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Abstract 

Currently, the rapid development of continuous glucose monitoring (CGM) device brings new 
insights into the treatment of diabetic patients including those during pregnancy. Complexity and 
fractality have recently under fast development for extracting information embodied in glucose 
dynamics measured using CGM. Although scientists have investigated the difference of complexity in 
glucose dynamics between diabetes and non-diabetes in order to discover better approaches for 
diabetes care, no one has analyzed the complexity and fractality of glucose dynamics during the 
process of adopting CGM to successfully treat pregnant women with type 2 diabetes. Thus, we 
analyzed the complexity and fractality using power spectral density (PSD), multi-scale sample 
entropy (MSE) and multifractal detrended fluctuation analysis (MF-DFA) in a clinical case. Our 
results show that (i) there exists multifractal behavior in blood glucose dynamics; (ii) the alpha stable 
distribution fits to the glucose increment data better than the Gaussian distribution; and (iii) the 
“global” complexity indicated by multiscale entropy, spectrum exponent and Hurst exponent 
increase and the “local” complexity indicated by multifractal spectrum decrease after the successful 
therapy. Our results offer findings that may bring value to health care providers for managing 
glucose levels of pregnant women with type 2 diabetes as well as provide scientists a reference on 
applying complexity and fractality in the clinical practice of treating diabetes. 

Key words: Continuous glucose monitoring; Complexity analysis; Multiscale sample entropy; Fractal analysis; 
Type 2 diabetes with pregnancy 

Introduction 
Diabetes mellitus is a chronic metabolic disease 

associated with long-term damage to various organ 
systems [1]. It causes many complications including 
cardiovascular diseases, nephropathy, stroke and 
retinopathy [1, 2]. Moreover, diabetes with pregnancy 
is more complicated since hyperglycemia can lead to 
congenital malformations, preterm delivery, 
preeclampsia, macrosomia, shoulder dystocia, 

cesarean delivery and maternal mortality [3]. 
Currently, the rapid development of continuous 
glucose monitoring (CGM) device brings new insights 
into the treatment of diabetic patients including those 
during pregnancy.  

Traditionally, in clinical practice, the information 
extracted from CGM devices is primarily based on 
calculations of the percentage of time above and 
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below given thresholds, range, and average values of 
blood glucose, but largely ignores the dynamics of 
glucose fluctuations [4, 5]. To extract the information 
encoded in the dynamical structure of glucose 
fluctuations, recent research developments in this 
area employ fractal analysis such as detrended 
analysis and MSE to assess the complexity of CGM 
data. Scientists have investigated the complexity of 
glucose dynamics in type 2 diabetes [4], type 1 
diabetes [6], and a mixed pool of type 1 and 2 diabetes 
[7] against non-diabetics and found that non-diabetic 
people have a higher complexity than patients with 
diabetes. However, no one has analyzed the 
complexity [4, 8-10] and fractality [5, 11-16] of glucose 
dynamics during a therapeutic treatment. In this 
paper, we analyzed the complexity and fractality of 
glucose dynamics in a pregnant woman with type 2 
diabetes during her therapeutic treatment.  

Materials and methods 
Nonlinear metrics have been a key category of 

quantity for extracting information embodied in the 
dynamics of physiological signals [8-10]. Here we 
adopted the following three non-linear statistical 
parameters to analyze the complexity and fractality of 
glucose dynamics. 

Power spectral density 
Fourier transform can convert a time series from 

time domain to frequency domain and obtain the 
frequency distribution of the time series. The power 
spectrum function |A(f)|2 represents the power of 
harmonics with frequency f. The PSD of time series 
describes the distribution of signal power in the 
frequency domain. For the fractal time series, the 
relationship between power and frequency is:  

|𝑨𝑨(𝒇𝒇)|𝟐𝟐 ∝ 𝐜𝐜 ⋅ 𝒇𝒇−𝜷𝜷    (1) 

where c is a constant. c represents the amplitude 
of the harmonics with frequency f and the β is the 
spectral exponent (the negative slope of the line on the 
plot of log power vs. log frequency). For fractal 
Gaussian noises which are stationary time series, 
−1<β<1 while for fractal Brownian motions which is 
non-stationary time series, <β<3.  

The power-law relationship of power and 
frequency has been found in many physiological time 
series, such as blood cell perfusion time series [17], 
heart rate variability [18] and blood glucose. The 
spectral exponent is the most common parameter for 
fractal analysis of time series [19]. The method we use 
to calculate the β is lowPSDwe which gives the best 
performance for spectrum analysis [17]. The 
high-frequency region of spectrum (fs/8<f<fs/2) is 
excluded before the linear fitting of log-log plot. 

The power-law relationship of power and 

frequency has been found in many physiological time 
series and the spectral exponent has been found to 
change during different physiological or pathological 
conditions such as disease and aging [17, 20, 21]. 

Multiscale entropy 
Sample entropy is a measure of complexity or 

irregularity, which was first proposed by Richman 
and Moorman [22]. The algorithm for calculating 
sample entropy is as follows. 
Let {𝑿𝑿𝒊𝒊} = {𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒊𝒊, … ,𝒙𝒙𝑵𝑵} represent a time series of 
length N. Define the template vector of length m: 

{𝑿𝑿𝒎𝒎(𝒊𝒊)} = {𝒙𝒙𝒊𝒊,𝒙𝒙𝒊𝒊+𝟏𝟏,𝒙𝒙𝒊𝒊+𝟐𝟐, … ,𝒙𝒙𝒊𝒊+𝒎𝒎−𝟏𝟏}    (2) 

and the distance function: 

𝒅𝒅[𝑿𝑿𝒎𝒎(𝒊𝒊),𝑿𝑿𝒎𝒎(𝒋𝒋)] = 𝐦𝐦𝐦𝐦𝐦𝐦𝒌𝒌�|𝒙𝒙𝒊𝒊+𝒌𝒌−𝟏𝟏 − 𝒙𝒙𝒋𝒋+𝒌𝒌−𝟏𝟏|�,𝒌𝒌 =
𝟏𝟏, … ,𝒎𝒎    (3) 

Count the number of vector pairs in template 
vectors of length m and m+1 having 𝒅𝒅[𝑿𝑿𝒎𝒎(𝒊𝒊),𝑿𝑿𝒎𝒎(𝒋𝒋)] ≤
𝒓𝒓 and denote it by B and A, respectively. Then the 
sample entropy is defined as: 

𝑺𝑺𝑺𝑺𝒎𝒎𝑺𝑺𝑺𝑺𝑺𝑺(𝒎𝒎,𝒓𝒓,𝑵𝑵) = − 𝐥𝐥𝐥𝐥𝐥𝐥 𝑨𝑨
𝑩𝑩

    (4) 

where A is the number of template vector pairs 
having 𝒅𝒅[𝑿𝑿𝒎𝒎+𝟏𝟏(𝒊𝒊),𝑿𝑿𝒎𝒎+𝟏𝟏(𝒋𝒋)] ≤ 𝒓𝒓 of length m+1, and B 
is the number of template vector pairs having of 
length m. Thus, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆, 𝑟𝑟,𝑁𝑁)  is the negative 
natural logarithm of the conditional probability that 
two sequences similar for m points remain similar at 
the next point with a tolerance r.  

With the concept of sample entropy, the process 
for MSE analysis is as follows. First divide the original 
signal represented by a time series {𝑿𝑿𝒊𝒊} =
{𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒊𝒊, … ,𝒙𝒙𝑵𝑵}  into nonoverlapping segments of 
equal length (k) and calculate the mean value of the 
data points in each of these segments. This process is 
called coarse graining, and the newly generated time 
series is called coarse-grained time series. The length k 
is called a scale factor. The coarse-graining process is 
repeated for multiple values of k. As the scale factor k 
changes, we construct different coarse-grained time 
series, and subsequently we calculate corresponding 
entropy values on the newly coarse-grained time 
series. The entropy of coarse-grained time series can 
be plotted against the scale factor k. An R package for 
calculating MSE has recently been developed [10]. 
Here that R package was used to calculate MSE in our 
clinical case.  

Multifractal detrended fluctuation analysis 
The complexity of time series can also be 

expressed as multifractal behaviors. MF-DFA is a 
method proposed by Kantelhardt et al. to detect the 
multifractal behaviors in non-stationary time series. 
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MF-DFA explores the scaling behaviors of time series 
for different values of q which is the order of 
fluctuation and determines the q-order generalized 
Hurst exponent H(q). Generally, the smaller H(q) 
describes the scaling behaviors of large fluctuations, 
while the larger H(q) describes the scaling behaviors 
of small fluctuations [23]. When q=2, MF-DFA 
corresponds to the ordinary detrended fluctuation 
analysis [24]. The H(2) is the scaling exponent of 
detrended fluctuation analysis and the classical Hurst 
exponent relates to H(2). The multifractal spectrum 
D(q) is another measurement of multifractal behaviors 
and can be obtained via the Legendre transform. The 
multifractal spectrum will be a single-humped shape 
with a large arc for multifractal time series. The width 
of multifractal spectrum Δh is calculated by:  

∆𝒉𝒉 = 𝒉𝒉𝒎𝒎𝑺𝑺𝒙𝒙 − 𝒉𝒉𝒎𝒎𝒊𝒊𝑺𝑺    (5) 

which can reflect the degree of multifractal 
behaviors. 

The MF-DFA has been proved to be more 
reliable than other methods of multifractal analysis 
for time series [25] and there have been a few attempts 
at applying it to higher dimension [26]. Mukli 
proposed a new method for multifractal analysis 
based on MF-DFA [27]. The development of MF-DFA 
has prompted new applications to complexity of 
physiological time series [28-31]. Here we use the 
Matlab code created by Ihlen to analyze the glucose 
data.  

Clinical case 
We observed a 34-year-old woman in early 

pregnancy who had suffered from both type 2 
diabetes and hypertension for 3 years. Her physical 
examination revealed very high glucose levels (fasting 
pasma glucose (FPG) 14.3mmol/L and glycosylated 
hemoglobin A1c (HBA1c) 9.6%) with positive urine 
ketone and urine protein, but normal levels in 
estrogen, progesterone and human chorionic 
gonadotropin. The patient signed the informed 
consent form. 

The patient first received the treatment of 
multiple dose injection for 7 days without efficacy of 
glucose control (FPG 10-12.9mmol/L, 2-hour 
postprandial blood glucose (2hPG) 11-14.4mmol/L, 
positive urine ketone). Subsequently, she was treated 
with a therapy of continuous subcutaneous insulin 
infusion based on CGM for the first time from 11:55, 
June 20, 2017 to 08:45, June 23, 2017. This treatment 
period is referred to as Period 1 throughout the study. 
The glucose reading from the sensors did not start at 
0:00 but at around 12:00. The insulin dose was 
adjusted after lunch every day based on the glucose 
readings in the past 24 hours. The basal rates and 

meal bolus are displayed in Table S1. The method was 
applied again from June 26 to June 28 because the 
levels of fasting glucose (7.9mmol/L to 8.4mmol/L) 
were still high. This treatment period is referred to as 
Period 2 throughout the study. After the two periods 
of treatment, the patient was in good condition, 
namely normal level of glucose (FPG 5-6.3mmol/L, 
2hPG 6.5-8.5mmol/L, negative urine ketone) and 
normal blood pressure (120-130mmHg/70-80mmHg). 
Moreover, the embryo in the uterus developed well. 
During the integrative therapy, the diet was not 
altered. 

The CGM based therapy in our case was applied 
with a device called the MiniMed Paradigm722 real 
time insulin pump system. This system included an 
insulin pump, a CGM sensor, a transmitter and a 
carelink personal software. One new sensor can 
monitor glucose continuously every five minutes for 3 
days. Eight self-monitored blood glucose 
measurements (three pre-meal, three post-meal, one 
bedtime and one 3:00) were tested every day. The 
glucose targets were set for pre-meal, 1h post meal 
and 2h post meal. The targeted upper limits [32] were 
5.3mmol/L, 7.8mmol/L and 6.7mmol/L respectively 
while the lower limit was 3.3 mmol/L for all glucose 
targets. 

The initial total daily dose was 80% of the 
previous dose in the treatment of multiple dose 
injection. The basal dose and meal bolus were each 
accounting for approximately 50% of total daily dose. 
The three meal boluses were divided using a ratio of 
1:1:1 for each meal and results were rounded up to 
8U. Six basal rate segments were programmed across 
a 24hr period. The average basal rate was 
approximately one unit per hour. 10%-20% 
adjustment of basal rates and meal bolus was made 
according to the previous 24hr sensor glucose and 
blood glucose. The details of the application of the 
treatment can be referred to Figure S1 in the 
Supplementary Materials.  

In the MSE calculation, the entropy value is 
depended on the embedding dimension m and the 
tolerance r. The selection of m and r can be optimized 
[33]. Costa et al. have discussed the relationship 
between MSE and the parameters m and r. They 
obtained the most accurate results when m=2 and 
r=0.15 [34]. Therefore, in this calculation, the 
embedding dimension m was set as 2 and the 
tolerance r as 0.15. When analyzing MF-DFA, in order 
to satisfy a linear relationship: log2Fq~scale, we need to 
choose suitable polynomial m and scale to get the best 
linear fit results. Therefore, the order of the fitted 
polynomial m is set to 2 and the scale is set to 24~29.  



Int. J. Biol. Sci. 2019, Vol. 15 
 

 
http://www.ijbs.com 

2376 

Results  
Distribution of glucose increments 

The empirical probability density function of the 
magnitude (absolute value) of the positive blood 
glucose increments deviates from the Gaussian 
distribution and is better fitted by an α-stable 
distribution for either Period 1 or Period 2 (Figure 
1A&C and the left panels of Figure 2). This is also true 
for the magnitude (absolute value) of the negative 
blood glucose increments (Figure 1B&D and the right 
panels of Figure 2). Therefore, modeling blood sugar 
dynamics via linear state space models is inadequate 
and there is a need to analyze the data using 
non-linear methods such as complexity analysis. 
Consequently, we applied PSD, MSE and MF-DFA to 
analyze glucose dynamics in the two treatment 
periods.  

Change of complexity in the clinical case 
The results of PSD analysis on glucose dynamics 

indicate the existence of power–law relationship 
between the PSD and frequency in both Periods 1 and 

2 (Figure 3A). The spectrum exponent β is the 
negative slope of the linear regression line, β=2 for 
Period 1 and β=1.93 for Period 2, respectively. β>1 
means that the glucose readings are better 
approximated by a non-stationary fractional 
Brownian motion [16]. β in Period 1 is greater than in 
Period 2, indicating that the decay rate of the PSD 
becomes slower after the integrative therapy. 
According to the relationship between β and HfBm 
(Hurst exponent), β=2HfBm+1 [35], we can calculate 
HfBm in both periods. The result shows that HfBm in 
Period 1 (0.87+/-0.019) is also larger than that in 
Period 2 (0.775+/-0.036).  

MSE has been applied to explore the complexity 
of numerous physiological signals [8, 10, 36-38]. 
Sample entropy is a measure of irregularity and 
multi-scale sample entropy is a measure of 
complexity. The sample entropy at each scale in 
Period 2 is substantially higher than that in Period 1. 
This indicates that the complexity of glucose 
dynamics increased in Period 2 compared to Period 1 
in the patient (Figure 3B). 

 

 
Figure 1. Displaying the results of distribution fitting analysis. (A) Distribution fitting for positive increment of blood glucose values in Period 1, α-stable (1.1430, 1, 
0.061, 0.4945) and Gaussian (0.2428, 0.2126). (B) Distribution fitting for absolute values of negative increment of blood glucose values in Period 1, α-stable (1.0852, 1, 0.0759, 
0.6886) and Gaussian (0.2020, 0.2887). (C) Distribution fitting for positive increment of blood glucose values in Period 2, α-stable (1.1565, 1, 0.0338, 0.3126) and Gaussian 
(0.1668, 0.0966). (D) Distribution fitting for absolute values of negative increment of blood glucose values in Period 2, α-stable (1.1735, 1, 0.0352, 0.3112) and Gaussian (0.1752, 
0.0989). EDF: empirical density function. 
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Figure 2. Quantile-quantile plot of glucose increments for Period 1 (Top two panels) and Period 2 (bottom two panels). The figure shows that the alpha stable 
distribution (shown in the left panels) fits to the data better than Gaussian distribution (shown in the right panels). 
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Figure 3. The complexity of glucose dynamics in Periods 1 and 2 for the integrative treatment. (A) The power spectral density. (B) Multiscale entropy analysis 
(MSE). (C) Multifractal detrended fluctuation analysis: Q-order Hurst exponent. (D) Multifractal spectrum analysis. The error bar (i.e., standard deviation) in Panels B and C was 
given by bootstrapping all the ordered glucose time series that contain 95% of the original data. 

 
The results of MF-DFA applied to the glucose 

dynamics indicates that the generalized Hurst 
exponent in Period 1 is greater than that in Period 2 
(Figure 3C). The higher the Hurst exponent, the lower 
the fractal dimension, and the lower the global 
complexity accordingly in certain circumstances [39]. 
The overall decrease of H(q), which is consistent with 
the results of PSD, indicates that the global complexity 
increased after the integrative therapy. 

The single-humped shape of the multifractal 
spectrum further illustrates the existence of 
multifractal behavior in blood glucose dynamics 
(Figure 3D). The width of the multifractal spectrum 
∆h is a measure of multifractality. Different from the 
sample entropy and Hurst exponent, ∆h reflects the 
“local” fractality and complexity of time series [27]. 
The width of the multifractal spectrum ∆h in Period 1 
(i.e., 1.32) is greater than in Period 2 (i.e., 1.12), 
indicating that the degree of multifractality and the 
“local” complexity become smaller after treatment. 

Discussion 
Based on the data of glucose dynamics measured 

by CGM, we analyzed complexity and fractality of a 
pregnant woman with type 2 diabetes that was 
treated successfully with continuous subcutaneous 

insulin infusion and CGM, and compared the results 
in two treatment periods. After this integrative 
treatment, the glucose level was reduced to a normal 
range and became stable. The complexity analysis 
shows that (i) the Spectrum exponent β (the negative 
slope of the linear regression line in Figure 3A) 
decreased; (ii) the multiscale entropy increased 
(Figure 3B); (iii) the Hurst exponent decreased (figure 
3C) and (iv) the width of the multifractal spectrum 
decreased (Figure 3D) in Period 2 as compared to 
Period 1. These results indicated that the “global” 
complexity indicated by multiscale entropy, spectrum 
exponent and Hurst exponent increased; and the 
“local” complexity indicated by multifractal spectrum 
decreased after a successful treatment on diabetes. 

To the best of our knowledge, this is the first 
time that an increased “global” complexity in glucose 
dynamics during the treatment periods for diabetes 
was displayed in a clinical case where a pregnant 
woman with type 2 diabetes was treated using 
continuous subcutaneous insulin infusion along with 
CGM. Taking into consideration other studies having 
shown that the complexity of blood glucose systems is 
higher in those without diabetes compared to patients 
with diabetes [4, 6, 7], this gives us increased 
confidence that complexity (global or local) has the 
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potential of serving as an effective index to assess 
efficacy in the treatment of diabetes, as well as 
potential measures for assessing the therapeutic 
efficacy of various control algorithms for artificial 
pancreas devices. That is, the Spectrum exponent β in 
PSD analysis, the sample entropy in MSE analysis, 
Hurst exponent H(q) and the width of the multifractal 
spectrum ∆h in MF-DFA all have the potential of 
being used as the indicator of treatment adjustment in 
diabetes. 

Another important observation is that medical 
cyber-physical systems should not only aim to control 
for ensuring specific reference values, but also to 
preserve a higher degree of global complexity of 
physiological processes which intrinsically 
encapsulates the capabilities of sustaining large 
perturbations and adapting to environmental 
influences [5]. The observed changes of complexity in 
the pregnant woman with type 2 diabetes may serve 
as inspiration to medical cyber physical systems 
design and in particular to artificial pancreas design 
[5]. More precisely, the control algorithms in these 
artificial pancreas devices may consider not only the 
blood glucose reference values, but also measures of 
complexity. It has been verified that the nonlinear 
optimal controller based on fractal calculus concepts 
is superior to nonfractal controllers in the artificial 
pancreas design [5]. The nonlinear analysis based on 
complexity may help artificial pancreas devices to 
control the blood glucose more tightly and prevent 
medical complications.  

In this paper, we used MSE, PSD and MF-DFA to 
measure the complexity of glucose data. The three 
methods are measurement of complexity from 
different aspects. MSE is a method to measure 
complexity through irregularity across different 
scales. Higher MSE value means higher complexity. 
By contrast, PSD and MFDFA are the methods to 
measure complexity through fractal behavior (A 
higher Hurst exponent corresponds to a lower fractal 
dimension, and higher Hurst exponent means lower 
complexity accordingly [39]). In addition, the scale for 
PSD analysis is frequency and we exclude the 
high-frequency region of spectrum (fs/8<f<fs/2), 
where fs is sampling frequency, while the scale for 
MFDFA spans the time axis and the scale ranges are 
(2^4 ~ 2^9). It means that PSD is a method for fractal 
analysis in frequency domain and MFDFA is a 
method for multifractal analysis in time domain. 
There may be a need to explore whether and when 
one method is better than others for future research. 

Still there are undoubtedly certain limitations to 
our study. To be able to obtain reliable MSE values 
and fractal analysis, a large number of observed data 
points (usually at least a thousand) are required. 

Furthermore, it has recently been shown [40] that 
sample entropy is equivalent to conditional entropy 
quantified by Heaviside kernel function and depends 
on the properties of correlation and the type of 
artifacts in the signal. Future research should be 
conducted to explore the auto-correlation properties 
of glucose dynamics data and to explore the type of 
artifacts in the data and its impact on non-linear 
parameters like sample entropy.  

Abbreviations 
CGM: continuous glucose monitoring; MSE: 

multi-scale sample entropy; PSD: power spectral 
density; MF-DFA: multifractal detrended fluctuation 
analysis; FPG: fasting plasma glucose; 2hPG: 2 hours 
postprandial blood glucose; HbA1c: glycosylated 
hemoglobin A1c. 
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