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Abstract 

Exosomes, the nanosized vesicles released from various cell types, contain many bioactive 
molecules, such as proteins, lipids, and nucleic acids, which can participate in intercellular 
communication in a paracrine manner or an endocrine manner, in order to maintain the 
homeostasis and respond to stress adaptively. Currently, exosomes have already been utilized as 
diagnostic biomarkers and therapeutic tools in cancer clinical trials. There has also been great 
progress in cell and animal exosomes studies of coronary artery disease (CAD). Emerging evidence 
suggests that exosomes released from endothelial cells, smooth muscle cells, adipose cells, platelets, 
cardiomyocytes, and stem cells have been reported to play crucial roles in the development and 
progression of CAD. Moreover, it has been showed that exosomes released from different cell 
types exhibit diverse biological functions, either detrimental or protective, depending on the cell 
state and the microenvironment. However, the systematic knowledge of exosomes in CAD at the 
patient level has not been well established, which are far away from clinical application. This review 
summarizes the basic information about exosomes and provides an update of the recent findings on 
exosome-mediated intercellular communication in the development and progression of CAD, 
which could be helpful for understanding the pathophysiology of CAD and promoting the further 
potential clinical translation. 
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Introduction 
Coronary artery disease (CAD) is a common 

condition that strongly correlates with increased 
cardiovascular morbidity and mortality, and it poses a 
high economic burden to the national healthcare 
system [1,2]. An overall better understanding of the 
mechanisms of atherosclerosis, the development of 
antiplatelet and statin therapies, and advances in 
devices and procedural techniques for coronary 
intervention have contributed to a great improvement 
in the clinical prognosis of patients [3]. Despite this, 
patients with coronary disease still face the residual 
risks of stent restenosis, cardiac remodeling, and 
ischemia/reperfusion injury. Thus, further 
exploration of the pathophysiology of CAD is 
important, and a novel, reliable tool for these patients 

will be of great interest. 
Extracellular vesicles, membrane-bound 

organelles and released by diverse cell types, contain 
many bioactive molecules, such as proteins, lipids, 
and nucleic acids; these vesicles are varied in size, 
biogenesis and contents, which usually include 
apoptotic bodies, microvesicles (also called 
ectosomes, microparticles, or matrix vesicles), and 
exosomes [4,5]. The similarities and differences of 
these three vesicles are summarized in Table 1. In 
brief, apoptotic bodies are large vesicles (more than 1 
µm in diameter) with a permeable membrane that are 
formed upon cell apoptosis [5,6]. Microvesicles (0.1-1 
µm in diameter) are generated by shedding directly 
from the plasma membrane and undergo the process 
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of cytoskeleton remodeling and the externalization of 
phosphatidylserine [5,7]. Exosomes are the smallest 
vesicles (30-150 nm in diameter) of endosomal origin 
and are released into extracellular space upon the 
fusion of multivesicular bodies (MVBs) with the 
plasma membrane, which occurs in an endosomal 
sorting complex required for transport (ESCRT)- 
dependent or ESCRT-independent manner [7-9]. 

In the past decade, emerging evidence in the 
field of cardiovascular disease [10-16] reported that 
exosomes play crucial roles in intercellular 
communication via transferring cargo (including 
proteins, RNA, DNA, and other molecules) under not 
only physiological situations (angiogenesis and 
cardiac growth) but also pathological conditions 
(ischemia/reperfusion injury, vascular calcification, 
atherosclerosis, and cardiac remodeling). In this 
review, we focus on the updated findings in exosomes 
biogenesis, secretion and uptake, isolation and 
detection, as well as exosomes-mediated intercellular 
communication in the development and progression 
of CAD.  

Exosomes Biogenesis, Secretion and 
Uptake 

The explicit mechanisms of exosomes biogenesis 
are quite complicated and only partly understood 
[17,18]. In brief, early endosomes, which are formed 
by the inward budding of the cell membrane, can 
mature into late endosomes [19,20]. Intraluminal 
vesicles (ILVs), also called exosomes precursors, 
originate in the lumen of late endosomes by the 
inward budding of the endosomal membrane [21]. 
The late endosomes that contain ILVs become MVBs, 
which have two possible outcomes [22]: either fusing 
with the plasma membrane to release the ILVs to the 
extracellular space (called exosomes) or fusing with 
lysosomes for lysosomal degradation (Figure 1).  

Several key molecules have been verified to 
participate in membrane fusion and the release of 
exosomes into the extracellular space. Small Rab 
GTPases were identified to promote exosomes 
secretion, and Rab27a and Rab27b were involved in 
MVB docking at the plasma membrane [23]. Hyenne 
et al [24] also found that RAL-1 (Ras-related GTPase 
homolog) controlled MVB formation and exosomes 
secretion. Moreover, soluble N-ethylmaleimide- 
sensitive factor attachment protein receptors 
(SNAREs) are important molecules for vesicle fusion 
[6,25-27]. Recently, Zou et al [28] found that exosomes 
release, such as autophagy, could be regulated by the 
mechanistic target of rapamycin complex 1 (mTORC1) 
in response to changes in amino acids and growth 
factor conditions, both in cultured cells and in vivo.  

After secretion, exosomes in the extracellular 
space can be taken up by recipient cells to affect the 
gene expression and function of recipient cells. There 
are three known types of exosomes uptake 
mechanisms as follows: fusion, binding, and 
endocytosis (Figure 1) [29,30]. After exosomal 
membranes directly fuse with recipient cell 
membranes, the cargo, including proteins, miRNAs, 
mRNAs, etc. are released into the cytoplasm of 
recipient cells. Exosomes, with external ligands [31], 
can also bind to the receptors of recipient cells to 
activate signal transduction. Moreover, the 
mechanisms of endocytosis [9,30,32,33] (the most 
frequent type) vary greatly and include 
macropinocytosis, phagocytosis, caveolae-mediated 
endocytosis, lipid raft-mediated endocytosis, and 
clathrin-mediated endocytosis; the type of 
endocytosis may depend on the cell types and 
physiological conditions. For example, exosomes 
uptake may occur via extracellular signal-regulated 
kinase 1/2 (ERK 1/2) and heat shock protein 27 
(HSP27) signaling or lipid raft-mediated endocytosis, 
which was negatively regulated by caveolin-1 during 
exosomes internalization [34]. 

 

Table 1. Characterization and Classification of Extracellular Vesicles. 

Characterization Exosomes Microvesicles Apoptotic bodies 
Similarities Present in all biofluids 

Released from almost all types of cells 
Includes proteins, lipids, and nucleic acids 
Isolation: (ultra) centrifugation 
Identification: electron microscope for morphology; NTA for size and concentration; western blot for biomarker expression 
Intercellular communication: transferring biologic information to recipient cells 

Size (diameter) ~ 30-150 nm ~ 0.1-1 µm 1-5 µm 
Formation Fusion of MVB with cell membrane Outward budding of the plasma membrane Release after cell apoptosis 
Formation pathways ESCRT pathways; Tetraspanin or ceramide 

pathways 
Various enzymes and mitochondrial or calcium signaling pathways 
(complex and unclear) 

Apoptosis-related pathway 

Markers CD9, CD63, CD81 
TSG 101, flotillin, annexin 
HSP70, HSP90 

Integrins, selections, and other antigens from parent cells 
High phosphatidylserine exposure 

High phosphatidylserine 
exposure 
Caspase 3, histones 

NTA: nanoparticle tracking analysis; MVB: multivesicular bodies; ESCRT: endosomal sorting complex required for transport; CD: cluster differentiation; TSG: tumor 
susceptibility gene. 
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Figure 1. Biogenesis, secretion, uptake and the schematic presentation of exosomes. Endosomes are formed by the inward budding of the cell membrane. 
Multivesicular bodies (MVBs) originate in the lumen of the endosomes by an inward budding of the endosomal membrane, which has two outcomes: either fusing with the plasma 
membrane to release its intraluminal vesicles to the extracellular space (called exosomes) or fusing with lysosomes for lysosomal degradation. The three types of mechanisms of 
exosome uptake by recipient cells are fusion, binding, and endocytosis. In general, the exosomes are formed with the following molecules: tetraspanin family (CD9, CD63, and 
CD81), lipid rafts, integrin, tumor susceptibility gene 101 (TSG101), major histocompatibility complex (MHC) class II molecules, heat shock proteins (HSP60, HSP70, and HSP90), 
annexins, and nucleic acids. 

 

Exosomes Isolation and Detection 
The current known contents of exosomes include 

at least 41,860 proteins, more than 7,540 RNAs and 
1,116 lipid molecules [35], and the content of the 
exosomes varies greatly according to their parent cell 
type and microenvironment [36-40]. In general, the 
exosomes are formed with the following molecules: 
tetraspanin family (CD9, CD63, and CD81 
(transmembrane proteins)), tumor susceptibility gene 
101 (TSG101, used for sorting and transporting 
exosomes), major histocompatibility complex (MHC) 
class II molecules, and programmed cell death 
6-interacting proteins (PDCD6IPs) [18,22,37,38,41]. 
Additionally, heat shock proteins (HSP60, HSP70, and 
HSP90), cytoskeletal proteins (actin and tubulin), 
annexins (regulate cytoskeletal changes in membranes 
and membrane fusion), and membrane transport 
proteins are also present in exosomes (Figure 1), 
irrespective of the type [18,22,38,41].  

Exosomes could be isolated from body fluids or 
cell culture media by several different techniques, 
including differential and gradient density 
centrifugation, filtration, immunological separation, 
precipitation, and commercial exosomes isolation kits 
[18,41,42]. Briefly, centrifugation-based techniques are 
the most common method to isolate exosomes, and 
this method is also regarded as the gold standard for 

exosomes isolation [43], but this method has the 
following limitations: a large sample volume, 
time-consuming, and a low exosomes recovery 
(5%-25%) [44-46]. Filtration-based techniques are 
currently used to eliminate dead cells and debris, 
which prepares the sample for further 
ultracentrifugation [18,47]. Immunological separation 
has a high specificity because antibody-coated 
magnetic beads bind to the proteins in the exosomes, 
but this technique was blamed for a high cost and a 
low exosome yield [46,48]. The exosome precipitation 
method is utilized in several commercial exosomes 
isolation kits and has many advantages, including 
simplicity, low sample volume, and cost-effectiveness 
[47,49]. However, the precipitated samples are mixed 
with contaminants (proteins, lipids, etc.), which are 
not suitable for direct further detection accurately. Of 
note, a recent study [50] found that different cell 
culture conditions and isolation methods could result 
in varying glycosylated exosomes populations. 
Overall, the selection of isolation method should be 
based on the down-stream application and the 
experiment purpose. 

The morphology of exosomes could be detected 
by a variety of electron microscopy techniques, 
including transmission electron microscopy (TEM), 
scanning electron microscopy, cryo-electron 
microscopy and atomic force microscopy [18]. 
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Western blots and (high resolution) flow cytometry 
are widely used to identify the specific surface protein 
markers of exosomes. The size of the exosome is 
measured by nanoparticle tracking analysis (NTA), 
tunable resistive pulse sensing, and dynamic light 
scattering [22,51]. In the current basic research on 
exosomes, combinations of TEM, western blots (or 
flow cytometry), and NTA are the most widely used 
tools to detect exosomes. Moreover, according to 
minimal experimental requirements for the definition 
of extracellular vesicles from the International Society 
for Extracellular Vesicles [22,41], exosomes are 
defined as vesicles that contain at least one 
transmembrane protein (CD9, CD63, CD81, adhesion 
molecules, etc.) and one cytosolic protein (TSG101, 
annexins, Rabs, etc.), without any endoplasmic 
reticulum proteins (calnexin and Golgi matrix 
proteins) or nuclear proteins. 

Several key points are quite crucial for the 
exosome isolation and detection. To exclude the 
effects of exosomes in fetal bovine serum (FBS), more 
than 100,000 x g ultracentrifugation of complete 
medium (or of FBS following at least 1:4 dilution) for 
at least 18 hours should be performed [41]. 

Commercial exosomes-depleted FBS is also available 
from vendors. Additionally, the storage temperature 
of exosomes is very important. Exosomes storage at 
-80℃ for three to six months could maintain the basic 
functions, but current view suggests that original 
samples are stored at -80℃ and exosomes are isolated 
just before the index experiments [41,52-54]. 

Exosomes and Coronary Artery Disease 
The specific mechanism of atherosclerosis is 

complex, and the mechanism is a chronic process with 
multifactorial causes. The current view [55-58] is that 
oxidative stress, endothelial dysfunction, and 
inflammation are three key factors involved in the 
development and progression of atherosclerosis. 
Exosomes participate in cardiovascular cell-to-cell 
(paracrine) and distant (endocrine) communication 
via miRNAs and other mediators [59]. Exosomes 
released from stem cells, endothelial cells, smooth 
muscle cells, cardiomyocytes, adipose cells, and 
platelets include potential valuable biological 
information for the development and progression of 
CAD (Figure 2) [5].  

 

 
Figure 2. A summary of different cell-derived exosomes in coronary artery disease. HSP: Heat shock protein; SMC: Smooth muscle cell; CXCR4: C-X-C chemokine 
receptor type 4. 
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Cardiac progenitor cell-derived exosomes 
Exosomes released by cardiac progenitors have 

been shown to prevent ischemic myocardium against 
acute ischemia/reperfusion injury through miR-451 
[60]. Cardiac progenitor cell-derived exosomes could 
also protect cardiomyocytes against oxidative 
stress-related apoptosis via exosomal miR-21 by 
targeting programmed cell death 4 (PDCD4) [61]. 
Moreover, the exosomal transfer of miR-126 and 
miR-210 from host cells to transplanted cells could 
improve the survival of transplanted cardiac 
progenitor cells into the ischemic myocardium [62]. 

Mesenchymal stem cell-derived exosomes 
Exosomes derived from mesenchymal stem cells 

(MSCs) improved atherosclerosis in ApoE-/- mice and 
promoted M2 macrophage polarization in the 
atherosclerotic plaque by the microRNA-let7/ 
HMGA2/NF-κB pathway [63]. Kang et al [64] also 
reported that C-X-C chemokine receptor type 4 
(CXCR4)-overexpressing MSC-derived exosomes 
could reduce infarct size, improve cardiac 
remodeling, and increase angiogenesis by activating 
the Akt signaling pathway following myocardial 
infarction. Furthermore, exosomes released from 
MSCs regulated the protein expression of adherent 
junctions, leading to angiogenesis via miRNA 31 [65], 
miRNA 126 [65], miRNA 146a [66], and miRNA 223 
[67].  

Endothelial cell-derived exosomes 
Endothelial cell-derived exosomes can reduce 

ischemia and reperfusion injury in cardiomyocytes 
via the activation of the ERK1/2 Mitogen-activated 
protein kinase (MAPK) signaling pathway and may 
contribute to ischemic preconditioning [68]. Zhan et al 
[69] demonstrated that oxidative low density 
lipoprotein (OX-LDL) and homocysteine promoted 
the activation of endothelial cells, the secretion of 
exosomes, and the increased HSP70 content of 
exosomes from endothelial cells; HSP70, which 
further activated monocytes, lead to monocyte 
adhesion to endothelial cells. Exosomal 
metastasis-associated lung adenocarcinoma transcript 
1 (MALAT1) was derived from OX-LDL-treated 
endothelial cells and promoted M2 macrophage 
polarization, which is defined as an increase in the 
expression of M2 macrophage markers (CD206, 
arginase-1, and IL-10) and decreases in the expression 
of an M1 macrophage marker (IL-12) [70]. 
Hergenreider et al [71] also found that exosomes 
released by Krüppel-like factor (KLF) 2-transduced 
endothelial cells transferred to smooth muscle cells 
and reduced atherosclerotic lesion formation in a 
miRNA 143/145-dependent manner. Moreover, 

endothelial cell-derived miR-214-containing 
exosomes could inhibit senescence and promote 
angiogenesis in human and mouse endothelial cells 
[72]. Njock et al [73] reported that exosomal miR-10a 
released from endothelial cells was taken up by 
monocytic cells and could inhibit inflammatory 
signaling via targeting the NF-κB pathway. Recently, 
Hou et al [74] found that laminar shear stress or 
exercise training directly increased miR-342-5p 
synthesis in endothelial cells and increased the 
miR-342-5p-enriched exosomes that inhibited 
cardiomyocyte apoptosis after myocardial 
ischemia/reperfusion injury by targeting Caspase 9 
and JNK2; in addition, the stress improved survival 
signaling (p-Akt) by targeting the phosphatase gene 
Ppm1f. 

Smooth muscle cell-derived exosomes 
Vascular smooth muscle cell-derived exosomes 

could mediate the transfer of KLF 5-induced miR-155 
from smooth muscle cells to endothelial cells, which 
increases endothelial permeability and promotes 
atherosclerotic plaque progression [75]. Ding et al [76] 
reported that vascular smooth muscle cells that were 
treated with hsa-let-7g could inhibit autophagy and 
apoptosis, also leading to reduced intracellular ROS 
generation. Moreover, exosomes have been 
demonstrated to play crucial roles in vascular 
calcification by initiating mineral deposition [77,78]; 
exosomes also can regulate the process of vascular 
calcification via transporting microRNAs to recipient 
smooth muscle cells [78-80]. An in vivo study showed 
that exosomes were found in arteries from patients 
with chronic kidney disease, and CD63 (a biomarker 
of exosomes) was observed to colocalize with 
calcification [81]. Cytokines and growth factors were 
also found to promote exosome release, contributing 
to smooth muscle cell calcification in response to 
environmental calcium stress [81,82].  

Cardiomyocyte-derived exosomes 
Gupta et al [33] first reported the exosomes 

released by cardiomyocytes, and exosomes containing 
HSP60 could protect cells against myocardial 
infarction. The elevation of HSP20 in cardiomyocytes 
also improved cardiac function and angiogenesis via 
activating exosomes biogenesis in diabetic mice [83]. 
Moreover, cardiomyocyte-derived exosomes could 
regulate glycolytic flux in endothelial cells by the 
direct transfer of glycolytic enzymes and GLUT 
transporters [84]. Exosomes released from hypoxic 
cardiomyocytes also inhibited autophagy by 
transferring miRNA-30a between cardiomyocytes in a 
paracrine manner [85]. Notably, Wang et al [86] found 
that exosomes released by cardiomyocytes could exert 
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an anti-angiogenic function (the inhibition of 
endothelial cell proliferation, migration and tube 
formation) in type 2 diabetic rats through the 
exosomal transfer of miR-320 into endothelial cells. In 
addition, cardiomyocyte-derived exosomes in 
infarcted hearts have been demonstrated to increase 
the injury of transplanted bone marrow mesenchymal 
stem cells [87]. Hypoxia inducible factor-1α (HIF-1α) 
also initiated TNF-α expression in acute myocardial 
infarction, which was mediated by exosomes derived 
from cardiomyocytes [88]. 

Dendritic cells and monocyte-derived 
exosomes 

Gao et al [89] showed that exosomes derived 
from mature dendritic cells are involved in 
endothelial inflammation through the membrane 
TNF-α-mediated NF-κB pathway and that exosomes 
could be taken up by aortic endothelial cells and could 
induce inflammation and atherosclerosis. Exosomes 
released from primary human monocytes, dendritic 
cell precursors, could be taken up by endothelial cells; 
this contributes to endothelial dysfunction via the 
TLR4 and NF-κB pathways [90]. The 
monocyte-derived exosomes mediated transfer of 
microRNA-150 from monocytes to endothelial cells 
can enhance the capillary tube formation of 
endothelial cells and promote angiogenesis [91]. 
Moreover, another study [92] reported that exosomes 
secreted from LPS-activated macrophages affected the 
gene expression and differentiation of adipocyte, 
which might play a critical role in atherosclerosis. 
Chronic inflammation is a crucial factor involved in 
atherosclerosis, and dendritic cell and 
monocyte-derived exosomes promote the 
development and progression of coronary artery 
disease. 

Adipose cell-derived exosomes 
Clinical study [93] showed that the imbalance of 

epicardial adipose tissue volume and adipocytokine 
was strongly related to coronary atherosclerosis. 
Adipose cell-derived circulating exosomes miRNAs 
could regulate gene expression in distant tissues [94]. 
Adipose cell-derived exosomes also have been 
reported to mediate the activation of TNF-α and IL-6 
in macrophages and insulin resistance via the TLR4/ 
Toll-interleukin-1 receptor domain-containing 
adaptor protein inducing interferon-β (TRIF) pathway 
[95]. Exosomes derived from insulin resistance 
adipocyte in diabetic ApoE deficit mice could 
promote atherosclerosis and vulnerable plaque via 
vasa vasorum angiogenesis [96]. Additionally, a 
recent study showed that cardiomyocytes, uptake 
adipose cell-derived exosomal miR-214 through 

clathrin-mediated endocytosis, could prevent 
cardiomyocyte damage after acute myocardial 
infarction [97]. Exosomes released by adipose 
cell-derived MSC have been demonstrated to decrease 
cell adhesion molecules expression via inhibiting the 
MAPK and NFκB pathways and reduce 
atherosclerosis in LDL receptor-deficient mice [98].  

Platelet-derived exosomes 
Fifteen years ago, Caby et al [99] demonstrated 

that blood was a physiological fluid for exosomes 
circulation, indicating an important role of exosomes 
in cell-to-cell communication through the transfer of 
cellular material to reach distant recipient cells. In 
FeCl3-induced murine carotid arteries, 
platelet-derived exosomes could suppress 
atherothrombotic processes by enhancing the protein 
ubiquitination and proteasome degradation of CD36 
(a type II scavenger receptor in platelets) and by 
inhibiting platelet activation and thrombosis [100]. 
Thrombin-activated platelet-derived exosomes inhibit 
the endothelial cell expression of intercellular 
adhesion molecule-1 (ICAM-1) by microRNA-223 
during inflammation [101]. Thrombin-stimulated 
platelet-derived exosomes containing miR-223, 
miR-339 and miR-21 inhibit platelet-derived growth 
factor receptor-β expression in vascular smooth 
muscle cells [102]. Overall, platelet-derived exosomes 
may serve as therapeutic targets of coronary artery 
disease by inhibiting platelet activation, suppressing 
inflammation, and reducing the proliferation of 
smooth muscle cells. 

Exosomes from other sources 
Plasma exosomes from rats and healthy 

volunteers exhibit cardioprotective functions against 
ischemia-reperfusion injury through the HSP70/TLR4 
communication axis [103]. Exosomes secretion after 
ischemic preconditioning is involved in 
cardioprotection by remote ischemic preconditioning, 
underlining the importance of exosomal transfer 
mechanisms in remote cardioprotection [104]. 
Exosomal miR-29a, a key regulator of tissue fibrosis, 
leads to the beneficial effect of remote ischemic 
conditioning to improve left ventricular remodeling 
on chronic heart failure after acute myocardial 
infarction [105]. Exosomal miR-144 could play a 
crucial role in the cardioprotection induced by remote 
ischemic preconditioning, and miR-144 might serve as 
a novel therapeutic target to decrease clinical 
ischemia-reperfusion injury [106]. Exosomal miR-1 
and miR-133a were derived from the injured 
myocardium [107] after acute myocardial infarction 
and could be transferred to adjacent myocardium to 
protect cardiomyocytes against hypertrophy. 
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Moreover, Cheng et al [108] reported that urine 
exosomal miR-1 could be a novel urine biomarker for 
acute myocardial infarction. Matsumoto et al [109] 
demonstrated that circulating microRNAs (miR-34a, 
miR-192, and miR-194) were predictive indicators of 
ischemic heart failure via the p53 pathway in patients 
with acute myocardial infarction. The exosomes 
released from the human cardiac muscle patches 
(human induced-pluripotent stem cells) were shown 
to have cardioprotective effects that increased the 
survival of cardiomyocytes [110]. A porcine model 
[111] showed that cardiosphere-derived exosomes 
could decrease scarring after myocardial infarction, 
reduce adverse remodeling and increase left 
ventricular ejection fraction in acute and convalescent 
myocardial infarctions. Exosomal miR-181b from 
cardiosphere-derived cells could induce macrophage 
polarization and reduce protein kinase C transcript 
levels; in addition, they exhibit a cardioprotective 
effect in acute myocardial infarction [112]. Recently, 
Cheng et al [113] found that circulating exosomes 
carrying myocardial-miRs (miR-1, miR-208, and 
miR-499) were transferred selectively to peripheral 
organs, preferentially to the bone marrow, and that 
these transferred myocardial-miRs downregulated 
CXCR4 expression in bone marrow cells, leading to 
progenitor cell mobilization. 

Exosomes and potential diagnostic implication 
in CAD  

Limited studies reported the potential diagnostic 
implication of exosomes in CAD [12]. A previous 
clinical study [114] showed that serum exosomes of 
patients with acute coronary disease (ACS) presented 
with a high expression of miR-208a compared with 
that in healthy subjects. More importantly, patients 
with low miR-208a expression were associated with a 
significant lower mortality rate than those with high 
miR-208a expression (3.3% vs. 11.0%, p<0.05) during 
one-year follow-up. Another study [115] found that 
the plasma exosomes and exosomal cardiac 
microRNAs could be increased significantly in 
patients undergoing coronary artery bypass surgery 
for up to 48 h after surgery, meanwhile these 
exosomes and their microRNAs could be positively 
related to high sensitive cardiac troponin (cardiac 
biomarker).  

Conclusions and perspectives 
In this review, we have discussed exosomes 

biogenesis, secretion, uptake, isolation and detection, 
and we have discussed exosomes-mediated 
intercellular communication in CAD. Exosomes, such 
as those carrying proteins, lipids, and nucleic acids, 
could be taken up by the recipient cells in a paracrine 

or endocrine manner. Exosomes released from 
different cell types exhibit various biological 
functions, either detrimental or protective, depending 
on the cell state and the microenvironment.  

Exosomes isolation, detection and purification 
should be standardized and simplified to ensure that 
exosomes analysis and application are feasible in 
daily clinical practice. The underlying mechanisms of 
exosomes biogenesis, uptake and clearance also need 
to be explored deeply; then, exosomes may serve as a 
clinical delivery tool of novel drugs for coronary 
artery disease. Moreover, a detailed characterization 
and functional assessment of exosomes is essential to 
confirm the full therapeutic effect on coronary artery 
disease. Therefore, the clinical translation of exosomes 
in the diagnosis and treatment of coronary artery 
disease is full of hope, but it still has a long way to go.  
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