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Abstract 

It is universally acknowledged that long non-coding RNAs (lncRNAs) involved in tumorigenesis in human 
cancers. However, the function and mechanism of many lncRNAs in colorectal cancer (CRC) remain unclear. 
By analyzing the two sets of CRC-related gene microarrays data, downloaded from the Gene Expression 
Omnibus (GEO) database and the lncRNA expression in a set of RNA sequencing data, we found that lncRNA 
SLCO4A1-AS1 was significantly upregulated in CRC tissues. We then collected CRC tissue samples and verified 
that SLCO4A1-AS1 is highly expressed in CRC tissues. Furthermore, SLCO4A1-AS1 was also upregulated in 
the CRC cell line. In situ hybridization results showed that high expression of SLCO4A1-AS1 was associated 
with poor prognosis in patients with CRC. Next, we found that SLCO4A1-AS1 promoted CRC cell 
proliferation, migration, and invasion. Results of western blotting assays show that its mechanism may relate to 
the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) pathway. Therefore, 
SLCO4A1-AS1 may be a potential biomarker for CRC prognosis and a new target for colorectal cancer 
therapy. 
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Introduction 
 Colorectal cancer (CRC) is the third most 

common cancer in the world1,2, also is the second 
leading cause of cancer-related death3. In 2018, more 
than 860,000 patients died of colorectal cancer all over 
the world, and the mortality rate is 8% to 9%4. 
Recently, with the changes in the Western diet, the 
incidence of colorectal cancer is increasing. Surgery is 
the most effective treatment for colorectal cancer5,6. 
Over 90% of CRC patient can be cured by surgery if 
diagnosed at an early stage7. With the increasing 
development of multidisciplinary, radiotherapy and 
chemotherapy, the survival and quality of life of 
patients with colorectal cancer have been improved. 

Unfortunately, patients with CRC are often diagnosed 
as advanced, with a poor prognosis and a lower 
5-year survival rate8. In recent years, it has been found 
that long non-coding RNAs can be used as a new 
target for cancer diagnosis and treatment, and has 
important research value9-13. 

 Long non-coding RNAs (lncRNAs) is a kind of 
non-coding RNAs with more than 200 nucleotides in 
length14,15. Recently a variety of evidence has shown, 
lncRNAs play a crucial role in promoting tumors or 
suppressing tumors during tumorigenesis and 
development16-19. Meantime, they involved in the 
regulation of apoptosis, cellular differentiation, 
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tumorigenesis and metastasis20. In addition, they also 
influence the growth of tumor cells through 
epigenetic regulation, regulate the expression of genes 
at the transcriptional and post-transcriptional 
levels21-23 or tightly associated with chromatin 
remodeling24, and thus play an essential role in many 
physiological processes (such as cancer), affecting the 
occurrence of tumors, development, invasion, and 
metastasis and relationship with prognosis25-28. What’s 
more, recent studies have shown that tumorigenesis is 
associated with dysregulation of lncRNAs, and many 
studies have confirmed that lncRNAs play an 
important role in the pathogenesis of colorectal 
cancer29-33. In addition, lncRNAs expression can 
provide clinical information about tumor outcomes 
and can be used as a diagnostic or prognostic 
marker34-39. However, the clinical significance and 
biological mechanisms of lncRNAs in the progression 
of CRC remain largely unknown. 

In this study, we downloaded two sets of 
CRC-related gene microarrays GSE32323 and 
GES39582 through the Gene Expression Omnibus 
(GEO) database and constructed a differential 
expression profile of lncRNA, and the RNA sequenc-
ing data set GSE104836 was downloaded to further 
compare with the gene microarrays data to analyze 
the differential expression of lncRNA in CRC. We 
screened lncRNA SLCO4A1-AS1 with up-regulated 
expression in two sets of gene microarrays and RNA 
sequencing data. Then we detected differential 
expression in fresh CRC tissues and several CRC cell 
lines by reverse transcription PCR (RT-PCR). 
Furthermore, in situ hybridization was used to detect 
the expression of SLCO4A1-AS1 in paraffin- 
embedded tissues. Next, we investigated the biologic-
al behavior of SLCO4A1-AS1 in CRC by inhibiting the 
expression of SLCO4A1-AS1 in CRC. Finally, Western 
Blotting proved that SLCO4A1-AS1 as an oncogene 
promotes the development of CRC and was related to 
the EGFR/MAPK pathway. 

Overall, we have initially proved that lncRNA 
SLCO4A1-AS1 acts as an oncogene and promotes the 
development of colorectal cancer through the EGFR/ 
MAPK pathway. Based on this study, SLCO4A1-AS1 
may become a novel biomarker or therapeutic target 
for colorectal cancer in the future. 

Materials and methods 
Datasets analysis 

Two sets of CRC-related gene microarrays 
GSE32323, GES39582 and RNA sequencing data set 
GSE104836 were obtained from the GEO database. 
Among them, GSE32323 contains 17 tumor tissues 
and 17 normal tissues, and GES39582 contains 433 

tumor tissues and 19 normal tissues. We filtered the 
background noise from the gene expression profile 
and then analyzed the data using Significant Analysis 
of Microarray (SAM) software. The cut-off fold 
change value for differentially expressed lncRNA was 
set at ≥ 1.5-fold change and false discovery ratio 
(FDR) was < 0.05. The significant lncRNAs in 
GSE32323, GSE39582 were demonstrated by heat 
maps generated using Genesis software. GSE104836 
contains 10 tumor tissues and 10 normal tissues. We 
use MORPHEUS, a kind of versatile matrix 
visualization and analysis software to view 
GSE104836 dataset as a heat map. https://software. 
broadinstitute.org/morpheus/. 

Clinical samples 
Two sets of clinical tissue samples were collected 

in this study. The tissue samples used in the RT-PCR 
experiment were from the Affiliated Cancer Hospital 
of Central South University from 2017 to 2018, 
including 45 CRC tissues and 45 adjacent normal 
tissues, all from surgically removed specimens. The 
tissue samples are used in the in situ hybridization 
experiment were paraffin-embedded CRC tissue 
samples from 165 patients who underwent surgery 
from January 2009 to September 2012 in the Affiliated 
Cancer Hospital of Central South University. The 
clinicopathological data are shown in Supplementary 
Table 1. The study was approved by the Ethics 
Committee of the Affiliated Cancer Hospital of 
Central South University and each patient signed a 
written informed consent form. 

RNA isolation and qRT-PCR 
Total RNAs were extracted using TRIzol reagent 

(Invitrogen, USA). One µg of total RNA from the 
samples was reverse transcribed using a Reverse 
Transcription Kit (BioRad, Hercules, CA, USA). 
RT-PCR was performed using SYBR Green (BioRad) 
in the LightCycler 480 RT-PCR Detection System 
(Roche). Primers were synthesized by Sangon Biotech 
Company (Shanghai, China): SLCO4A1-AS1 forward 
5'-CACTTTCCAGCCTCTCACCA-3', and reverse 5'-G 
GCCACCTCCTCAAACAAGA-3'; β-actin forward 
5'-TCACCAACTGGGACGACATG-3', and reverse 
5'-GTCACCGGAGTCCATCACGAT-3'. SLCO 4A1- 
AS1 expression was normalized to the respective 
β-actin expression level. Relative expression was 
calculated using the equation: ΔCt = Ct (target gene) – 
Ct (β-actin), fold expression = 2–(ΔCt(tumor) – ΔCt(normal)) 
by Cq value. 

In situ hybridization and scoring evaluation 
In situ hybridization was performed to detect 

SLCO4A1-AS1 expression in tissue specimens using a 
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nucleotide probe. The SLCO4A1-AS1 probe was 
designed and synthesized by Sangon Biotech 
Company (Shanghai, China): 5'-GGUCCUCUGC 
UUUUAUGUCAGUUCUCAGAAACAGAGUCUUC
AAG-3', 5' labeled with GIG-dUTP tag.  

The experiment was conducted according to the 
manufacturer protocol using the sensitive enhanced in 
situ hybridization kit of BOSTER Company (Wuhan, 
China). A semi-quantitative scoring standard of ISH 
was used in which the staining intensity and the 
number of positive regions were recorded40. The 
scoring was graded as 0 (negative), 1 (< 10% positive), 
2 (10% - 50% positive), or 3 (> 50% positive) in 
accordance with the staining proportion and intensity. 
The final scores were regarded as low expression (0-1) 
and high expression (2-3). All sections were 
independently scored by two pathologists who were 
blinded to the clinicalpathological features and the 
clinical data. 

Cell line and gene silencing 
The CRC cell lines HT29 and SW480 were 

maintained in an atmosphere of 5% CO2 at 37 °C and 
cultured in RPMI 1640 medium (FBS, BI) 
supplemented with 1% antibiotics (100U/ml 
penicillin and 100 µg/ml streptomycin sulfates) and 
12% fetal bovine serum (FBS, ZETA). While the 
normal colorectal cell line NCM460 and CRC cell lines 
HCT116 were maintained in an atmosphere of 5% CO2 
at 37°C and cultured in RPMI DMEM medium (FBS, 
BI) supplemented with 1% antibiotics (100U/ml 
penicillin and 100 µg/ml streptomycin sulfates) and 
12% fetal bovine serum (FBS, ZETA). 

For gene knockdown, cells were seeded in 
six-well plates to confluence and transfected siRNA 
by using Hiperfect Reagent (Takara) in Opti-MEM 
medium (Invitrogen). The sequence of SLCO4A1-AS1 
targeting siRNA was: 5'-GCCTGAGCTTGTTCAC 
AAA-3'. Sequences of non-target scramble controls 
were provided by Sangon Biotech Company 
(Shanghai, China). 

Cell proliferation assays 
CCK-8 and clone formation assays were used to 

measure cell proliferative capacity. For the CCK-8 
assay, cells were seeded into 96-well plates. At the 
indicated time point, 10 µl of CCK-8 solution was 
added to each well and incubated for 4 hours at 37 °C. 
Then, the absorbance at 450 nm was measured. For 
the clone formation assay, 2000 cells per well were 
seeded in 6-well plates and cultured for 2 weeks. Then 
colonies were fixed with 4% paraformaldehyde and 
stained with 2.5% crystal violet. 

Cell migration and invasion assay 
Wound healing assays were used to examine 

CRC cell migration ability. Cells were seeded in 
six-well plates. After 24 hours of transfected siRNA, a 
vertical wound in the cell monolayer was generated 
through a 10 µl tip and washed three times with PBS 
to remove cell debris. The wound width was 
measured by a microscope at the designated time 
periods and the wound area was calculated using 
Image J. 

Transwell analysis with Matrigel was used to 
measure tumor cell invasion capacity. Next, a total of 
2×105 cells in 100 µl of 2% FBS medium was added to 
the top of a transwell cell culture chamber (8 µm pore 
size, BD Biosciences, New Jersey, USA) coated with 50 
µl Matrigel (BD Biosciences, USA), and 600 µl of 20% 
FBS containing medium was added to the lower 
chamber. The cells were incubated at 37 °C or 24 
hours, and then, migrated tumor cells were fixed 
with 4% paraformaldehyde and stained with 2.5% 
crystal violet. Cells on the upper surface were wiped 
by a cotton bud. The number of invasive cells was 
counted from 6 randomly selected 100× fields under 
the microscope and shown as the average for average 
per field. 

Western blotting 
For Western blot analysis, cells were lysed with 

RIP buffer (Boster) supplemented with RNase 
inhibitor and phosphatase inhibitor after cell 
transfection. Protein concentration was identified 
using a BCA kit (Invitrogen). The lysate sample was 
separated on a 10% SDS-PAGE gel and blotted onto 
blotted onto PVDF membranes. The membrane was 
incubated with primary antibody overnight at 4 °C, 
including EGFR (1:2000, Abcam), P-EGFR (1:2000, 
Abcam), KRAS (1:2000, Abcam), BRAF (1:2000, 
Abcam), MEK1/2 (1:2000, Abcam), P-MEK1/2 
(1:1000, Proteintech), ERK (1:2000, Abcam), P-ERK 
(1:2000, Abcam), MAP3K1 (1:700, Proteintech), 
P-MAP3K1 (1:1000, Proteintech), β-actin (1:700, 
Proteintech), incubate for 2 hours at room 
temperature with anti-rabbit secondary antibody. 
Finally, protein band detection was performed using a 
Chemiluminescent Reagent (ECL) kit (Beyotime 
Biotechnology). 

Statistical analysis 
All experiments were independently repeated at 

least triplicate. All statistical analyses were performed 
using Excel software version 2007 (Microsoft, USA) 
and performed using Graphpad prism 5 software. All 
data are represented as mean ± SEM and differences 
between the two independent groups were evaluated 
by Student's t-test. Overall survival (OS) was 
calculated using the Kaplan-Meier method, and the 
results of the analysis were considered significantly in 
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a log-rank test if P<0.05. A two-tailed P value of 0.05 
or less was considered statistically significant. 

Results 
SLCO4A1-AS1 is highly expressed in CRC 

We downloaded two gene microarrays datasets 
GSE32323, GES39582, and RNA sequencing dataset 
GSE104836 from the GEO database to explore the 
differential expression of lncRNAs between CRC and 
normal tissues (Figure 1A). Through aggregation of 
differentially expressed lncRNAs from these two 

datasets of gene microarrays, 18 overlapping probsets, 
revealing 12 upregulated and 6 downregulated 
lncRNAs (Figure 1B and 1C). Further comparison 
with the GSE104836 dataset revealed 12 genes that 
were differentially expressed, including 7 upregu-
lated and 5 downregulated lncRNAs (Figure 1A, 1D). 
SLCO4A1-AS1 expression was one of the most 
significantly upregulated in the CRC tissues 
compared to non-tumor tissues according to the 
GSE32323, GES39582, and GSE104836 datasets (Figure 
1E-1G). 

 

 
Figure 1. SLCO4A1-AS1 is highly expressed in CRC. (A) Schematic overview of the workflow used to identify dysregulated lncRNAs in two CRC microarray datasets 
(GSE32323, GSE39582), and one RNA-seq dataset (GSE104836). (B-D) Heatmap of overlapping dysregulated lncRNAs mined from the GEO data set. (E-G) SLCO4A1-AS1 
expression, as measured by Affymetrix microarray, was upregulated in CRC tissues when compared with normal colorectal tissues in GSE32323, GSE39582, and GSE104836. 
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Figure 2. Overexpression of SLCO4A1-AS1 predicts poor prognosis. (A) SLCO4A1-AS1 expression was higher in CRC tissue samples (Tumor, n=45) than that in 
adjacent normal tissues (Adjacent normal tissues, n=45). (B) SLCO4A1-AS1 expression was significantly increased in CRC cell lines (HT29, HCT116, SW480) compared with 
NCM460, a normal colon cell line. (C) SLCO4A1-AS1 expression measured by in situ hybridization in paraffin embedded CRC biopsies. Upper panel: magnification=20×; lower 
panel: magnification=40×. (D) The highly expressed SLCO4A1-AS1 was correlated with shorter overall survival. (E and F) SLCO4A1-AS1 expression was associated with 
clinical stages. 

 
H19, ZFAS1, and PVT1, some famous oncogenic 

lncRNAs in many tumors, also listed and 
overexpressed among these overlapping probe 
sets41-45. Most were unknown or not well investigated 
in functions and mechanisms, such as SLCO4A1-AS1, 
LOC646762, LINC00182, and LINC00294. To 
investigate the role of lncRNAs in CRC, we focused 
on SLCO4A1-AS1 as a follow-up study, for which the 
expression was most significantly, and remained 
poorly investigated. 

Overexpression of SLCO4A1-AS1 predicts 
poor prognosis 

To further verify the expression of SLCO4A1- 

AS1 in CRC, we collected 45 CRC tissues and 45 
adjacent normal colorectal tissues detected the 
expression level of SLCO4A1-AS1 by RT-PCR. The 
results showed that SLCO4A1-AS1 was significantly 
upregulated in CRC tissues compared to adjacent 
normal colorectal tissues (Figure 2A, P=0.001). This is 
consistent with the results of the GEO dataset. In 
addition, SLCO4A1-AS1 was also overexpressed in 
three CRC cell lines HT29, HCT116, SW480 compared 
with NCM460, a normal colon cell line (Figure 2B, 
P<0.050, P<0.050, P<0.010). 

We further used in situ hybridization to verify 
the expression of SLCO4A1-AS1 in colorectal cancer 
tissues and its correlation with clinical pathological 
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parameters of CRC patients. The SLCO4A1-AS1 was 
highly expressed in the cancer nest of colorectal 
cancer tissue compared with normal colorectal tissue 
samples (Figure 2C). High expression of SLCO4A1- 
AS1 was also associated with shorter overall survivor 
of CRC patients, which indicates that upregulated 
SLCO4A1-AS1 could predict poor prognosis (Figure 
2D, P<0.001). We then analyzed the association of 
SLCO4A1-AS1 expression with clinicopathological 
parameters, such as the level of local invasion (T 
stage), lymphatic invasion (N stage), and distant 
metastasis (M stage). The data indicated that the 
expression of SLCO4A1-AS1 was positively 
associated with the local invasion (T stage) (Figure 2E, 
P<0.001), and the TNM stage (Figure 2F, P=0.028). 
Detailed results of clinical parameters and expression 
were shown in Table 1. Moreover, the available 
follow-up data of therapy effects and SLCO4A1-AS1 
expression were show in Table 2. The above results 
demonstrate that SLCO4A1-AS1 is highly expressed 
in CRC and is associated with higher local invasion, 
TNM stage, and poor prognosis. 

 

Table 1. Correlation of clinical parameters with SLCO4A1-AS1 
in CRC 

 
 

Knockdown of SLCO4A1-AS1 suppresses CRC 
cell proliferation 

To investigate the function of lncRNA 
SLCO4A1-AS1 in CRC, we used siRNA to knockdown 
of SLCO4A1-AS1 expression in CRC cells. We 
knockdown the expression of SLCO4A1-AS1 in CRC 
by using short interfering RNA (siRNA) in CRC cell 
lines HCT116 and SW480. RT-PCR results showed 
that SLCO4A1-AS1 expression was significantly 
inhibited in HCT116 and SW480 cells after 
transfection of siRNA (Figure 3A, P=0.009, P=0.003). 
CCK-8 assay showed that knockdown of 

SLCO4A1-AS1 resulted in growth retardation of 
HCT116 and SW480 cells (Figure 3B, P<0.001, 
P<0.001). Similarly, the results of the colony formation 
assay were coincided with the CCK-8 results, and 
CRC cells knockdown of SLCO4A1-AS1 formed fewer 
colony colonies than the control group (Figure 3C, 
P=0.001, P=0.002). 

Knockdown of SLCO4A1-AS1 inhibits CRC 
cell migration and invasion 

 To explore the roles of SLCO4A1-AS1 in CRC 
cell migration and invasion, we further performed 
wound healing assays and transwell assays. Wound 
healing assays showed that knockdown of 
SLCO4A1-AS1 significantly reduced the migration of 
HCT116 and SW480 cells compared to the control 
group (Figure 4A, P<0.010, P<0.010). Transwell assays 
showed that knockdown of SLCO4A1-AS1 
significantly inhibited invasion of HCT116 and SW480 
cells compared to the control group (Figure 4B, 
P=0.002, P=0.001). Therefore, the above results 
demonstrate that knockdown of SLCO4A1-AS1 can 
inhibit the migration and invasion of CRC cells, 
suggesting that the highly expressed SLCO4A1-AS1 
functions as an oncogene in colorectal cancer. 

SLCO4A1-AS1 is associated with CRC via 
EGFR/MAPK signaling pathway 

LncRNAs can affect the occurrence and 
development of CRC through a variety of signaling 
pathways. Many studies have shown that the 
EGFR/MAPK pathway is aberrantly activated in 
CRC46, which is thought to be responsible for cancer 
cell proliferation and metastasis. We knocked down 
SLCO4A1-AS1 in HCT116 and SW480 cells, and 
detected mRNA expression levels of EGFR、KRAS、
BRAF an MAP3K1 by RT-PCR. The results showed 
that EGFR, KRAS, BRAF and MAP3K1 expression 
were downregulated after SLCO4A1-AS1 knockdown 
(Figure 5A, P=0.001, P＜0.001; Figure 5B, P＜0.001, P
＜ 0.001; Figure 5C, P=0.003, P=0.005; Figure 5D, 
P=0.008, P＜0.001). In order to clarify the mechanisms 
of SLCO4A1-AS1 in CRC, the expression of EGFR, 
KRAS, BRAF, MEK, ERK, MAP3K1 protein and its 
corresponding phosphorylation status were analyzed 
by western blotting. The results were consistent with 
RT-PCR. The knockdown of SLCO4A1-AS1 could 
downregulate the expression of EGFR, KRAS, BRAF, 
MEK, ERK, MAP3K1 protein and its corresponding 
phosphorylation status (Figure 5E). Therefore, the 
above results indicated that SLCO4A1-AS1 may 
promote the progression of CRC through the 
EGFR/MAPK pathway. 
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Figure 3. Knockdown of SLCO4A1-AS1 suppresses CRC cell proliferation in vitro. (A) siRNA dramatically suppressed SLCO4A1-AS1 expression in HCT116 and 
SW480 cells (P=0.009, P=0.003). (B) CCK-8 assay showed that knockdown of SLCO4A1-AS1 resulted in growth retardation of HCT116 and SW480 cells (P<0.001, P<0.001). 
(C) Clone formation assay shows that SLCO4A1-AS1 knockdown suppressed the proliferation of HCT116 and SW480 cells (P=0.001, P=0.002). 

Table 2. Therapy effects and expression levels of SLCO4A1-AS1 
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Figure 4. Knockdown of SLCO4A1-AS1 inhibits CRC cell migration and invasion in vitro. (A and B) HCT116 and SW480 cells were transfected with 
SLCO4A1-AS1 siRNA, or scramble siRNA. 24 hours after transfection, cells were subjected to a wound healing assays or transwell assays to measure migration (P<0.010, 
P<0.010) or invasive capacity (P=0.002, P=0.001). 

Discussion 
Recent studies have shown that lncRNAs play an 

important role in tumor differentiation, proliferation, 
metastasis and other tumor development 
processes15,47,48. The pathogenesis and carcinogenic 
mechanisms of CRC are multifactorial and complex 
processes involving different genetic and epigenetic 
changes. LncRNA has been found to play an 

important role in the occurrence and development of 
CRC, including: APC49,50, OCC-133, FEZF1-AS147,51, 
SNHG552,53 and so on. 

In this study, we combined two GEO gene 
microarrays datasets to construct a differential 
expression profile of lncRNA, and combined the 
sequencing dataset to construct a common differential 
expression profile, and screened lncRNA 
SLCO4A1-AS1 for subsequent expression verification, 
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functional exploration and molecular mechanism. 
High expression of SLCO4A1-AS1 in CRC is 
associated with the poor prognosis of CRC patients 
and as a potential biomarker. After siRNA-mediated 
silencing of SLCO4A1-AS1, we found that it 
significantly inhibited the proliferation, migration and 
invasion of CRC cells. Studies have shown that the 
EGFR/MAPK pathway is involved in cell 
proliferation, promote tumor development and play a 
key role in the development of CRC54-56. EGFR is 
abnormally expressed in cancer57. The MAPK 
pathway is one of the major downstream effectors of 
EGFR. The EGFR/MAPK pathway is aberrantly 

activated in CRC, which is thought to be responsible 
for cancer cell proliferation, migration, and invasion55. 

Hyperactivation of the EGFR/MAPK signaling 
often leads to various cancers such as esophageal 
squamous cell carcinoma and CRC58,59. For instance, 
LINC01225 promotes occurrence and metastasis of 
hepatocellular carcinoma by binding to EGFR and 
increasing the protein level of EGFR, then activating 
EGFR/MAPK signaling pathway60. Additionally, 
activation of EGFR/MAPK signaling promotes CRC 
metastasis61. 

 

 

 
Figure 5. Identification of SLCO4A1-AS1 regulated genes in EGFR/MAPK signaling pathway. (A-D) mRNA levels of EGFR/MAPK pathway-associated proteins 
were detected by Q-PCR in HCT116 and SW480 cells transfected with negative control (NC) or SLCO4A1-AS1 siRNA. (E) Expression of EGFR/MAPK pathway-associated 
proteins and its corresponding phosphorylation status proteins levels were detected by western blot in HCT116 and SW480 cells transfected with NC or SLCO4A1-AS1 siRNA. 
β-actin was used as an internal control. 
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Figure 6. Proposed schematic model illustrating the role of SLCO4A1-AS1 in regulating CRC by EGFR/MAPK signaling pathway. SLCO4A1-AS1 influences 
EGFR/MAPK signaling pathway by promoting the expression of EGFR, KRAS, BRAF, MEK, ERK, MAP3K1 and its corresponding phosphorylated protein levels, which further 
affect the proliferation, migration and invasion of CRC cells. 

 
In our study, we found that SLCO4A1-AS1 

knockdown severely decreased the mRNA level and 
protein level of EGFR, KRAS, BRAF, MEK, ERK, 
MAP3K1 by the mechanism that inhibited the 
phosphorylation. LncRNAs may associate with 
proteins to regulate their stability, activity or other 
properties62. EGFR level plays a pivot role in the 
MAPK pathway63. The increasing of EGFR protein 
level may lead to CRC metastasis64. Regulation of 
EGFR/MAPK signaling is complicated and delicate. 
How lncRNAs interact with proteins on 
EGFR/MAPK pathways to fine-tune proliferation, 
migration and invasion of CRC requires further 
elucidation. 

In conclusion, our results suggest that 
SLCO4A1-AS1 may be involved in the development 
of CRC, which may play an important role in CRC 
tumorigenesis and may be a useful biomarker for 
predicting CRC prognosis. We contend that 
SLCO4A1-AS1 activates EGFR/MAPK pathway, 
facilitates the proliferation, migration and invasion of 
CRC cancer cells. SLCO4A1-AS1 may serve as 
potential targets for future treatment (Figure 6). 

Supplementary Material  
Table S1.  http://www.ijbs.com/v15p2885s1.xls  
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