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Abstract 

Liver is one of the most vital organs to maintain homeostasis because of its peculiar detoxification 
functionalities to detoxify chemicals and metabolize drugs and toxins. Due to its crucial functions, 
the liver is also prone to various diseases, i.e., hepatitis, cirrhosis and hepatoma, etc. Additionally, 
long non-coding RNAs (lncRNAs) has emerged as key regulators which are found to play important 
roles in transcription, splicing, translation, replication, chromatin shaping and post translational 
modification of proteins in living cells. However, the underlying mechanisms of biological processes 
mediated by lncRNA remain unclear. Here, with the aim of disclosing potential lncRNAs implicated 
in the biological processes in liver in response to cytotoxicity, we performed a co-expression 
network analysis based on the transcriptome data of the damaged liver tissue of Rattus norvegicus 
induced by three cytotoxic compounds (carbon tetrachloride, chloroform and thioacetamide). Our 
analysis unveils that many biological processes and pathways were collectively affected by the three 
cytotoxic compounds, including drug metabolism, oxidation-reduction process, oxidative stress, 
glucuronidation, liver development and flavonoid biosynthetic process, etc. Also, our network 
analysis has identified several highly conserved lncRNA-mRNA interactions participating in those 
correlated processes and pathways, implying their potential roles in response to the induced 
cytotoxicity in liver. Our study provides new insights into lncRNA-mRNA regulatory mechanisms in 
response to pathogenic cytotoxic damaging in liver and facilitates the development of 
lncRNA-oriented therapies for hepatic diseases in the future. 
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Introduction 
The liver is the central organ for various 

physiological processes, including macronutrient 
metabolism, immune system support, lipid and 
cholesterol homeostasis, as well as the breakdown of 
xenobiotic compounds, i.e. drugs. However, these 
properties render the liver a vulnerable for 
pathogenesis. Despites the majority of pathogens can 
be eliminated or controlled by the innate and adaptive 
immune responses, there are still a few specific 
pathogens which can overpower the immune system 

and cause substantial morbidity and mortality 
worldwide. According to the statistics of Centers for 
Disease Control and Prevention of United States, the 
death rates for chronic liver disease and cirrhosis 
increased significantly for persons aged ≥ 45 years 
from 2000 to 2015[1]. Therefore, the harm of liver 
diseases to human beings should not be 
underestimated. 

Hepatocytes are fragile to the damage induced 
by cytotoxicity. Liver intoxicated with toxins can 
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easily result in a series of diseases, initially hepatitis, 
then developing into cirrhosis, finally deteriorating 
into hepatocellular carcinoma. The source of cytotoxin 
production is the reactive oxygen species occurring in 
the aerobic respiration. ROS have been studied for a 
long time, such as oxygen ions, peroxides and oxygen 
free radicals. Medium and high concentrations of ROS 
induce apoptosis through cell oxidative stress and 
sometimes even lead to necrosis. Recent studies have 
shown that ROS can bi-directionally regulate 
apoptosis and proliferation of some cancer cells, and 
the intrinsic relationship between free radicals and 
cell signal transduction has been found[2]. Usually, 
cells reduce ROS damage by enzymes such as 
superoxide dismutase. Some small molecules, such as 
vitamin C, vitamin E, uric acid and glutathione, also 
act as cell antioxidants[2]. 

ROS can cause irreversible damage to tissues. In 
biological experiments, halobenzene compounds are 
often used as inducer to model the toxicity of 
cytotoxins such as carbon trichloride, carbon 
tetrachloride and thioacetamide. Studies have shown 
that the mode of toxic action of carbon trichloride and 
carbon tetrachloride is the formation of ROS during 
the metabolism of these two chlorides, resulting in 
damages to the body[3, 4]. As an important organ for 
the metabolism of exogenous toxic substances, liver is 
very sensitive to toxic damages, so toxin-induced liver 
disease model has become an important means of 
scientific research. For example, 
Thioacetamide-induced liver disease model was used 
and proteomic analysis revealed that 59 important 
proteins have different changes during the 
pathogenesis[5]. 

On the other hand, lncRNA is defined as the 
RNA of length greater than 200 nucleotides and 
lacking capability to encode proteins[6]. LncRNA 
originates from the vast regions of non-coding DNA 
sequence which was once considered junk DNA. 
However, increasing evidence indicates that lncRNAs 
as a curial regulatory layer play important roles in a 
variety of biological processes, including 
transcription, splicing, translation, replication, 
chromatin shaping and post-translational 
modification, etc. [7-9]. Concretely, a lncRNA named 
lncLSTR is found to be specifically expressed in liver 
and is demonstrated as a triglyceride regulator to 
regulate the energy metabolism in liver [10]. HULC is 
found to be overexpressed in liver tumor and has 
been considered as an effective biomarker in many 
human cancers [11]. Furthermore, a novel lncRNA 
named Lnc-HC is demonstrated to bind to 
hnRNPA2B1 in hepatocytes and can negatively 
regulate cholesterol metabolism[12]. Notably, most of 
the studies on lncRNA in liver focus on its metabolic 

functions, a few concerns their potential roles in liver 
detoxification. In the present study, aiming at 
discovering novel lncRNAs as well as their potential 
roles as antidote in liver, we performed a 
comprehensive transcriptomic analysis on the deep 
RNA sequencing data of the damaged Rattus 
norvegicus liver tissue induced by three different 
cytotoxic compounds (carbon tetrachloride, 
chloroform, thioacetamide).  

Results 
Transcriptome re-construction  

In this study, three different cytotoxic chemicals 
were employed for treatment groups, while control 
groups were prepared separately. All samples were 
sequenced by Illumina Hiseq 2000 platform, 
generating a total of 1,302,411,914 reads. In order to 
obtain a high-confidence dataset, we filtered out 
low-quality reads, over-represented sequences, and 
adapter sequences from our raw data using 
Trimmomatic. 891,896,778 clean reads were yielded in 
carbon tetrachloride treatment, 922,721,370 in 
chloroform treatment and 194,462,724 in 
thioacetamide treatment (Table S1).  

After quality control, the clean reads were 
subsequently aligned to a reference genome. The 
software STAR with 2-pass mode was chosen to align 
filtered reads against R. norgegicus reference (Ensembl 
release 92). As shown in Table S2, most clean reads 
(86% ~ 90%) could be mapped to the reference. 

After alignment, reads from different libraries 
were pooled together for each chemical group. And 
mapped reads were assembled by StringTie to 
generate the consensus transcriptome for each 
chemical group. Concretely, 52001 transcripts were 
identified in CAR treatment group, 52,254 in CHL 
treatment group and 52,744 in THI treatment group. 
After merging the three groups, 64938 were obtained, 
totally (Table S3). Lastly, a visualization tool for 
transcriptional landscape of alternative splicing 
(ASTALAVISTA) was selected to search for five main 
alternative splicing modes, including intron retention, 
exon skipping, alternative 3’-acceptor, alternative 
5’-donor and mutually exclusive exon. The result 
illustrated almost uniform splicing modes across all 
the groups treated by three different chemicals (Fig. 
S1). 

Identification of lncRNAs 
To identify the putative lncRNAs present in each 

chemical treatment group, a stringent stepwise 
pipeline was developed to discard transcripts with 
evidence of protein coding potential (Fig. 1). After 
merging all the assembled transcripts into 64,938 
transcripts through StringTie, we used in-house perl 
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script to compare them with the lncRNAs information 
from gene annotation of R. norvegicus. 4,581 known 
lncRNAs with lengths larger than 200 nt and types 
‘antisense’, ‘non-coding’, ‘processed transcript’ and 
‘lincRNA’ were extracted. Similarly, 29,095 known 
mRNAs also could be identified.  

Then the potential coding transcripts were 
queried using BLASTx algorithm against Uniport 
database, NCBI non-redundant protein database and 
protein sequences database of R. norvegicus derived 
from Ensembl database for the remaining transcripts. 
The result showed that 20,392 transcripts could be 
well compared. Furthermore, 6,820 transcripts were 
retained after discarding the transcripts with length 
less than 200 nucleotides and longest ORF greater 
than 100 amino acids. To effectively distinguish 
protein-coding and non-coding sequences, coding 
potential filtering was performed subsequently 
according to CPC and Pfam Scan (v1.3) (Table S4). 
Finally, 6,818 novel lncRNAs were obtained (Fig. 
S2-B). Combined with 4,581 known lncRNAs (Fig. 
S2-A) obtained from the previous analysis, a total of 
11,397 lncRNAs were identified for further study (Fig. 
S3). 

Characteristics of lncRNAs among three 
differential chemical treatment groups 

Based on the above analysis, a total of 8,540, 
8,569, 8,508 lncRNAs were identified in the 
transcriptome of CAR, CHL and THI treatment group 
respectively (Fig. 2-A). The features of lncRNAs were 
analyzed according to the following aspects, 
including length and their expression levels, 

comparing with those of mRNAs for each chemical 
treatment group. The results indicated that the length 
of lncRNAs and ORF as well as the number of exons 
in the three chemical treatment groups are all smaller 
than those of their respective mRNAs (Fig. 2-B, D, E). 
Furthermore, the expression of lncRNAs is also lower 
than that of mRNAs (Fig. 2-C). 

Differential expression of mRNAs and 
lncRNAs response to three different 
cytotoxicity-inducing chemicals 

The goal of differential expression analysis is to 
investigate the lncRNAs and mRNAs that have 
changed significantly in abundance between case and 
control. Initially, the expressions of lncRNAs and 
mRNAs were quantified in the previous analysis. 
Then, we normalized the read counts for each sample 
(Fig. 3) and conducted the differential expression 
analysis using R package DESeq2 (Fig. 4-A). The 
detail interrelationship of differentially expressed 
lncRNAs and mRNAs between three chemical 
treatment groups was visualized in Fig. 4. Concretely, 
there were 303 significantly differentially expressed 
lncRNAs and 3,491 SDE mRNAs identified (p < 0.05 & 
fold change > 2) in CAR treatment group, 344 SDE 
lncRNAs and 3,203 SDE mRNAs identified (p < 0.05 & 
fold change > 2) in CHL treatment group, 552 SDE 
lncRNAs and 4,646 SDE mRNAs identified (p < 0.05 & 
fold change > 2) in THI treatment group, in 
comparison with their respective control group. 
Among these, 28 lncRNAs and 241 mRNAs were 
commonly upregulated, 54 lncRNAs and 583 mRNAs 
were commonly downregulated in three different 

 
Figure 1: The analysis pipeline used for the identification of lncRNAs in the transcriptome of Rattus norvegicus. 
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chemical treatment groups (Fig. 4-B, C). All the 
differentially expressed transcripts for three 
comparisons was summarized in Table S5. 

WGCNA analysis reveals complex network 
implicated in cytotoxicity 

WGCNA is used to extract gene modules related 
to traits or clinical features, and to analyze biological 
processes such as basic metabolic pathways, 
transcriptional regulation pathways and translational 
regulation. In this part, the WGCNA analysis was 
performed for each group. Firstly, normalized 
expression matrices were generated using DESeq2. 
The difference between treatment and control in each 
group could be clearly shown (Fig. S4). Then, the 
outlier samples of each group were detected from the 

sample clustering result (Fig. S5). There were only two 
outliers in group CHL in the initial clustering samples 
(Fig. S5-B). After removing the outliers, the 
appropriate soft threshold values in each group were 
estimated (Fig. S6). The soft threshold values which 
support the scale-free network atlas structure R2 
reaching 0.8 and the average connectivity higher than 
100 should be the best parameter for further analysis. 
In addition, the values should be an integer smaller 
than 15 in undirected network or smaller than 30 in 
directed network. After applying the function 
pickSoftThreshold in WGCNA package, 4,5 and 3 were 
estimated as the best soft threshold values in CAR, 
CHL and THI groups respectively. Substantially, 
giving the best soft threshold values to the parameter 

 
Figure 2: General characteristics of lncRNAs compared to mRNAs in Rattus norvegicus. (A) Relationship of lncRNAs among three chemical treatment groups. 
(B) Distribution of exon counts by log10 (C) Expression level indicated by log10 (normalization read counts+1). (D) Distribution of transcript length by log10. (E) 
Distribution of ORF length by log10.  
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of power, the One-step network construction and 
module detection were performed using the function 
blockwiseModules. In this step, the expressed 
transcripts in each group were clustered into some 
modules according to their normalized reads count. 
The results showed that 265 modules, 292 modules 
and 178 modules were identified in CAR group, CHL 
group and THI group, respectively (Fig. S7). Every 
module shows consistent expression pattern, but the 
module which is strongly related to the properties 
should be given more attention; the reason can be 
strongly supported from the results of the correlation 
between module membership and gene significance 
(Fig. S8), and the clustering illustrates the relationship 
between module and trait among three groups (Fig. 
S9 - S11). The matrices of properties were designed for 
each group and the correlation between modules and 
properties were calculated (Fig. 5). In the CAR group, 
the blue module with 2412 transcripts has the 
strongest correlation with PCC = 0.98 and its p-value 
= 4e-13 (Fig. 5-A). Similarly, the turquoise module with 
3965 transcripts is detected with PCC = 0.89 and 
p-value = 6e-7 in CHL group, and the turquoise 
module with 7923 transcripts is detected with PCC = 
0.99 and p-value = 2e-15 in THI group (Fig 5-B, C). In 
order to explore the functions related to these 
modules, we performed Gene Ontology analysis for 
the modules which are most strongly related to the 
properties in each group, including the functions on 
biological process, cellular component, molecular 

function and KEGG pathway. There are some 
significant pathways enriched in each group. 
Concretely, there are 66 terms about the biological 
process, 19 terms about cellular component, 27 terms 
about molecular function and 26 pathways enriched 
in CAR group (Fig. S12 - S15). Similarly, 61 terms 
about biological, 26 terms about cellular component, 
34 terms about molecular function and 17 pathways 
enriched in CHL group (Fig. S16 - S19), 54 terms about 
biological process, 41 terms about cellular component, 
29 terms about molecular function and 15 pathways 
enriched in THI group (Fig. S20 - S23). This result 
completely showed the complex effect of cytotoxicity 
in rat. Afterwards, the commonly enriched functions 
and pathways in three groups and the common genes 
in these enriched functions were extracted for further 
analysis (Table 1). 

Based on the co-expression matrix and the best 
soft threshold value in each group, the co-expression 
networks were constructed, and TOM similarity was 
generated using WGCNA. The TOM similarity 
reflects the potential interactions between transcripts. 
An assumption that some pairs of interactions 
containing the common transcripts transcribed from 
the common genes identified should be given more 
attentions. Thus, the interactions which are 
consistently found to be in common in the modules 
which are most strongly related to the properties in 
each group would be filtered out. Therefore, 86320 
pairs of common interactions in all three groups were 

 
Figure 3: Comparison of expression value between before normalization and after normalization. (A) distribution of expression value before normalization. (B) 
distribution of expression value after normalization. (C) frequency of expression value before normalization. (D) frequency of expression value after normalization. 
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collected. To focus on the key genes identified issn the 
common functions enriched in three groups, 
mRNA-mRNA and mRNA-lncRNA interaction pairs 
would be retained. After filtering, 16195 pairs of 
common interactions were located. Undeniably, there 
exist some false positives in the filtered common 
interactions. So, a higher standard should be 
followed. The top 20% of weighted values of the 

common interactions in three group simultaneously 
were retained to unearth the main important 
interactions induced by cytotoxicity. Finally, 282 
common interactions with strict filtering criteria were 
obtained, including 3 lncRNAs, 34 mRNAs with 
already known functions enriched and 65 mRNAs 
with un-belonging to anyone of the common 
functions enriched (Fig. 6).  

 

 
Figure 4: Differentially expressed analysis in three chemical treatment groups. (A) Heatmap of differential transcriptome expression profiles cross all the samples 
used in three chemical treatment. (B) Overlap of differential expression mRNAs among different chemical treatment. (C) Overlap of differential expression lncRNAs among 
different chemical treatment. 
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Figure 5: Module-trait relationships in three chemical treatment groups and top 9 functional enrichment cross three categories together with KEGG 
analysis through the most related module in three chemical groups. (A) Module−trait relationships and top 9 functional enrichment cross three categories together 
with KEGG analysis through the blue module in CAR group. (B) Module−trait relationships and top 9 functional enrichment cross three categories together with KEGG analysis 
through the blue module in CHL group. (C) Module-trait relationships and top 9 functional enrichment cross three categories together with KEGG analysis through the blue 
module in THI group. 
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Figure 6: Co-expression network constructed with the common interactions with top 20% weighted value among three groups and the important 
interactions related to 3 basic functions in the process of cytotoxicity. (A) Co-expression network constructed with the common interactions with top 20% weighted 
value among three groups. (B) The important interactions related to chemical carcinogenesis. (c) The important interactions related to glucuronidation. (d) The important 
interactions related to extracellular exosome and oxidation-reduction process. 
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Table 1. Function enrichment common in three groups 

Number Category Term Common gene number 
1 GOTERM_CC_DIRECT GO:0070062~extracellular exosome 36 
2 GOTERM_BP_DIRECT GO:0052697~xenobiotic glucuronidation 8 
3 GOTERM_BP_DIRECT GO:0052696~flavonoid glucuronidation 8 
4 KEGG_PATHWAY rno00982: Drug metabolism - cytochrome P450 11 
5 KEGG_PATHWAY rno00053: Ascorbate and aldarate metabolism 9 
6 GOTERM_BP_DIRECT GO:0009813~flavonoid biosynthetic process 7 
7 GOTERM_MF_DIRECT GO:0015020~glucuronosyltransferase activity 8 
8 KEGG_PATHWAY rno00983: Drug metabolism - other enzymes 9 
9 GOTERM_BP_DIRECT GO:0006412~translation 14 
10 KEGG_PATHWAY rno00040: Pentose and glucuronate interconversions 8 
11 KEGG_PATHWAY rno05204: Chemical carcinogenesis 10 
12 GOTERM_BP_DIRECT GO:0052695~cellular glucuronidation 4 
13 KEGG_PATHWAY rno00860: Porphyrin and chlorophyll metabolism 8 
14 KEGG_PATHWAY rno01100: Metabolic pathways 21 
15 GOTERM_BP_DIRECT GO:0001889~liver development 6 
16 GOTERM_BP_DIRECT GO:0055114~oxidation-reduction process 9 
17 KEGG_PATHWAY rno00980: Metabolism of xenobiotics by cytochrome P450 11 

 
 

Discussion 
We performed differential expression analysis 

and the result shows that distinct lncRNAs and 
mRNAs are differentially expressed under the 
induction of the three compounds. Furthermore, in 
order to explore possible roles of those specific 
lncRNAs implicated in liver cytotoxicity, we utilized a 
co-expression network analysis to analyze the 
expression profile of all lncRNAs and mRNAs for 
each group based on WGCNA package in R. For each 
group, the modules which are closely related to the 
compound treatment were figured out. Subsequently, 
functional enrichment analysis based on the RNAs 
derived from each module were conducted, the result 
of which suggested diverse biological processes and 
pathways are affected in rat liver by different 
compounds. For example, small GTPase-mediated 
signal transduction, Golgi vesicle transport and 
response to thyroxine are found to be specifically 
affected by CHL, whereas the influence of mRNA 
splicing, maturation of SSU-rRNA and spliceosomal 
complex are only detected in THI treatment. More 
importantly, many functions are collectively 
disrupted by all three compounds, including 
extracellular exosome, oxidation-reduction process 
and drug metabolism - cytochrome P450, etc. This 
finding suggests the three compounds may share 
partly common mechanisms to induce cytotoxicity in 
liver. Moreover, we further tried to figure out the 
detailed molecular interaction implicated in those 
common mechanisms. The results show that several 
RNAs interactions (including mRNA-mRNA, 
lncRNA-mRNA) which involve 3 lncRNAs and 34 
mRNAs conservatively existing in the transcriptome 
of damaged rat liver induced by the three compounds 
(Fig. 6-A). Particularly, three lncRNAs are found to 
interact significantly with an mRNA transcribed from 

MAO-b gene which is enriched in extracellular 
exosome and oxidation-reduction process. These 
three lncRNAs consist of 2 novel (MSTRG.23113.1, 
MSTRG.12375.1) and 1 known (ENSRNOT 
00000091624) transcript. MSTRG.12375.1 is found to 
be up-regulated in CHL group and 
ENSRNOT00000091624 is found to be commonly 
down-regulated in the three groups. Notably, their 
target mRNA ENSRNOT00000044009 transcribed 
from MAO-b exhibits to be commonly 
down-regulated in the three groups, which implies 
lncRNA MSTRG.12375.1 might negatively regulate its 
expression while lncRNA ENSRNOT00000091624 
probably acts as enhancer for MAO-b. Also, our 
network analysis shows that MAO-b could interact 
with Gsta3 via Abcb1, Anxa7 and Pm20d1 (Fig. 6-B). 
Our functional analysis shows that Gsta3 is enriched 
in the GO function of chemical carcinogenesis. 
Indeed, Gsta3, which has already been proven to be 
involved in cellular defense against toxic and 
carcinogenic compounds, is found to be 
overexpressed in our study. Interestingly, Abcb1, 
Anxa7 and Pm20d1 are also up-regulated in the three 
groups. This finding might suggest that these 
lncRNAs indirectly participate in the process of 
chemical carcinogenesis guided by Gsta3 via MAO-b. 
Meanwhile, it has been illustrated that MAO-b, one of 
the AOs which are the major enzymes of BA 
metabolism, appear to be involved in programmed 
cell death [13, 14] and the manipulation of AOs could 
be considered as a mean of regulating tumor growth 
or inhibition. Another important finding is about 
glucuronidation. Related study showed that 
acyl-glucuronides induce inflammatory toxicity and 
cytotoxicity against CD14+ cells via the p38 
mitogen-activated protein kinase pathway[15]. It is 
assumed that the chemical pathways of activation like 
glucuronidation initiate either direct or 
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immune-mediated indirect hepatotoxicity[16]. The 
gene Ugt1a7 has been demonstrated to play an 
important role in glucuronidation activity toward 
benzo(a)pyrene phenol and diol metabolites[17]. 
Similarly, our network analysis shows that MAO-b 
could interact with Ugt1a7 through Kynu gene or 
through Npm1 gene and Rpl5 gene, which implies 
that the three lncRNAs might participate in the 
regulation of glucuronidation via MAO-b (Fig. 6-C). 
Regarding the functions of EE and ORP, they are two 
common metabolism processes in liver. According to 
the constructed network, the MAO-b gene could 
directly interact with Bbox1 or indirectly interact with 
Impdh2 through Ust5r. PPAR-induced FA oxidation 
has previously been associated with increased 
L-carnitine and acetylcarnitine in plasma[18, 19], and 
with increased mRNA level of Bbox1 and Slc22a5[18, 
20], while in this study, hepatic Bbox1 mRNA, plasma 
L-carnitine and acetylcarnitine were lowered[21]. In 
our study, lipid peroxidation also exists as one of the 
injuries caused by reactive oxygen species derived 
from the metabolism of chemicals in liver. Similarly, 
mRNA of Bbox1 which directly interacts with the 
down-regulated mRNA of MAO-b gene is also 
down-regulated. There exists another interaction 
relationship between MAO-b and Impdh2 with 
common up-regulation in the three groups via Ust5r, 
but the mRNA of Ust5r is partially down-regulated 
(Fig. 6-D). Impdh2 is a kind of inosine 
monophosphate dehydrogenase which is strongly 
related to oxidation-reduction process. It is also 
up-regulated significantly in our study. 

In summary, our study provides a global view 
for the complex RNA-RNA interactions (mRNA- 
mRNA and lncRNA-mRNA) in cytotoxicity-induced 
rat liver by constructing co-expression network, and 
we identified some candidate interactions in three 
aspects, including chemical carcinogenesis, 
glucuronidation and EE together with ORP. All these 
interactions are based on three lncRNAs containing 1 
known transcript commonly down-regulated in the 
three groups and 2 novel transcripts with 1 of them 
partially up-regulated in the three groups. This 
implies some basic mechanism in some processes of 
pathogenic cytotoxicity. The results will improve our 
understanding of molecular mechanisms underlying 
the response to pathogenic cytotoxicity from complex 
co-expression network and help us discover true 
biomarkers for cytotoxic damaging. 

Methods and Materials 
Sampling and RNA sequencing 

Our study was performed as a secondary 
analysis based on Wang Charles’s experimental 

data[22]. The male Sprague-Dawley rats in the 
experiment came from Charles River laboratory. 
Three chemicals were used to induce cytotoxic 
damages to the liver. The chemicals were orally 
administered (10 ml/kg body weight in corn oil or 
water) or intraperitoneally, intravenously or 
subcutaneously injected (5 ml/kg body weight in 
saline). Raw RNA-Seq data was downloaded from the 
NCBI Gene Expression Omnibus (GEO) database with 
accession number GSE55347. Three samples were 
treated with carbon trichloride, two samples with 
carbon tetrachloride, and 12 control samples for both 
treatment groups. Three samples were treated with 
thioacetamide with five control samples. 

Data processing, alignment and assembly 
Firstly, Trimmomatic (version 0.36)[23] was used 

to filter paired-end reads of each sample, eliminating 
adapter and low-quality reads (ILLUMINACLIP: 
TruSeq3-PE.fa:2:30:10:8:true SLIDINGWINDOW:4:15 
LEADING:3 TRAILING:3 MINLEN:50). Then the 
clean reads were aligned to the Rattus norvegicus 
genome sequences (Ensembl release 92) using STAR 
in 2-pass mode[24]. Finally, StringTie[25] was used to 
assemble the transcripts. 

Differential expression analysis 
We used featurecounts (v1.5.3)[26] to quantify 

the transcripts, then used R package DESeq2[27] to 
normalize the counts of mapped reads and to analyze 
the differential expression of transcripts. Finally, we 
applied Benjamini-Hochberg method and screened 
the transcripts with FDR ≤0.05. 

Identification of lncRNAs 
We proposed a rigorous filtering pipeline (Fig. 1) 

to identify lncRNA. Firstly, ‘biotype transcript’, which 
belongs to lncRNA, was extracted from the assembled 
transcript annotation file. The marked mRNA was 
extracted in the same way. Then the remaining 
transcripts were queried in Uniprot database, NCBI 
non-redundant protein database, and protein 
sequences dataset of R. norvegicus derived from 
Ensembl database, sequences with hits in these 
databases were considered coding sequences. After 
removing these coding transcripts and filtering out 
the transcripts with length greater than 200 nt and 
longest ORF less than 100 amino acids, we used CPC 
and Pfam software to predict protein coding potential 
on the remaining transcripts. Removing the 
transcripts predicted to be encoding proteins, the 
remaining was considered lncRNAs. 

Modules identification using WGCNA analysis 
Firstly, the control samples from all three 

treatment-control comparisons were merged, because 
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it is commonly believed that different control 
methods in this experiment will not result in 
differential transcription in liver tissue. Then we 
extracted the normalized reads count based on 
regularized log normalization method in DESeq2. We 
used these normalized matrices to pick up the soft 
threshold value using WGCNA package. For carbon 
tetrachloride, the soft threshold we picked up is 4 
after observing the normal result of the samples 
clustering (Fig. S6-A, B). Similarly, we got the soft 
thresholds 3 in THI (Fig. S6-E, F). In CHL, we 
removed the outlier sample SRR1177989 and 
SRR1178004 from the first sample clustering result, 
then got the soft threshold 5 (Fig. S6-C, D). 
Subsequently, we applied the best soft threshold 
value in each group to construct the co-expression 
network of gene. From each co-expression network, 
we identified some modules accordingly. Next, we 
need to find out the special modules which are 
strongly related to the three compounds. Hence, we 
designed three matrices which contain a column to 
differentiate the case subtypes. When a sample 
belongs to the control group, then set 0 as the subtype 
value, otherwise set as 1. Eigengenes were calculated 
to display the correlation between each module using 
the function moduleEigengenes in WGCNA package. 
Furthermore, the designed matrix in each group was 
added into this step to calculate the correlation 
between modules and subtypes. The most significant 
modules will be selected for downstream analysis 
(Fig. 5).  

Subsequently, we extracted the gene IDs of the 
most significant module in each group as identifiers 
and used the gene IDs of all assembled genes as 
background to perform functional enrichment 
analysis with DAVID. The statistically significant GO 
categories and KEGG pathways with an EASE score 
(modified Fisher Exact P-Value) ≤ 0.05 were obtained 
using the Fisher’s Exact test (Fig. S12-S23).  

From the result of functional enrichment 
analysis, the overlapping GO categories and KEGG 
pathways will be retained, and their common genes in 
each term can also be identified (Table. 1). These 
genes are considered as key elements involved in the 
enriched terms. 

Identification of pairs of interactions between 
the RNAs (including mRNA-mRNA and 
mRNA-lncRNA) 

From the most significant modules which are 
related to the properties identified in each group, we 
can calculate TOM similarity using the function 
TOMsimilarityFromExpr in WGCNA package with the 
best soft threshold value. The TOM similarity 
matrices are potential interactions between all RNAs 

with a weighted value. According to the TOM 
similarity matrices, we obtained the interactions 
existed in common in three groups. Moreover, we 
picked out the mRNA-mRNA and mRNA-lncRNA 
interactions related to the common genes found in 
enriched GO terms, each of which is enriched GO 
terms and pathways commonly found in all three 
groups. To get more reliable interactions, we only 
extracted top 20% of the common pairs by the 
weighted values in each group (Fig. 6).  
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