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Abstract 

Background: N6-methyladenosine (m6A) RNA methylation is dynamically and reversibly regulated by 
methyl-transferases ("writers"), binding proteins ("readers"), and demethylases ("erasers"). The m6A is 
restored to adenosine and thus to achieve demethylation modification. The abnormality of m6A 
epigenetic modification in cancer has been increasingly attended. However, we are rarely aware of its 
diagnostic, progressive and prognostic performance in lung adenocarcinoma (LUAD). 
Methods and Results: The expression of 13 widely reported m6A RNA regulators in LUAD and 
normal samples were systematically analyzed. There were 12 m6A RNA methylation genes displaying 
aberrant expressions, and an 11-gene diagnostic score model was finally built (Diagnostic score 
=0.033*KIAA1429+0.116*HNRNPC+0.115*RBM15-0.067* METTL3-0.048*ZC3H13-0.221*WTAP+ 
0.213*YTHDF1-0.132*YTHDC1-0.135* FTO+0.078*YTHDF2+0.014*ALKBH5). Receiver operating 
characteristic (ROC) analysis was performed to demonstrate superiority of the diagnostic score model 
(Area under the curve (AUC) was 0.996 of training cohort, P<0.0001; AUC was 0.971 of one validation 
cohort-GSE75037, P<0.0001; AUC was 0.878 of another validation cohort-GSE63459, P<0.0001). In 
both training and validation cohorts, YTHDC2 was associated with tumor stage (P<0.01), while 
HNRNPC was up expressed in progressed tumor (P<0.05). Besides, WTAP, RBM15, KIAA1429, 
YTHDF1, and YTHDF2 were all up expressed for TP53 mutation. Furthermore, using least absolute 
shrinkage and selection operator (lasso) regression analysis, a ten-gene risk score model was built. Risk 
score=0.169*ALKBH5-0.159*FTO+0.581*HNRNPC-0.348* YTHDF2-0.265*YTHDF1-0.123*YTHDC2 
+0.434*RBM15+0.143*KIAA1429-0.200*WTAP-0.310*METTL3. There existed correlation between the 
risk score and TNM stage (P<0.01), lymph node stage (P<0.05), gender (P<0.05), living status (P<0.001). 
Univariate and multivariate Cox regression analyses of relevant clinicopathological characters and the 
risk score revealed risk score was an independent risk factor of lung adenocarcinoma (HR: 2.181, 95%CI 
(1.594-2.984), P<0.001). Finally, a nomogram was built to facilitate clinicians to predict outcome. 
Conclusions: m6A epigenetic modification took part in the progression, and provided auxiliary diagnosis 
and prognosis of LUAD. 
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Introduction 
According to Global Cancer Statistics 2018, there 

will have been approximately 18.1 million new cancer 
cases and 9.6 million death cases worldwide [1]. 
Researchers around the world are constantly striving 
to improve the medical technology for providing 
more sensitive method for tumor diagnosis and 
effective approach for tumor therapy. However, due 
to the complexity of tumor formation mechanism, it is 
far from enough to understand the nature of cancer 
from the genetic layer in the traditional sense [2]. It is 
recognized that the expression of oncogene depends 
not only on the gene itself, but also on epigenetic 
modification without changing gene sequence [2,3].  

Epigenetics is a research hotspot in recent years, 
which is defined as no change in DNA sequence, but 
with heritable changes in gene expression [3]. 
Previously, the epigenetic researchers are mainly 
focused on DNA and histone modifications. It was 
even believed that, for example, mRNA only played 
the role in information transmission. However, with 
the rapid development of high-throughput 
sequencing technology, it is found that mRNA also 
undergo various modifications such as N6- 
methyladenosine (m6A), N1-methyladenosine (m1A) 
and pseudouridine methylation during the process of 
exon splicing, 5'-capping and 3'-tailing [4-6]. These 
modifications will then affect mRNA splicing, 
nucleation, stabilization, translation and other mRNA 
metabolism processes, thereby regulating gene 
expression. Up to now, 171 RNA modifications have 
been discovered [7]. Researches on m6A epigenetic 
modification have been increasingly attended. M6A is 
a methylation modification that occurs on RNA 
adenine (A), and is one of the most abundant 
modifications in most eukaryotic mRNAs and long- 
chain non-coding RNAs (lncRNAs) [8-10]. In transfer 
RNA (tRNA), ribosome RNA (rRNA), microRNA, the 
m6A methylation is likewise detected [11]. Similar to 
DNA and protein modification, the m6A methylation 
is dynamically and reversibly regulated by methyl- 
transferases ("writers"), binding proteins ("readers"), 
and demethylases ("erasers") [12]. The RNAs undergo 
the process of methyl group modification under the 
action of "writers" that such as METTL3, METTL14, 
WTAP, RBM15, KIAA1429, and ZC3H13 [13-19]. Then 
the "readers" including YTHDF1, YTHDF2, YTHDC1, 
YTHDC2, HNRNPC recognize those m6A-modified 
RNAs and function in RNA processing, nuclear 
export, translation and decay [12,17,20]. Relying on 
the "Erasers" (FTO, ALKBH5), the m6A is restored to 
adenosine and thus to achieve demethylation 
modification [21]. Once the component involved in 
the regulation of m6A modification has been lost, the 

physiological functions such as cell differentiation 
and embryo development would be affected and 
expression of genes would be abnormally regulated 
[4,22]. 

At present, some diseases, such as obesity, 
diabetes, neuronal disease, infertility, autoimmune 
diseases, have been reported associated with m6A 
modification [23-28]. In addition, m6A methylation is 
likewise closely related to the tumor development. 
M6A-related protein is an important regulator of 
tumorigenesis, high or low expression level often 
directly determines the tumor pathological process. 
For example, in cervical squamous cell carcinoma 
(CSCC), FTO is significantly high expressed [29]. It 
would lower the m6A methyl level and in turn 
activate the beta-catenin pathway and affect ERCC1 
expression and then lead to poor prognosis. In 
colorectal cancer, YTHDF1 is highly expressed 
associated with the tumor diameter (P=0.009), lymph 
node metastasis (P=0.044), distant metastasis 
(P=0.036) and clinical stage (P=0.0226) [30]. As for 
lung cancer, report has indicated that FTO enhances 
the expression of myeloid zinc finger 1 (MZF1) by 
reducing m6A levels, thereby promoting the 
development of lung squamous cell carcinoma 
(LUSC) [31]. Another evidence points that miR-33a 
inhibits the proliferation of non-small cell lung cancer 
(NSCLC) cells by targeting METTL3 mRNA 3'UTR 
binding sites [32]. Thus, the fully understanding of the 
pivotal m6A RNA methylation regulators is vital for 
lung cancer treatment. In all categories of lung 
cancers, lung adenocarcinoma (LUAD) is one of the 
most common histological types [33]. However, it 
lacks a comprehensive analysis of the expression of 
m6A RNA methylation regulators in lung cancer, 
especially in LUAD. The clinicopathological 
characteristics, diagnosis and prognostic value of such 
regulators remains to be explored. 

In this study, the expression of 13 widely 
reported m6A RNA regulators in LUAD and normal 
samples were systematically analyzed. The different 
clinicopathological characters which related to each 
m6A modification regulator were then provided. It 
was found that the expression of m6A RNA 
methylation regulators played a responsible role in 
the progression of LUAD, which even were identified 
as the effective diagnostic and prognostic factors. 

Methods 
Datasets 

Genotype-Tissue Expression (GTEx) dataset for 
normal lung tissues was downloaded from 
https://www.gtexportal.org/ [34]. Data of lung 
adenocarcinoma and squamous cell lung carcinoma of 
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TCGA [35] was downloaded from UCSC Xena 
(https://xena.ucsc.edu/) [36]. For GTEx and TCGA 
dataset, RNA-sequencing data (FPKM values) were 
normalized into log2 (FPKM+1). Clinical data of 
TCGA was downloaded from cBioPortal (http:// 
www.cbioportal.org/) [37,38]. Data of GSE75037 [39], 
GSE63459 [40], GSE29013 [41], GSE30219 [42], 
GSE37745 [43], and GSE50081 [44] were downloaded 
from the Gene Expression Omnibus (https://www. 
ncbi.nlm.nih.gov/geo/).  

After normalization by "LiMMA-normalize 
BetweenArrays" (http://www.bioconductor.org/), 
GSE75037 and GSE63459 were served as validation 
cohorts of diagnostic model. GSE29013, GSE30219, 
GSE37745, and GSE50081 were merged by Batch 
normalization to serve as validation cohorts of 
prognostic risk model. The details of expression data 
were shown in Table 1. GTEx and TCGA dataset were 
acted as training cohort, and GSE75037, GSE63459, 
GSE29013, GSE30219, GSE37745, and GSE50081 as 
validation cohort. For GTEx and TCGA dataset, we 
defined expression value as log2 (FPKM+1), while for 
gene chips, expression value was defined as 
log2(expression). 

Selection of investigative genes 
There were 13 m6A RNA methylation genes 

brought into the study, namely, METTL3, METTL14, 
WTAP, KIAA1429, RBM15, ZC3H13, YTHDC1, 
YTHDC2, YTHDF1, YTHDF2, HNRNPC, FTO, and 
ALKBH5 [45,46]. We investigated their role in 
diagnosis, progression, and prognosis of lung 
adenocarcinoma of both training and validation 

cohort. 

Diagnostic role of 13 m6A RNA methylation 
genes in lung adenocarcinoma 

After normalization by "LiMMA-normalize 
BetweenArrays", 288 samples of normal lung tissues 
from GTEx were added into TCGA dataset of lung 
cancer to increase the number of the normal group. 
Then wilcox test was applied to differential analysis of 
13 m6A RNA methylation genes between normal and 
tumorous samples. Package "corrplot" was used to 
analyze the correlation among each gene. App 
ClueGO (http://www.ici.upmc.fr/cluego/version2. 
3.3) of Cytoscape (http://cytoscape.org, version3.5.1) 
was to illuminate the relationship between m6A RNA 
methylation genes and related pathways [47-48]. Then 
the least absolute shrinkage and selection operator 
(lasso) regression model was made to diagnose lung 
adenocarcinoma in the training cohort by the “lars” 
package [49-50]. Eventually, 11 m6A RNA 
methylation related genes and coefficients were 
identified with smallest 10-fold cross validated mean 
square error in the training cohort.  

Diagnostic score = ∑ Coefn
i=1 i*Xi  

(Coefi is the coefficient of each selected gene, Xi 
is the expression value.) 

The diagnostic score model was further 
validated in the independent cohorts-GSE75037 and 
GSE63459. Besides, the distributions of diagnostic 
score were shown in different tumor stage in training 
and validation cohort to demonstrate the early-cancer 
discriminability of the diagnostic score model. 

 

Table 1. The basic information of series in the study 

 
Series accession 
numbers 

Platform used No. of normal 
samples 

No. of tumorous 
samples 

AJCC stage Gender Mean age, 
[min, max] 

Region Survival 
Outcome 

GSE75037 Illumina Human WG-6 v3.0 
expression beadchip 

83 83 I:50;  
II:20;  
III:11; 
IV:2 

Female:118 Male:48 68,[39,90] USA NA 

GSE63459 Illumina Human Ref-8 v3.0 
expression beadchip 

32 33 I:28; 
II:5 

Female:34 
Male:31 

66,[47,88] USA NA 

GSE29013 Affymetrix Human Genome 
U133 Plus 2.0 Array 

0 30 I:16;  
II:6;  
III:8 

Female:10 Male:20 64,[32,76] USA OS 

GSE30219 Affymetrix Human Genome 
U133 Plus 2.0 Array 

0 85 NA Female:19 
Male:66 

61,[44,84] France OS 

GSE37745 Affymetrix Human Genome 
U133 Plus 2.0 Array 

0 106 I:70;  
II:19;  
III:13; 
IV:4 

Female:60 Male:46 63,[40,83] Sweden OS 

GSE50081 Affymetrix Human Genome 
U133 Plus 2.0 Array 

0 129 I:93; 
II:36 

Female:62 
Male:67 

69,[40,86] Canada OS 

TCGA-LUAD Illumina RNAseq 59 526 I:172 
II:273 
III:45 
IV:18 
NA:18 

Female:274 
Male:237 
NA:15 

65,[33,88] NA OS 

TCGA-LUSC Illumina RNAseq 49 501 I:114 
II:295 

Female:131 Male:370 67,[39,90] NA OS 
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Series accession 
numbers 

Platform used No. of normal 
samples 

No. of tumorous 
samples 

AJCC stage Gender Mean age, 
[min, max] 

Region Survival 
Outcome 

III:71 
IV:21 

GTEX NA 288 0 NA NA NA NA NA 
 
 

Construction of the clusters stratified by m6A 
RNA methylation genes and correlation 
analysis 

We used "ConsensusClusterPlus" to cluster 
tumor samples into two to five groups [51]. Then 
Kaplan-Meier analysis and correlation analysis were 
applied to explain the correlation between clusters. 

Prognostic evaluation of 13 m6A RNA 
methylation genes in lung adenocarcinoma 

To assess the prognostic evaluation of each m6A 
RNA methylation gene, univariate Cox regression 
analysis was performed. Besides, lasso regression 
model was also made with 13 m6A RNA methylation 
genes to optimize the prognostic meaning. 

Risk score = ∑ Coefn
i=1 i*Xi 

(Coefi is the coefficient of each selected gene, Xi 
is the expression value.) 

From this risk score model, each patient could 
get a risk score. We defined patient into high risk 
group with the risk score≥ median value of all 
patients, and patient into low risk group with the risk 
score< median value. Then Kaplan-Meier analysis 
was performed to display the prognostic performance 
of Risk score model in both training and validation 
cohorts. And correlation analysis was applied to 
explain the correlation between subgroups stratified 
by the risk score model and clinicopathological 
characters, including smoking history, TNM stage, 
metastasis, lymph node stage, gender, diagnosed age, 
and status in both training and validation cohorts. 

Univariate and multivariate Cox regression 
analyses of clinicopathological characters and 
risk score 

Univariate and multivariate Cox regression 
analyses of risk score and clinicopathological 
characters, including smoking history, TNM stage, 
metastasis, lymph node stage, gender, diagnosed age, 
and tumor stage, were performed to identify the 
prognostic performance of these characters. "Rms" 
package of R was used to build a nomogram with 
1-year, 2-year, and 3-year overall survival (OS) as 
endpoints.  

Statistical analysis 
All figures and data were accomplished by R 

(Version 3.5.3) and Graphad Prism 5.0 (La Jolla, CA). 

To estimate the diagnostic role of diagnostic model, 
operating characteristic (ROC) curves were plotted. 
One-way ANOVA or t-test was conducted to compare 
different clinicopathological characters in subclusters 
or risk groups. Kaplan-Meier plots, displayed as 
hazard ratio (HR) with 95% confidence intervals (CI), 
were performed to compare the OS of patients of 
different subclusters and risk groups. All results with 
P<0.05 were considered significant. 

Results 
Differential expression of m6A RNA 
methylation genes in lung adenocarcinoma 

Comparing 13 m6A RNA methylation genes 
between 347 normal samples and 526 tumorous 
samples of TCGA and GTEx, we found that 12 of 
these genes had statistic difference. Among these 
genes, KIAA1429, HNRNPC, YTHDC2, METTL3, 
WTAP, YTHDC1, and FTO were down expressed in 
lung adenocarcinoma, RBM15, ZC3H13, YTHDF1, 
YTHDF2, and ALKBH5 were up expressed (Figure 
1A-B). These 13 m6A RNA methylation genes were 
mainly associated with RNA modification, dosage 
compensation by inactivation of X chromosome, and 
RNA destabilization (Figure 1C). In spearman 
correlation analysis, YTHDC1, YTHDC2, FTO, WTAP, 
HNRNPC, and METTL3 were positively related with 
each other. Besides, ZC3H13, ALKBH5, YTHDF1, and 
YTHDF2 were also positively related with each other 
in lung adenocarcinoma. Furthermore, YTHDF1, and 
YTHDF2 were negatively related with FTO, WTAP, 
HNRNPC, and METTL3 (Figure 1D). 

Construction of diagnostic model  
The ROC curves of 13 m6A RNA methylation 

genes were shown in Figure S1A. To improve the 
diagnostic accuracy, 13 genes were served as 
candidate genes into lasso regression analysis. Figure 
2A-B showed the process of model building in the 
training cohort. Diagnostic score = 0.033*KIAA1429+ 
0.116*HNRNPC+0.115*RBM15-0.067*METTL3-0.048*
ZC3H13-0.221*WTAP+0.213*YTHDF1-0.132*YTHDC
1-0.135*FTO+0.078*YTHDF2+0.014*ALKBH5. Each 
people could get a diagnostic score according to the 
diagnostic score model. The diagnostic scores of the 
tumor group were significantly higher than the 
normal group (Figure 2C). Area under the curve 
(AUC) was 0.996, P<0.0001, indicating high sensitivity 
and specificity (Figure 2D). The diagnostic score 
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model was further validated in two independent 
cohorts-GSE75037 and GSE63459. Figure 2E and 
Figure S1B showed that the variation trends of 
HNRNPC, RBM15, YTHDF1, YTHDC1, FTO, and 
YTHDF2 of GSE75037 were accord with these in the 
training cohort. Meanwhile, people of tumor group 
also had extraordinarily higher diagnostic scores than 
these of normal group (Figure 2F). The AUC of 
diagnostic score model was 0.971, which was higher 
than single gene (Figure 2G and Figure S1C). For 
GSE63459, the trends of RBM15, WTAP, YTHDF1, 
FTO, and YTHDF2 were consistent with these in the 
training cohort (Figure 2H and Figure S1D). Likewise, 
the diagnostic score model had its superiority in 
diagnosing lung adenocarcinoma (Figure 2I-J and 
Figure S1E). Besides, diagnostic score model had 
discrimination of each stage of lung adenocarcinoma, 
even the very early stage-stage IA in the training and 
validation cohorts (Figure 2K-L). 

Correlation of m6A RNA methylation genes 
and clinicopathological characters 

In both training and validation cohorts, YTHDC2 

was associated with tumor stage (P<0.01, Figure 
3A-C). Besides, HNRNPC was up expressed in 
progressed tumor group of training and merged 
validation cohorts (P<0.05, Figure 3D-F). For 
mutation, there was no correlation between m6A RNA 
methylation genes and KRAS or EGFR mutation 
(Figure S2). For TP53 mutation, WTAP, RBM15, 
KIAA1429, YTHDF1, and YTHDF2 were all up 
expressed in mutation group (Figure 3G-H). 

Construction of risk score model 
Before we build the risk score model, we 

clustered the patients into two to five subclusters 
(K=2-5) stratified by 13 m6A RNA methylation genes. 
Regretfully, subclusters stratified by m6A RNA 
methylation genes were not related with OS (Figure 
S3A-H). Due to subclusters that didn't have a good 
prognostic performance, we assessed the prognostic 
performance by a univariate Cox regression analysis 
in the training cohort. In these genes, HNRNPC was 
hazard of OS (HR: 1.8, 95%CI (1.22-2.656), P=0.003) 
(Figure 4A). 

 

 
Figure 1. Expression of m6A RNA methylation genes in lung adenocarcinoma. (A-B) The differential expression of 13 m6A RNA methylation genes between 347 
normal samples and 526 tumorous samples in lung adenocarcinoma. (C) Visualization of relation between m6A RNA methylation genes and related pathways. (D) Correlation 
analysis of 13 m6A RNA methylation genes. ***, P<0.001. 
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Figure 2. Diagnostic role of m6A RNA methylation genes related model. (A-B) The solution paths of lasso regression model and the relationship between 
cross-validated mean square error (CV MSE) and model size. (C) The difference in the distribution of diagnostic score of training cohort. (D) The ROC curve of diagnostic score 
of training cohort. (E) The expression of 13 m6A RNA methylation genes in lung adenocarcinoma of validation cohort-GSE75037. (F-G) The distribution and ROC curve of 
diagnostic score of validation cohort-GSE75037. (H) The expression of 13 m6A RNA methylation genes in lung adenocarcinoma of validation cohort-GSE63459. (I-J) The 
expression of 13 m6A RNA methylation genes in lung adenocarcinoma of validation cohort-GSE63459. (K) The difference in the distribution of diagnostic score of tumor stage 
of training cohort. (L) The difference in the distribution of diagnostic score of tumor stage of validation cohort-GSE75037. *, P<0.05; **, P<0.01; ***, P<0.001. 

 
To better predict survival of lung 

adenocarcinoma with m6A RNA methylation genes, 
we conducted lasso regression analysis (Figure 4B-C). 
Then a ten-gene risk score model was built. Risk 
score=0.169*ALKBH5-0.159*FTO+0.581*HNRNPC-0.3
48*YTHDF2-0.265*YTHDF1-0.123*YTHDC2+0.434*RB
M15+0.143*KIAA1429-0.200*WTAP-0.310*METTL3 
(Figure 4D). We defined patient into high risk group 
with the risk score ≥ median value of all patients, and 
patient into low risk group with the risk score < 
median value. The training cohort (n=500) and 
merged validation cohort (n=350) were divided into 
high- or low-risk group respectively. Figure 5A-B 
showed that risk score model had its superior 

performance in predicting outcome of lung 
adenocarcinoma in both training (HR: 1.828, 95%CI 
(1.347, 2.481)) and validation cohort (HR: 1.812, 95%CI 
(1.075, 2.563)). Figure 5C showed the expression of 10 
m6A RNA methylation genes involved in risk score 
model. There existed correlation between risk group 
and TNM stage (P<0.01), lymph node stage (P<0.05), 
gender (P<0.05), status (P<0.001). The distributions of 
risk score, smoking history, tumor stage, metastasis, 
lymph node stage, tumor stage, gender, diagnostic 
age, and status of training cohort were shown in 
Figure 5D-L. And the correlations between risk score 
and gender, tumor stage, status were verified in 
merged validation cohort (Figure 5M-P). 
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Figure 3. Role of m6A RNA methylation genes in lung adenocarcinoma with different clinicopathological characters. (A-B) The expression of m6A RNA 
methylation genes with different tumor stage of training cohort. (C) The expression of m6A RNA methylation genes with different tumor stage of merged validation cohort. 
(D-E) The expression of m6A RNA methylation genes with different tumor status of training cohort. (F) The expression of m6A RNA methylation genes with different tumor 
status of merged validation cohort. (G-H).The expression of m6A RNA methylation genes with TP53 mutation of training cohort.*, P<0.05; **, P<0.01; ***, P<0.001. 

 

Univariate and multivariate Cox regression 
analyses of clinicopathological characters and 
risk score 

To investigate whether risk score was an 
independent risk factor, we implemented univariate 
and multivariate Cox regression analyses of relevant 
clinicopathological characters and risk score. In the 
univariate Cox regression analysis, lymph node stage, 
TNM stage, tumor stage, and risk score were all 
associated with bad OS (Figure 6A). While in the 
multivariate Cox regression analysis, only the risk 

score was related with bad OS (HR: 2.181, 95%CI 
(1.594-2.984), P<0.001) (Figure 6B), indicating risk 
score was an independent risk factor of lung 
adenocarcinoma. A nomogram was built to facilitate 
clinicians to predict outcome. Diagnostic age, gender, 
TNM stage, and risk score were given points 
according to their impacts to the outcome (Figure 6C). 
By summing up all the points, we could get a total 
point for each patient. Then we could be aware of 
1-year, 2-year, and 3-year survival of patients 
respectively. 
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Figure 4. Construction of risk score model with m6A RNA methylation genes. (A) Univariate Cox regression analysis of 13 m6A RNA methylation genes. (B-C)The 
process of building lasso model with size and coefficients by multivariate Cox regression. (D) The coefficients of 10 m6A RNA methylation genes involve in lasso risk model. 
Hazard ratio (95% confidence intervals). 

 

Role of the diagnostic score model and 
prognostic risk model in squamous cell lung 
carcinoma 

We investigated the expression of 13 m6A RNA 
methylation genes in squamous cell lung carcinoma. 
From Figure S4A-B, the variation trends of 12 m6A 
RNA methylation genes were in line with these in 
lung adenocarcinoma. Besides, the result of 
correlation analysis of squamous cell lung carcinoma 
was roughly consistent with that in lung 
adenocarcinoma (Figure S4C). The diagnostic score 
could diagnose squamous cell lung carcinoma as well 
(AUC=0.992, P<0.0001) (Figure S4D). However, the 
risk score that enabled clinicians to predict outcome of 
lung adenocarcinoma couldn't be applied to 
squamous cell lung carcinoma (Figure S4E). 

Discussion 
Lung cancer is the most common malignant 

tumor with high morbidity and mortality worldwide, 
of which NSCLC accounts for 85-90%, including 
LUSC, LUAD and large cell lung cancer (LCLC) [52]. 
The underlying cause of the low lung cancer survival 

rate is its difficulty in early diagnosis. More than 70% 
patients are diagnosed at an advanced and usually 
fatal stage, lacking the effective therapeutic measures 
[53]. Thus, it becomes great significance to understand 
the development mechanism for its well diagnosis 
and treatment. Among these subtypes, LUAD is 
responsible for approximately 40% of all NSCLC cases 
[33]. The early diagnosis and treatment can greatly 
improve the survival rate of patients with LUAD. 
Recently, emerging evidence has indicated that the 
development of lung cancer is both affected by genetic 
variation and epigenetic variation [54]. Epigenetic 
regulates gene expression from multiple levels, 
including DNA methylation, RNA regulation, histone 
modification, and chromosome remodeling [55]. 
However, up to now, in lung cancers, only FTO and 
METTL3 have been reported as potential targets for 
its diagnosis and treatment [31,32]. In this study, 
except FTO and METTL3, we also found that 
KIAA1429, HNRNPC, YTHDC2, WTAP, YTHDC1, 
RBM15, ZC3H13, YTHDF1, YTHDF2, and ALKBH5 
had differential expression in LUAD. 

In exploring the clinical value of these 
differential expression regulators, it was found that 
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the joint detection of these regulators was more 
significant for the diagnosis of LUAD in comparison 
to the detection of mostly single regulator. Such 
combination provided higher predictive accuracy of 
99.6% (AUC) for LUAD, while the most single 
regulator was less than 90%. The diagnostic score 
model we constructed involved 11genes. From the 
results of Figure S1, in the training and validation 
cohorts, YTHDF1 had a good diagnostic performance. 
So far, many studies in progress with regard 

toYTHDF1 in colorectal carcinoma and hepatocellular 
carcinoma, which was usually regarded as an 
independent prognostic factor [56-58]. However, there 
has been no related reports on LUAD, and no has 
been conducted as a diagnostic factor. Though the 
diagnostic score model had a unique superiority in 
the diagnosis of LUAD, we could use YTHDF1 alone 
to diagnose disease in consideration of operability 
and simplification. 

 

 
Figure 5. Relationship between clinicopathological characters and risk score model in lung adenocarcinoma of training cohort and merged validation 
cohort. (A) Kaplan-Meier plot of high risk and low risk subgroup in training cohort. (B) Kaplan-Meier plot of high risk and low risk subgroup in merged validation cohort. (C).The 
heatmap of 10 m6A RNA methylation genes involve in lasso risk model and relationship between clinicopathological characters and risk subgroup. (D-L) The distribution of risk 
score in different risk (D), smoking history (E), stage (F), metastasis (G), lymph node (H), tumor stage (I), gender (J), age (K), status (L) subgroup of training cohort. (M-P) The 
validation of distribution of risk score in different risk (M), gender (N), tumor stage (O), status (P) subgroup. *, P<0.05; **, P<0.01; ***, P<0.001, ns, no sense; HR, hazard ratio; 
95%CI, 95% confidence intervals. 
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Figure 6. Univariate and multivariate Cox regression analysis of clinicopathological characters and risk score. (A) Univariate Cox regression analysis for 
evaluating the prognostic role of clinicopathological characters and risk score in lung adenocarcinoma. (B) Multivariate Cox regression analysis for evaluating the prognostic role 
of clinicopathological characters and risk score in lung adenocarcinoma. (C) The nomogram plot to predict 1-year, 2-year, 3-year overall survival. Summing up each point of 
clinicopathological characters and risk score to predict overall survival. Hazard ratio (95% confidence intervals). 

 
In the absence of diagnostic characteristics, 

YTHDC2 was then found to be associated with tumor 
stage. Accurate pathological staging is the basis for 
setting on ideal treatment. Increasing researchers are 
also devoted in the research of molecular staging 
using gene or protein expression. Previously, in colon 
cancer, it has been found a significantly positive 
correlation between YTHDC2 expression and the 
tumor stage [59]. However, there is still lack of 
information for LUAD. The finding thus will provide 
new insight into our understanding of the function of 
YTHDC2 in LUAD. HNRNPC, except as a joint 
regulator in the diagnostic score model, it even 
exhibited differential expression in progressed tumor 
group and disease free group. Many studies have 
suggested that several types of solid tumor cells 

including breast cancer, gastric cancer, and 
esophageal squamous cell carcinoma acquired 
generation and development characteristics through 
HNRNPC disorder [60-62]. In lung epithelial cells, the 
stability of urokinase receptor (uPAR) mRNA was 
regulated by HNRNPC [63]. Increased uPAR 
expression as well as stabilization of uPAR mRNA 
would contribute to the pathogenesis of lung 
inflammation and neoplasia [63]. In this study, we 
preliminary confirmed that HNRNPC played a 
critical role in LUAD progression, which was 
expected to provide a potential therapeutic target. 

The consensus clustering stratified by 13 m6A 
RNA methylation genes was not associated with the 
most clinicopathologic characters and survival. The 
inconsistent aberrated trends of these m6A RNA 
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methylation genes might account for the frustrated 
utilization of the stratification. Then, we performed 
univariate Cox regression analysis of each selected 
m6A RNA methylation genes. We found that 
HNRNPC also was hazard of OS (HR: 1.8, 95%CI 
(1.22-2.656), P=0.003). As we have demonstrated, for 
breast cancer cells, the repression of HNRNPC could 
inhibit cell proliferation and tumor growth [60]. In 
gastric cancer, HNRNPC has been identified as a 
prognostic and therapeutic marker [61]. However, to 
the best of our knowledge, there has been rarely 
reported that HNRNPC was involved in the 
prognosis of LUAD.  

As reported, a number of monogenic prognostic 
markers that were found significantly associated with 
prognosis, such as p53, HER2, and ERBB3 [64]. 
However, due to the heterogeneity of NSCLC, the 
genes involved might vary greatly among those 
different individuals [64]. Thus, it greatly prompted 
the researchers to construct gene expression profiles 
composed of multiple prognostic genes for using in 
the patients risk stratification. For instance, Kratz et al. 
ever have constructed a prognostic model using 14 
genes which divided the patients with NSCLC into 
low-risk, intermediate-risk, and high-risk groups [65]. 
The results showed that the 5-year survival rate 
among three groups was significantly different, and 
the model exhibited satisfactory predictability in 
prognosis than traditional clinical pathology staging 
in multiple validation cohorts. Similarly, in this study, 
A ten-gene risk score model (Risk 
score=0.169*ALKBH5-0.159*FTO+0.581*HNRNPC-0.3
48*YTHDF2-0.265*YTHDF1-0.123*YTHDC2+0.434*RB
M15+0.143*KIAA1429-0.200*WTAP-0.310*METTL3)w
as built. It stratified the OS of patients with LUAD 
into high and low risk categories, which exhibited 
entirely differences in survival. Following the 
discovery of these prognostic genes, the risk group 
distinguished through risk score was found existed 
correlation with TNM stage, lymph node stage, 
gender, status, and tumor stage in both training and 
validation cohort. Besides, these clinicopathological 
features were associated with bad OS, and risk score 
was an independent risk factor of LUAD. At present, 
TNM stage is commonly performed to assess the 
prognosis of patients. Due to the limited risk factors 
included in the TNM staging system, it is not possible 
to conduct a precise prediction for NSCLC. Validating 
and combining more clinical pathology and molecular 
biology risk factors to establish an effective prognosis 
model becomes an important direction for future 
research in the development of multidisciplinary 
comprehensive treatment. In this study, based on 
characteristics of diagnostic age, gender, TNM stage, 
and risk score, a nomogram was built to facilitate 

clinicians to predict outcome. To some extent, it was 
expected to address the issue of prognostic 
heterogeneity caused by single factor or insufficient 
risk factors analysis. 

In spite of these indelible contributions, as the 
study went on, it was found that the above regulators 
exhibited no significant differential expression in 
KRAS and EGFR mutant LUAD. In TP53 mutant 
LUAD, the regulators including WTAP, RBM15, 
KIAA1429, YTHDF1, and YTHDF2 all were highly 
expressed. Thus, we inferred that those regulators 
were likely only effective in some types of LUAD, 
while the specific reasons required following 
elucidation. Besides, it was note-worthy that YTHDF2 
was merely reported to be involved with TP53 in 
peripheral T-cell lymphoma and gastric cancer yet 
[66,67]. YTHDF1 was functionally interactional with 
TP53 in gastric cancer [67]. To the best of our 
knowledge, it was not clear yet that TP53 mutant 
impacted the expression of WTAP, RBM15, and 
KIAA1429, in which more evidences were required to 
elucidate their mechanistic correlation. 

In addition to LUAD, our work also indicated 
that m6A shared connections with LUSC, and the joint 
detection also provided higher predictive accuracy of 
99.2% (AUC). Unfortunately, as we observed, these 
m6A RNA methylation regulators exhibited no 
prognostic value in LUSC. LUAD is more likely to 
occur in women and non-smokers [68]. LUSC is more 
common in older men and is closely related to 
smoking [69]. It is likely that different pathological 
features determine the different prognostic effects 
exhibited by the same regulators, which is worth 
investigating in future studies. 

In this study, due to the limited sample size of 
normal samples, we normalized the lung tissues of 
GTEx and increased the credibility and accuracy of 
differential expression analysis. The robust analyses 
of correlation were performed among m6A RNA 
methylation regulators and diagnosis, pathological 
features or prognosis. The sample number of the 
study approximately reached 1900, which we thought 
to be enough to offset some confounding factors.  

Conclusion 
In conclusion, our work systemically elucidated 

m6A’s progressive role in LUAD, and provided 
insights into its diagnostic and prognostic function. 
However, m6A’s functional details and its relationship 
with specific gene mutations and other types of 
NSCLC in controlling tumor progression merit 
further investigation. 
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