanism underlying arithmetic problem-solving 
remains unclear (4). For example, previous studies 
have demonstrated that three parietal regions are 
involved in calculation (3), in which the horizontal 

segment of intraparietal sulcus (IPS) is associated with 
the semantic representation of numbers as quantities, 
the posterior superior parietal lobule (PSPL) is 
responsible for the spatial representation of numerical 
quantities, and the left angular gyrus (AG) is essential 
for the retrieval of mathematical facts. Recent work 
also revealed that the resting-state functional connec-
tivity (FC) between the ventrotemporal occipital 
cortex, posterior parietal cortex and prefrontal cortex 
(PFC) can predict the children’s development in 
calculation (5) while the calculation practice can alter 
the FC between the frontal and parietal cortex (6). By 
contrast, only a few studies were performed to inspect 
the brain activation and networks associated with 
arithmetic problem-solving (4), in which two 
paradigms were usually used: 1) the word 
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problem-solving task which can explore the problem 
representation (1,7), 2) the number series completion 
task which is able to access the numerical inductive 
reasoning (8,9). Interestingly, it was discovered that 
the word problem-solving strongly depends on the 
semantical ability (1,7), whereas the number series 
completion is more directly related to number 
processing (8,9). In addition, previous reports also 
highlighted that the activation in dorsolateral 
prefrontal cortex (DLPFC) and IPS was correlated 
with numerical inductive reasoning (10) while more 
complex numerical inductive reasoning exhibited 
enhanced activation in the bilateral DLPFC, IPL 
(inferior parietal lobule), and the left frontopolar area 
(FPA) (8). Importantly, further brain network 
investigations showed that enhanced FC was detected 
between the rostrolateral prefrontal (RLPFC), IPL, and 
DLPFC when participants were engaging in more 
complex reasoning (11). In particular, it was 
discovered that enhanced FC of lateral frontoparietal 
networks showed the relationship with better 
performance in relationship reasoning (11–13). How-
ever, these FC studies regarding the reasoning were 
mainly focused on visuo-spatial reasoning (14,15), 
analogical reasoning (16), and deductive reasoning 
(17) rather than the numerical inductive reasoning. 

Interestingly, besides the problem representation 
and numerical inductive reasoning, planning also 
plays an essential role in the cognitive processing of 
arithmetic problem-solving. Planning refers to 
designing and evaluating a series of future actions to 
reach a desirable goal (18,19). Recent neuroimaging 
findings have stressed the interest of studying the 
brain activation and networks associated with 
planning. The neuroimaging results showed that the 
PFC exhibited significant relationship with planning 
during the Tower of London task (18,20), in which 
participants were required to plan a series of 
movements for moving a stack of discs and then 
execute the movements (21–23). In addition, during 
the Tower of London task, enhanced FC between the 
frontal and parietal regions was identified, which was 
more correlated with the planning phase rather than 
the execution phase (24). A recent study on autism 
based on the Tower of London task also showed that 
the frontal-parietal FC was correlated with the size of 
the anterior region of corpus callosum, which implied 
an anatomical basis underlying planning (25). Further 
neuroimaging work on planning exhibited that the 
anterior PFC involves evaluation and monitoring of 
the information while the posterior PFC involves 
maintenance and manipulation (26). 

Since the calculation, planning, and reasoning 
involved the different cognitive processes during the 
arithmetical problem-solving, it is rational to 

hypothesize in this study that they might exhibit 
significant differences in brain activation and FC. In 
addition, previous neuroimaging studies illustrated 
that anterior PFC involves evaluation and monitoring 
of the information, which is more critical in planning 
than in calculation or numerical reasoning (26). As a 
result, it is also assumed in this study that enhanced 
effective connectivity (24) might be detected between 
the anterior prefrontal and posterior parietal cortex 
during planning compared to those during 
calculation and numerical reasoning. 

To date, there is no available paradigm to 
examine the brain activation and connectivity during 
planning in arithmetic problem-solving. To address 
this issue, an innovative task based on Chinese 
arithmetic problem-solving card game (24 points 
game: https://en.wikipedia.org/wiki/24_Game) was 
proposed for the present study, in which the players 
need to make full use of four randomly given cards 
and elementary arithmetic operations (the addition, 
subtraction, multiplication, and division) to generate 
the number 24. For example, when the participants 
are presented with the numbers 1, 2, 3, and 3, they 
need to decompose the goal as several sub-goals such 
as 4 and 6 (4 × 6 = 24), and then complete each 
sub-goal (1 + 3 = 4, 2 ×3 = 6) to achieve the final goal (4 
× 6 = 24). The innovative paradigm consists of two 
conditions including the 24 points game and 
calculation conditions, in which the calculation 
condition serves as the control condition. With the 
minimum semantic demands as compared to that 
from word problem-solving, the 24 points game is a 
promising tool for the investigation of planning 
associated with arithmetic problem-solving. In 
addition, the number completion task was also 
adopted for the present work, which was able to 
inspect the numerical inductive reasoning to show the 
difference in brain activation and effective 
connectivity between planning and reasoning. 

 More importantly, during the 24 points game 
task, participants needed to report the answer orally, 
which might cause head movements and muscle 
tension. Consequently, the traditional neuroimaging 
methods such as functional magnetic resonance 
imaging (fMRI) and electroencephalograph (EEG) 
might not be the best choices for the present study 
due to fMRI’s low tolerance to head movements (27) 
and EEG’s sensitivity to muscle tension (28). In this 
study, functional near-infrared spectroscopy (fNIRS) 
was utilized to explore the brain activation and 
networks associated with arithmetic problem-solving 
due to its unbeatable advantages such as high 
tolerance of head motion and muscle tension, high 
flexibility and economic efficiency, and high temporal 
resolution (29–32). More specifically, besides the 
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proposed 24 points game paradigm, a new scheme 
that combines Granger causality analysis (GCA) and 
fNIRS recordings is presented to test the hypothesis. 
The new scheme is able to identify the direct causal 
influences in local brain networks between various 
regions of interest (ROIs), which can inspect the 
difference in effective connectivity between the 
calculation, planning and reasoning. It is expected 
that this pilot work will pave a new avenue for an 
improved understanding of the neural underpinnings 
underlying arithmetic problem-solving. 

Methods and Materials 
Participants 

Twenty-nine college students (15 females and 14 
males; Mean age =21.1 years; age range= 18.2 - 25.4) 
were recruited from the University of Macau campus. 
All participants were right-handed with normal or 
corrected-to-normal vision and none of them had 
reported histories of neurological or psychiatric 
disorders. Written informed consent was collected 
from all participants prior to the experimental tests. 
The protocol for the present study was approved by 
the Ethics Committees of the University of Macau. 

Procedures and Materials 
The experimental tests were conducted in a quiet 

room, in which participants were instructed to 
perform two tasks in order: the numerical reasoning 
(number completion) task and the 24 points game 
task. The 24 points game task contained two 

conditions including the 24-points game condition 
and the calculation condition (control condition) and 
each condition had 20 trials. In addition, the 
numerical reasoning task also consisted of two 
conditions: the complex reasoning condition and the 
simple reasoning condition (control condition), in 
which each condition contained 20 trials as well. Each 
trial started with a thinking period with the stimulus 
displayed in the center of the screen, followed by the 
response period during which the stimulus was 
framed by a green rectangle and the rest period with a 
fixation cross displayed in the center of the monitor. It 
is noted that the duration of each period (Fig. 1) was 
different for various conditions of each task because 
of the differences in task difficulties and associated 
response time. 

For the 24 points game task, four numbers 
ranged from 1-9 were displayed in the center of the 
monitor screen, and then participants needed to 
respond as soon as possible according to the 
instruction above the number series. Regarding the 
calculation condition, the instructions "× + +" were 
displayed above the numbers (Fig. 1) and participants 
were required to finish the calculation in order and 
reverse order. For example, regarding number series 
"1 2 3 3", participants should first finish the operation 
1×2+3+3=8 and 3×3+2+1=12, and then reported “The 
first one is 8 and the second one is 12”. To minimize 
their memory load during the thinking period for the 
calculation condition, participants were allowed to 
write down the answer in a piece of paper but were 
not permitted to write down the operation process. By 

 

 
Figure 1. Schematic of the paradigm. (a) 24 points game; (b) Numerical reasoning; (c) Possible cognitive processes during the 24 points game task. 
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contrast, for the 24-points game condition, the 
instruction "24 points" was shown over the top of the 
numbers, which required participants to get 24 by 
using the combined operations of addition, subtract-
tion, multiplication, or division for the four numbers. 
During the response period, participants needed to 
report the operation process on how to achieve 24 or 
report "I don’t know" if they really did not know the 
answer, whereas for the calculation condition they 
only needed to report the two answers in order. 
Unlike the calculation condition, no explicit solution 
was provided for the 24-points game condition. 
Consequently, participants had to design and 
evaluate a series of future actions, which was denoted 
as the planning process. 

With regard to the numerical reasoning task, 
participants needed to discern the rules for the given 
series associated with four numbers and then quantify 
the fifth number and reported it during the response 
period. The simple reasoning condition involved 
concessive additions or subtractions. For example, the 
rule and answer for "81 83 85 87?" in the simple 
condition was respectively “rule: +2, +2, +2 + 2; 
answer: 89”. However, this is not the case for the 
complex reasoning condition, which involved two 
numeric rules. For example, the rules and answer for 
"70 66 61 57?" in the complex condition were 
respectively “rules: -4, -5, -4 - 5; answer: 52”. 

fNIRS Data Acquisition and Preprocessing 
A CW6 fNIRS system (TechEn Inc., Milford, MA) 

was used to collect fNIRS data with sampling rate of 
50 Hz. A home-made plastic patch was placed on the 
head to hold 8 sources and 16 detectors together with 
a fixed inter-optode distance of 3 cm. After data 
acquisition, a three-dimensional (3D) digitizer 
(PATRIOT, Polhemus, Colchester, Vermont, USA) 
was used to measure the 3D coordinates of all optodes 
for each participant. And then the coordinates were 
processed by using NIRS-SPM (33) to access the MNI 
coordinates and associated anatomical labels for all 
optodes as well as the generated 26 channels (see 
Table S1 in appendix). The optodes and 26 channels 
were further visualized on two brain templates 
according to their mean MNI coordinates by using 
BrainNet Viewer toolbox (http://www.nitrc.org/ 
projects/bnv/) (34), whereas the anatomical labels 
were also marked in various colors and displayed in 
Fig. 2. 

The fNIRS signals were preprocessed with 
Homer2 software (35). As demonstrated in previous 
studies (36–38), the raw data were first converted to 
the optical density changes. After removing motion 
artifacts (39), the optical density signals were filtered 
with a low-pass filter of 0.2 Hz and were then 

converted to the HbO and HbR concentration 
changes. The concentration changes were normalized 
by subtracting the mean channel-wise concentration 
and then divided by the standard deviation (z-scores). 
Subsequently, data segmentation was also performed, 
in which the duration for each block consisted of a 
pre-stimulus period of 2 s, a stimulus period of 16 s 
for 24 points game task or 13 s for numerical 
reasoning task, and a post-stimuli period of 23 s for 24 
points game task or 18 s for numerical reasoning task. 
Finally, the least squares model fitting procedure 
according to the signals in the first and last 2 s of each 
trial was performed for baseline correction to remove 
the possible physiological drifts (40,41). 

Brain Activation  
After the preprocessing was completed, the 

trial-averaged z-scores were extracted to indicate the 
brain activation for all channels for each participant. 
And then the grand-averaged z-scores for each 
condition of each task were also generated across all 
participants. In this study, only HbO signal was 
analyzed due to its superior contrast-to-noise ratio 
(42). 

Multivariate Granger Causality Analysis 
The Granger causality analysis (GCA) was used 

to map effective connectivity, in which the directional 
information provided by Granger causality (GC) 
offers the potential for defining the anatomical 
pathways that underlie neural interactions (43,44). 
Moreover, previous studies have proved that the 
GCA is sufficient to characterize the information flow 
of fNIRS signals (45–50). 

In this study, regions of interest (ROIs) were first 
identified with the functional connectivity analysis 
method, which were later utilized to reconstruct 
GC-based effective networks. Before the functional 
and effective connectivity analysis, the HbO signals 
were down-sampled to 2 Hz to ensure a reasonable 
model order for auto¬regressive modelling (51), and 
then the Pearson correlation coefficients between 
pairs of channels were calculated for each 
partici¬pant. After the Fisher’s r-to-z transforma¬tion 
for the correlation coefficients (52), the z-values were 
averaged across participants and were subsequently 
transformed back to the r-values. The reformulated 
FC matrix was displayed in Fig. 3, in which six 
clusters were clearly identified in the cortex: the left 
and right FPA (channels 20~26 and channels 13~19), 
the left and right AG (channels 9~12 and channels 
1~4), and the left and right SAC (channels 7,8 and 
channels 5,6). More interestingly, the identified ROIs 
based on functional connectivity analysis were also in 
line with the configurations of channels in Fig. 2.  
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Figure 2. Configurations of the optodes and channels. The sources, detectors, and channels were visualized on brain templates in the first row and were colored in 
red, blue, and green, respectively. Meanwhile, the channels and their associated brain regions were visualized in the second row with different color indicating 
different brain regions. AG, angular gyrus, part of Wernicke’s area; SAC, somatosensory association cortex; V3, visual area 3; FPA, frontopolar; OFA, orbitofrontal 
area. 

 

 
Figure 3. Grand-averaged FC matrixes. The brighter color denotes higher FC and the channels are labeled in the format of “channel-hemisphere-anatomical label”. 
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Figure 4. Accuracy distributions across 29 participants. The left figure denotes the accuracy for the 24 points game while the right one represents the numerical 
reasoning case. Blue circles denote the calculation and simple conditions, whereas the red cross define the game and complex conditions. 

 
The HbO data from all channels within a ROI 

were averaged to indicate the brain activation of this 
ROI. The pre-stimulus (-2~0 s) baseline data from each 
ROI was excluded for further GCA. In addition, it is 
noted that in order to make time series data 
stationary, we removed the temporal mean from each 
trial and then divided the generated data by the 
temporal standard deviation. We also performed the 
same operation for ensemble mean and ensemble 
standard deviation (53,54). 

Conditional GCA is carried out using the 
multivariate Granger causality toolbox (MVGC), 
which exhibits superior computational accuracy and 
statistical power (51,55). For conditional GCA, 
assuming that X and Y are time series from two ROIs, 
and Z is the data with the same length from the other 
ROIs that also imposes causality impacts on both X 
and Y. And then the temporal dynamics of two time 
series can be described by a bivariate autoregressive 
model: 

𝑋𝑋𝑡𝑡 = ∑ 𝑎𝑎𝑖𝑖𝑋𝑋𝑡𝑡−𝑖𝑖 +𝑘𝑘
𝑖𝑖=1 ∑ c𝑖𝑖𝑍𝑍𝑡𝑡−𝑖𝑖 +𝑘𝑘

𝑖𝑖=1 𝑒𝑒𝑥𝑥𝑡𝑡  (1) 

𝑌𝑌𝑡𝑡 = ∑ 𝑏𝑏𝑖𝑖𝑌𝑌𝑡𝑡−𝑖𝑖 +𝑘𝑘
𝑖𝑖=1 ∑ 𝑑𝑑𝑖𝑖𝑍𝑍𝑡𝑡−𝑖𝑖 +𝑘𝑘

𝑖𝑖=1 𝑒𝑒𝑦𝑦𝑡𝑡  (2) 

In which t denotes the current time point, and k 
denotes the maximum number of lagged observations 
included in the model (model order, k<t), which is 
determined by Bayesian information criterion (56). 
The residuals ext and eyt denotes the prediction error of 
these two models, respectively.  

Importantly, GC is easy to generalize to the 
multivariate (conditional) case in which the GC of Y 
on X is tested in the context of the other variables (Z). 
In this case, Y GC-causes X if knowing Y reduces the 
variance in X’s prediction error when the effect from 
all other variables Z is also included in the regression 
model. It is vice versa for the case that X GC-causes Y: 

𝑌𝑌𝑡𝑡 = ∑ 𝑏𝑏𝑖𝑖′𝑌𝑌𝑡𝑡−𝑖𝑖 +𝑘𝑘
𝑖𝑖=1 ∑ 𝑎𝑎𝑖𝑖′𝑋𝑋𝑡𝑡−𝑖𝑖 +𝑘𝑘

𝑖𝑖=1 ∑ 𝑑𝑑𝑖𝑖′𝑍𝑍𝑡𝑡−𝑖𝑖 +𝑘𝑘
𝑖𝑖=1 𝑒𝑒𝑥𝑥𝑦𝑦𝑡𝑡     (3) 

𝑋𝑋𝑡𝑡 = ∑ 𝑏𝑏𝑖𝑖′′𝑌𝑌𝑡𝑡−𝑖𝑖 +𝑘𝑘
𝑖𝑖=1 ∑ 𝑎𝑎𝑖𝑖′′𝑋𝑋𝑡𝑡−𝑖𝑖 +𝑘𝑘

𝑖𝑖=1 ∑ 𝑐𝑐𝑖𝑖′𝑍𝑍𝑡𝑡−𝑖𝑖 +𝑘𝑘
𝑖𝑖=1 𝑒𝑒𝑦𝑦𝑥𝑥𝑡𝑡    (4) 

As a result, the GC is determined by the 

comparison between variances of the prediction error 
in equations 2 (eyt) and 3 (exyt) or equations 1 (ext) and 4 
(eyxt). In particular, the mathematical definition of GC 
is the logarithm of the ration of error variances: 

𝐺𝐺𝐺𝐺(𝑋𝑋→𝑌𝑌) = ln 𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒𝑦𝑦𝑦𝑦)
𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒𝑥𝑥𝑦𝑦𝑦𝑦)

             (5) 

𝐺𝐺𝐺𝐺(𝑌𝑌→𝑋𝑋) = ln 𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒𝑥𝑥𝑦𝑦)
𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒𝑦𝑦𝑥𝑥𝑦𝑦)

    (6) 

Statistical Analysis 
The mean accuracy of responses was quantified 

for each condition of the two tasks. And then paired 
t-tests were performed to reveal both the performance 
and brain activation differences between the two 
conditions for each task. In addition, the relationship 
between behavior performance and brain activation 
was also inspected by calculating the Pearson 
correlations between the accuracy and brain 
activation for the 24 points game and complex 
numerical reasoning task, respectively. 

As the GCA results satisfy an F distribution 
(55,57), the F-statistic with the null hypothesis of zero 
was used to determine the statistical significance of 
GC coefficients. In addition, GC coefficients were 
normalized so that the paired t-tests can be performed 
to reveal the GC difference between any two condi-
tions associated with each task (58,59). Specifically, for 
each participant, the GC coefficients were normalized 
according to, Zgci = (GCi -mean({GCi}))/std({GCi}), in 
which GCi is the GC from one channel to another, 
whereas {GCi} is the collection of all GC coefficients. 
And the normalized GC coefficients were subjected to 
the paired t-tests. 

Results 
Behavioral Results 

As shown in Fig. 4, participants achieved better 
performance under the calculation condition than that 
from the 24-points game case (p < 0.001), and also 
better performance for the simple reasoning condition 
than that from the complex reasoning case (p < 0.001). 
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Brain Activation and Its Relationship with the 
Behavioral Performance 

The brain activation differences between the 
game and calculation conditions for the 24 points 
game task and between the complex and simple 
reasoning conditions for the numerical reasoning task 
were respectively visualized in Fig. 5. And the 
channels that exhibited significant difference between 
the two conditions associated with each task were 
listed in Table 1. We discovered from Fig. 5 and Table 
1 that multiple brain regions including the right visual 
area 3 (V3), angular gyrus (AG), bilateral somato-
sensory association cortex (SAC), frontopolar (FPA), 
and orbitofrontal area (OFA) exhibited enhanced 
activation for the game condition as compared to that 

from the calculation condition. By contrast, only three 
channels located in the right SAC and bilateral OFA 
showed higher activation for the complex reasoning 
condition as compared to that from the simple 
reasoning condition. 

In addition, we discovered from Fig. 6 that for 
both the 24 points game and numerical reasoning 
tasks, the behavioral performance exhibited positive 
correlation with the brain activation. In particular, 
positive correlations were identified in the right FPA 
and left OFA for the 24 points game case, whereas for 
the numerical reasoning case, the positive relationship 
was revealed in the conjunction of SAC, V3, and AG 
(channel 2). 

 

 
Figure 5. Brain activation difference maps between the two conditions (experimental – control) for the two tasks. The brighter color denotes higher t values 
resulted from the t-tests. 

 

Table 1. Paired t-test results for channels with significant activation. 

Contrasts #ch Label p t df SD d M1 SE1 M2 SE2 
game - calculation 2 R-V3 0.001 3.77 28 0.188 0.785 0.120 0.025 -0.012 0.036 

3 R-AG 0.001 3.54 28 0.204 0.832 0.087 0.025 -0.047 0.034 
4 R-SAC <0.001 4.50 28 0.189 1.018 0.140 0.023 -0.018 0.034 
5 R-SAC 0.034 2.23 28 0.152 0.385 0.142 0.027 0.079 0.033 
7 L-SAC 0.033 2.25 28 0.199 0.472 0.066 0.026 -0.018 0.038 
8 L-SAC 0.017 2.53 28 0.137 0.472 0.058 0.024 -0.006 0.026 
11 L-SAC 0.043 2.12 28 0.187 0.463 0.089 0.029 0.015 0.031 
13 R-FPA 0.010 2.76 28 0.107 0.455 0.049 0.020 -0.005 0.024 
14 R-FPA 0.005 3.08 28 0.096 0.464 0.084 0.021 0.029 0.023 
15 R-OFA 0.001 3.54 28 0.113 0.523 0.065 0.024 -0.009 0.028 
19 R-OFA 0.018 2.51 28 0.067 0.301 0.018 0.018 -0.013 0.020 
22 L-OFA 0.007 2.89 28 0.063 0.468 0.017 0.012 -0.017 0.014 
23 L-OFA 0.035 2.21 28 0.100 0.368 0.008 0.017 -0.033 0.024 
24 L-FPA 0.022 2.42 28 0.150 0.482 0.073 0.029 0.006 0.022 
26 L-OFA 0.016 2.57 28 0.100 0.473 0.061 0.018 0.014 0.019 

Complex - Simple 5 R-SAC 0.030 2.28 28 0.079 0.325 0.080 0.021 0.046 0.018 
19 R-OFA 0.019 2.49 28 0.042 0.312 0.013 0.013 -0.007 0.010 
22 L-OFA 0.039 2.16 28 0.046 0.301 0.008 0.013 -0.010 0.009 

 
Effective Connectivity 

The averaged GC coefficients were visualized in 
matrix form in Fig. 7(a), whereas the effective 
connectivity was displayed on the brain templates in 
Fig. 7(b). In addition, detailed GCA results were listed 

in Table 2. Interestingly, we discovered from Fig. 7 
that bidirectional connectome between the bilateral 
SAC and that between the bilateral prefrontal cortex 
(PFC), and effective connectivity from the right AG to 
bilateral SAC and that from the left AG to left SAC 
were clearly identified for various cases. 
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Figure 6. Scatter plots of the accuracy and activation. The correlation coefficients (r) and their significance level (p) are provided. Titles are organized according to 
the format of “task-channel-hemisphere-anatomical label”. 

 

 
Figure 7. Effective connectivity for the two conditions associated with two tasks. The darker colors within the matrixes in (a) and thicker curves in (b) denote higher 
GCs. 

 
In particular, significant bidirectional connect-

ome was observed between the left PFC and left SAC 
for the game condition associated with the 24 points 
game task although this is not the case for the 
calculation condition and the other two conditions 
associated with numerical reasoning task. Meanwhile, 
the effective connectivity was also confirmed from the 
right PFC to right AG for the calculation condition 
and that from the right PFC to left SAC for the game 
condition. By contrast, no effective connectivity 
between the prefrontal and parietal cortex was 
identified for the numerical reasoning task. In 
addition, the connection from the right SAC to right 
AG only was only identified in the simple reasoning 
condition of numerical reasoning task. 

More importantly, all normalized GC 
coefficients were subjected to the paired t-tests to 
quantify the GC differences between the two 
conditions for each task. The generated t-values were 
visualized in matrix form in Fig. 8. We discovered that 

the game condition exhibited significant difference in 
the effective connectivity with the calculation 
condition for the 24 points game task. Specifically, 
compared to those from the calculation condition, 
decreased GCs were observed from the right AG to 
left SAC (t(28) = -2.20, p = 0.037, Cohen’s d = -0.53) 
and from the left AG to left PFC (t(28) = -2.87, p = 
0.008, Cohen’s d = -0.56), while enhanced GCs were 
observed from the left SAC to left PFC (t(28) = 2.10, p 
= 0.045, Cohen’s d = 0.48) as well as from the left (t(28) 
= 2.07, p = 0.048, Cohen’s d = 0.40) and the right PFC 
(t(28) = 2.52, p = 0.018, Cohen’s d = 0.50) to left SAC 
for the game condition. 

By contrast, compared to the simple condition of 
numerical reasoning task, the complex condition 
showed significantly decreased effective connectivity 
from the right PFC to right SAC (t(28) = -2.14, p = 
0.0416, Cohen’s d = -0.52) and significantly increased 
effective connectivity from the left AG to right SAC 
(t(28) = 2.32, p = 0.028, Cohen’s d = 0.37). 
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Table 2. Significant GC coefficients for the four cases. 

Conditions  Source Target GC p-value p(FDR) 
Calculation R-AG R-SAC 0.016 0.0007 0.0064 

R-AG L-SAS 0.016 0.0011 0.0064 
R-SAC L-SAS 0.016 0.0009 0.0064 
L-SAS R-AG 0.014 0.0036 0.0154 
L-SAS R-SAC 0.015 0.0014 0.0069 
L-AG L-SAS 0.011 0.0119 0.0445 
R-PFC R-AG 0.011 0.0134 0.0445 
R-PFC L-PFC 0.101 <0.0001 <0.0001 
L-PFC R-PFC 0.048 <0.0001 <0.0001 

Game R-AG R-SAC 0.016 0.0008 0.0045 
R-AG L-SAS 0.011 0.0177 0.0483 
R-SAC L-SAS 0.017 0.0004 0.0036 
L-SAS R-AG 0.014 0.0027 0.0137 
L-SAS R-SAC 0.017 0.0005 0.0040 
L-SAS L-PFC 0.011 0.0142 0.0451 
L-AG L-SAS 0.012 0.0115 0.0433 
R-PFC L-SAS 0.013 0.0048 0.0206 
R-PFC L-PFC 0.103 <0.0001 <0.0001 
L-PFC L-SAS 0.011 0.0150 0.0451 
L-PFC R-PFC 0.040 <0.0001 <0.0001 

Simple Reasoning R-AG R-SAC 0.014 0.0008 0.0047 
R-AG L-SAS 0.011 0.0043 0.0184 
R-SAC R-AG 0.010 0.0107 0.0358 
R-SAC L-SAS 0.019 <0.0001 0.0002 
L-SAS R-SAC 0.016 0.0002 0.0014 
L-SAS L-AG 0.010 0.0088 0.0328 
L-AG L-SAS 0.013 0.0009 0.0047 
R-PFC L-PFC 0.090 <0.0001 <0.0001 
L-PFC R-PFC 0.034 <0.0001 <0.0001 

Complex Reasoning R-AG R-SAC 0.011 0.0051 0.0197 
R-AG L-SAS 0.011 0.0052 0.0197 
R-SAC L-SAS 0.017 0.0001 0.0010 
L-SAS R-SAC 0.016 0.0002 0.0012 
L-SAS L-AG 0.011 0.0040 0.0197 
L-AG L-SAS 0.013 0.0010 0.0061 
R-PFC L-PFC 0.082 <0.0001 <0.0001 
L-PFC R-PFC 0.030 <0.0001 <0.0001 

 

 
Figure 8. T value matrixes generated from paired t-tests. The colors denote the t values and the significant differences in effective connectivity are highlighted in white 
squares. 

 
Further, a bootstrap method (60) was adopted to 

quantify the temporal relations across lags. In brief, 
the time series in each trial were randomly but 
synchronously shuffled for 1000 times and were 
subjected to GCA. Such procedure interrupted the 
temporal relations across lags. Thus, the larger 
portion of the iterations, which were lower than the 
GC calculated from the original data, denoted the 

stronger directional influences beyond the temporal 
correlations. Subsequently, paired t-tests were 
performed on the portions for each GC. With this 
procedure, we discovered that the game condition in 
24 points game task exhibited decreased connectivity 
from the left AG to left PFC (t(28) = -2.72, p = 0.01, 
Cohen’s d = -0.69) as compared to the calculation case. 
By contrast, compared to the simple case, the complex 
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case of numerical reasoning task exhibited increased 
connectivity from the right FA to left SAC (t(28) = 
2.44, p = 0.02, Cohen’s d = 0.60). 

Discussion 
Our results supported the primary hypothesis 

that planning, calculation and reasoning exhibited 
significant difference in the effective brain connectiv-
ity. In particular, the effective connectivity between 
the anterior frontal and posterior parietal cortex was 
more closely related to planning rather than 
reasoning. 

We discovered that compared to the calculation 
condition, the 24 points game case showed enhanced 
and right lateralized brain activation across broad 
areas in the frontal and parietal cortex, as illustrated 
in the activation maps in Fig. 5. Interestingly, a recent 
meta-analysis revealed that the IPL and premotor 
cortex were right lateralized during planning (18). 
Meanwhile, a recent review work also demonstrated 
the rostrolateral PFC can served as a superordinate 
region during the hierarchical control of behavior (61). 
Our neuroimaging results indicated that the 24 points 
game was mainly involved in planning processing 
rather than the calculation, and the cognitive compo-
nent of planning shares the same neural substrate as 
other goal-directed behaviors. In addition, compared 
to the simple reasoning condition, the complex 
reasoning case also elicited activation in the right SAC 
and bilateral OFA. The activation pattern was 
consistent with previous studies (10).  

In addition, previous correlation analysis 
showed that the planning performance was regulated 
by the activation in right FPA and left OFA, which is 
critical for the monitoring of information (26). 
However, the reasoning performance was regulated 
by the activation in the conjunction of SAC, V3, and 
AG, which are critical for the representation of 
number quantities (3). Thus, our findings implied that 
the performance of planning is mainly regulated by 
the monitoring process, whereas the performance of 
numerical inductive reasoning is basically regulated 
by the calculation demands. 

More importantly, the GCA results demonstra-
ted that the left SAC was a crucial hub for the 
fronto-parietal network. In particular, its interaction 
with other brain regions such as the bilateral AG and 
right SAC provided a common effective network 
supporting the number processing during the arith-
metic problem-solving. However, the interactions 
among the fronto-parietal network can effectively 
characterize the cognitive processing of calculation, 
planning, and reasoning. Specifically, the effective 
connectivity between the frontal and parietal cortex 
exhibited significant difference between the 

calculation, planning, and reasoning. For example, 
regarding the calculation, the right PFC had direct 
influence on the right AG, whereas the right AG also 
influenced the neural activities in bilateral SAC. These 
new findings were in line with a recent study, which 
discovered that lesions in the right AG impaired the 
mental calculation (62). Our results also implied that 
the polynomial operations are modulated by the right 
PFC. Interestingly, a reciprocal connectivity between 
the frontal and parietal cortex was identified for the 24 
points game condition but not in the calculation 
conditions or reasoning task. As a result, the bilateral 
PFC directly affected the neural activities in the left 
SAC, and concurrently the left SAC also imposed 
influence on the left PFC. More interestingly, the brain 
networks in Fig. 7 might imply a monitoring- 
feedback-evaluation process during planning in the 
arithmetic problem-solving, in which the PFC serves 
as the monitoring and evaluation hub while the left 
SAC serves as the calculation hub, as illustrated in 
Fig. 9. For example, when the numbers “1 2 3 3” are 
combined together to generate number 24, the 
sub-goals 4 and 6 (4 × 6 = 24) might easily be achieved 
by (1+3)×(2×3) (monitor the mental calculation to 
achieve the sub-goal, and then evaluate the correct 
feedback). Likewise, we might also construct the 
sub-goals as 3 and 8 (3 × 8 = 24). However, we cannot 
achieve 8 with the left numbers 1 2 3 (incorrect 
feedback). Consequently, we have to adjust our sub- 
goals in the second step and perform the monitoring- 
feedback-evaluation again. Such problem- solving 
framework is worth further investigation in the 
future.  

The t-tests and bootstrap results can also be 
interpreted according to this framework. Enhanced 
reciprocal connectivity between the frontal and 
parietal cortex was identified in the 24 points game 
condition as compared to the calculation condition. By 
contrast, enhanced connectivity from the right AG to 
left SAC and that from the left AG to left PFC were 
identified in the calculation condition as compared to 
the game condition. The increased connectivity from 
the left AG to left PFC was also revealed by the 
bootstrap method. Our findings confirmed that the 
cognitive process in 24 points game was monitored or 
planned by the frontal cortex although this is not the 
case for the calculation condition. 

Unlike the 24 points game task, the F-test 
showed that the frontal and parietal cortex exhibited 
no effective connectivity for both conditions of 
numerical reasoning task. However, the bootstrap 
results demonstrated that the monitoring process 
from the right PFC to left SAC was still predominant 
in complex numerical inductive reasoning rather than 
the simple one. The t-tests results showed that 
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compared to the simple reasoning, the complex 
reasoning exhibited decreased connectivity from the 
right PFC to right SAC, and increased connectivity 
from the left AG to right SAC. Our findings also 
indicated that the numerical inductive reasoning, 
although still needed to the monitoring from the 
frontal cortex as other reasoning process did, can 
process the information in a more independent way as 
compare to the planning process. 

 

 
Figure 9. Model schematic showed monitoring and feedback processing. 

 
Further, the present study not only proposed a 

novel paradigm that can effectively examine the 
planning during arithmetic problem-solving, but also 
has important practical implications for the 
evaluation of efficacy of mathematics education. The 
24 points game has been playing in China since the 
1960s, which is now widely used in math classes in 
China. Meanwhile, it also has been introduced to 
North American at least for 30 years (https://www.24 
game.com/t-about-24gameanniversary.aspx.). How-
ever, the cognitive components in playing this game 
and their neural substrates remain unknown. This 
study revealed that the 24 points game, as compared 
to the widely used arithmetic exercises like the 
calculation and number series completion, elicited 
more engagement and interactions in the 

fronto-parietal network. Hence it provides an index 
for the evaluation of efficacy of mathematics 
education using arithmetic games, which might 
contribute to the emerging field of neuroeducation 
(63).  

Limitations and Conclusions 
There were several potential limitations to this 

study. Firstly, only part of brain cortex was covered 
by the patch due to the limited optodes. In addition, 
the order of the 24 points and numerical reasoning 
tasks was not counterbalanced, whose effect should 
be further investigated in the future. 

In conclusion, the present study examined the 
differences in brain activation and effective 
connectivity between the calculation, planning, and 
reasoning. We discovered that compared to the 
calculation, planning showed enhanced and right 
lateralized brain activation across broad areas in the 
frontal and parietal cortex. By contrast, compared to 
the simple reasoning, only a small part of the frontal 
and parietal cortex exhibited high activation for the 
complexity reasoning. Further, the performance of 
planning showed the correlation with the activation in 
frontal cortex, whereas the performance of reasoning 
was correlated with the activation in the parietal 
cortex. More importantly, by combining the emerging 
technologies (fNIRS and GCA) with a novel paradigm 
(24 points game), we discovered that the directional 
effective connectivity between the anterior frontal and 
posterior parietal cortex was more closely related to 
planning rather than reasoning. Our study proved 
that the fNIRS is a sufficient technique to characterize 
the effective connectivity for the construction of 
directional networks, which provides evidence in 
favor of future analog fNIRS studies. 
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