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Abstract 

Significant enhancement of the glycolysis pathway is a major feature of tumor cells, even in the 
presence of abundant oxygen; this enhancement is known as the Warburg effect, and also called 
aerobic glycolysis. The Warburg effect was discovered nearly a hundred years ago, but its specific 
mechanism remains difficult to explain. DNA methylation is considered to be a potential trigger for 
the Warburg effect, as the two processes have many overlapping links during tumorigenesis. Based 
on a widely recognized potential mechanism of the Warburg effect, we here summarized the 
relationship between DNA methylation and the Warburg effect with regard to cellular energy 
metabolism factors, such as glycolysis related enzymes, mitochondrial function, glycolysis bypass 
pathways, the tumor oxygen sensing pathway and abnormal methylation conditions. We believe that 
clarifying the relationship between these different mechanisms may further help us understand how 
DNA methylation works on tumorigenesis and provide new opportunities for cancer therapy. 

Key words: the Warburg effect; DNA methylation; aerobic glycolysis; mitochondria; reactive oxygen species 

Introduction 
The Warburg effect, also called aerobic 

glycolysis, was first discovered by Otto Warburg in 
the 1920s [1]. He observed that tumors required 
extremely high levels of glucose compared with 
surrounding normal tissues, and that glycolysis was 
significantly enhanced tumors, even in the presence of 
adequate oxygen [2].  

It is apparent that the Warburg effect is 
beneficial to the proliferation and survival of tumor 
cells, but how it works remains unclear. Based on 
current opinions, we summarize five major factors 
that lead to the Warburg effect: (I) The need for rapid 
ATP synthesis. The energy demands of tumor cells 
increase rapidly, and the rates of glucose uptake and 
metabolism through aerobic glycolysis are much 
higher than those that can be achieved through 
oxidative phosphorylation (OXPHOS) alone [3]. 
Mitochondrial defects are thought to be another 

important feature of the Warburg effect, although 
some researchers disagree. (II) The need for extensive 
biosynthesis [4-9]. Uncontrollably proliferating tumor 
cells require extensive biosynthesis, and glycolysis 
and its bypass route – the pentose phosphate pathway 
(PPP) produce large amounts of raw materials. (III) 
The need for redox balance in tumor cells. The 
OXPHOS pathway is one of the main sources of 
reactive oxygen species (ROS) production, which can 
cause devastating damage to tumor cells [10]. (IV) 
Stimulation by hypoxia. The accumulation of 
hypoxia-inducible factor (HIF) leads to deficiency in 
the aerobic respiratory response and to the activation 
of glycolysis in tumor cells. (V) The need for an acidic 
tumor microenvironment [11,12].  

DNA methylation is a form of epigenetic 
modification of gene expression. In mammalian cells, 
DNA methylation commonly involves the addition of 
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a methyl group contributed by S-adenosy-L- 
methionine (SAM) to CpG dinucleotides to create 
5-methylcytosine (m5c), which is catalyzed by DNA 
methyltransferases (DNMTs)[13]. CpG islands (CGIs), 
which are characterized by a very high CpG densities 
and are often found in the promoter regions of genes, 
are typically hypomethylated. Methylation of CGIs 
results in transcriptional silencing. In normal cells, 
methylation ensures the proper gene expression 
regulation and stable gene silencing, but abnormal 
DNA methylation is a powerful cause of many 
tumors. Unlike that of DNA methylation, the 
mechanism of DNA demethylation has not been well 
elucidated. Studies have shown that ten-eleven 
translocation methylcytosine dioxygenases (TETs) can 
oxidize m5c to 5-hydroxymethylcytosine (hm5c) [14]. 
hm5c and its further oxidized derivatives are 
subsequently replaced with an unmodified cytosine 
by base-excision repair to achieve demethylation [15]. 
In myeloid leukemia and glioblastoma cells, 

inhibition of TETs enzymes decreases the levels of 
hm5c increases DNA methylation [15-18]. 

It is frequently reported that changes in DNA 
methylation levels regulate the expression of key 
enzymes in glycolysis. DNA methylation is also 
reported to cause mitochondrial dysfunction in tumor 
cells. Tumor redox balance and the accumulation of 
HIF have also been widely reported to be associated 
with aerobic glycolysis, and DNA methylation has 
been found to play a regulatory role in these 
processes. The PPP and gluconeogenesis, as 
important bypass pathways of glycolysis, provide 
abundant raw materials for the rapid proliferation of 
tumor cells; DNA methylation can participate in the 
regulation of key enzymes and molecules in these 
processes, thus playing a potentially important role in 
aerobic glycolysis in tumor cells. In this review, we 
discuss how DNA methylation contributes to tumor 
aerobic glycolysis in different pathways (Figure 1) 
(Table 1). 

 

 
Figure 1. Main framework. The need for rapid ATP synthesis, biosynthesis, maintainance of redox balance and acidification of the tumor microenvironment are all internal causes 
of the Warburg effect, and HIF accumulation is an important extrinsic cause. Through different pathways (including the glycolysis pathway, the mitochondrial pathway, the 
glycolysis bypass pathway, and the oxygen sensing pathway), DNA methylation can affect these causes of the Warburg effect. 

 

Table 1. Targets of DNA methylation function in aerobic glycolysis. 

Target Pathway Inducement Cancer/cell type Reference 
GLUT-1 Glycolysis Rapid ATP synthesis /Acidic microenvironment Colorectal cancer [26] 
LDH Glycolysis Rapid ATP synthesis / Redox balance/Acidic microenvironment Breast cancer [13] 
PKM2 Glycolysis / PPP Rapid ATP synthesis/ Redox balance/Acidic microenvironment Breast cancer / Pancreatic cancer [37] [38] 
HK Glycolysis Rapid ATP synthesis /Acidic microenvironment HCC / Glioblastoma / Ovarian cancer [39] [41] [42] 
GAPDH Glycolysis Rapid ATP synthesis /Acidic microenvironment HCC [45] 
mt-DNA Mitochondria Rapid ATP synthesis / Redox balance Colorectal cancer [63] [64] [65] 
Mieap Mitochondria Rapid ATP synthesis / Redox balance Colorectal cancer / Hepatoblastoma [74] 
TKTL1 Bypass pathway (PPP) Biosynthesis Requirement / HIF accumulation Head and neck squamous cell carcinoma [82] [83] 
NRF2 Bypass pathway (PPP) Redox balance / Biosynthesis Requirement Lung cancer cells / Glioma cells [87] [88] 
FBP1 Bypass pathway (Gluconeogenesis) Glycolysis / Redox balance / Acidic microenvironment NSCLC / HCC/Breast cancer [96] [97][98] 
Wwox Oxygen sensing pathway HIF accumulation Head and neck squamous cell carcinoma [138] 
PDK Mitochondria Rapid ATP synthesis / REDOX balance Colorectal cancer [77] 
CITED4 Oxygen sensing pathway HIF function Breast cancer [134] 
LIMD1 Oxygen sensing pathway HIF accumulation Cervical carcinoma [140] 

Abbreviation: GLUT: glucose transport; LDH: lactate dehydrogenase; PK: pyruvate kinase; PK: pyruvate kinase; GAPDH:glyceraldehyde-3-phosphate dehydrogenase; 
Mieap: mitochondrial quality control protein; TKTL1: transketolase like-1; Nrf2: NF-E2-related factor 2; Nrf2: NF-E2-related factor 2; FBP: fructose-1,6-bisphosphatase; FBP: 
fructose-1,6-bisphosphatase; PDK: pyruvate dehydrogenase (PDH) kinase family; CITED4: Carboxy-terminal domain4; HNSCC: Head and neck squamous cell carcinoma; 
HCC: hepatocellular carcinoma; NSCLC: non-small-cell lung cancer.  
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DNA methylation regulates enzymes 
involved in glycolysis 

The main feature of the Warburg effect is that 
cytoplasmic metabolism becomes the main source of 
energy instead of mitochondrial aerobic respiration. 
Although the amount of ATP synthesized by 
glycolysis per unit of glucose is small [19,20], the ATP 
synthesis rate is 10-100 times faster than that of 
complete oxidation in mitochondria; Thus, glycolysis 
can meet the rapid energy requirements of tumor cells 
[21]. DNA methylation can directly regulate 
glycolysis by affecting key enzymes in glycolysis. 

Glucose transporter (GLUT) 
Due to their rapid proliferation, malignant 

tumors require enormous amounts of glucose to meet 
their energy metabolism and anabolism needs. GLUT, 
a member of the glucose transporter family, is the first 
key molecule in tumor glucose metabolism. 
Upregulation of GLUT1 enhances glucose entry into 
tumor cells, which promotes aerobic glycolysis. 
Previous studies have shown the relationships 
between GLUT1 and poor prognosis and 
aggressiveness in many kinds of cancer, such as 
breast, kidney and stomach [22-25]. Lopez-Serra et al. 
demonstrated the occurrence of promoter CGI 
hypermethylation-linked inactivation of Derlin-3 
(DERL3), a key gene in the endoplasmic 
reticulum-associated protein degradation pathway. 
The downstream targets of DERL3 include GLUT1, 
which means DERL3 is responsible for the 
degradation of GLUT1. Increases in the expression of 
GLUT significantly increase the uptake and transport 
of glucose and ultimately promote aerobic glycolysis. 
The final metabolites, lactate and pyruvate, acidify the 
tumor microenvironment and enhance tumor 
proliferation and invasion [26,27]. In addition to 
GLUT1, GLUT3 has also been reported to be related to 
DNA methylation. Sung et al. discovered a structural 
protein—caveolin-1(CAV-1), whose expression is 
reduced in the contexts of many human cancers [28]. 
With the promoter CpG site hypomethylation, the 
expression of CAV-1 is abnormally elevated, which 
stimulates GLUT3 transcription via the high-mobility 
group protein A (HMGA) binding site within the 
GLUT3 promoter, thus, upregulating glucose uptake 
and ultimately enhancing aerobic glycolysis [29]. 

Lactate dehydrogenase (LDH) 
LDH, a crucial enzyme for aerobic glycolysis, 

converts pyruvate into lactate and oxidizes NADH to 
regenerate NAD+. LDH can guarantee the sustained 
utilization of NADH-generating glyceraldehyde-3- 
phsophate dehydrogenase (GAPDH) and maintain 

orderly aerobic glycolysis. LDH is a tetrameric 
enzyme consisting of 2 major subunits (A and B), that 
are encoded by 2 different genes, LDH-A and LDH-B 
[30]. Different numbers of LDH-A and LDH-B 
subunits can bind in tetramers to form 5 different 
isoenzymes (LDH-1 to LDH-5) [31]. As LDH-5 
consists only of LDH-A and preferentially catalyzes 
the conversion of pyruvate into lactate, whereas 
LDH-1 consists only of LDH-B and catalyzes the 
conversion of lactate into pyruvate, the 
LDH-A/LDH-B ratio in tumor cells modulates lactate 
production [31]. Although HIF-1α- and c-Myc-related 
pathways can promote LDH-A expression [30], many 
studies have demonstrated that DNA methylation 
regulates the LDH-A ratio by promoting LDH-B 
promoter region hypermethylation in breast and 
prostate cancer, while the demethylating agent 
5-azacytidine can restore the mRNA levels [13]. 
Another study has reported that LDH-A is silenced in 
isocitrate dehydrogenase (IDH) mutant gliomas 
because of hypermethylation [32]. As the 
LDH-A/LDH-B ration increases, it greatly promotes 
the conversion of lactate, which enhances aerobic 
glycolysis and tumorigenesis [33].  

Pyruvate kinase (PK) 
PK, a key rate-limiting enzyme in the glycolysis 

pathway [34], catalyzes the conversion of 
phosphoenolpyruvate and ADP to pyruvate and ATP. 
Because of mutually exclusive alternative splicing 
[35], PK is divided into two types [36]; the 
alternatively spliced isoform M2 (PKM2) contributes 
to the Warburg effect by promoting aerobic 
glycolysis, whereas the PKM1 isoform promotes 
OXPHOS. Some believe that PKM2 is often 
upregulated in tumors due to intron 
hypomethylation, and hence promotes the Warburg 
effect [13]. However, others have suggested that 
PKM2 stimulates the Warburg effect because of DNA 
methylation. Singh et al. reported that the intragenic 
DNA methylation-mediated binding of Brother of 
Regulator of Imprinted Sites (BORIS) at the 
alternative exon 10 of PK is associated with 
cancer-specific splicing that promotes the Warburg 
effect and breast cancer progression. Once DNA 
methylation is inhibited or the BORIS binding site is 
deleted, a splicing switch from the cancer-specific 
PKM2 to the normal PKM1 isoform occurs. In this 
case, glycolysis and the Warburg effect are inhibited, 
limiting rapid proliferation and growth of tumor cells 
[37]. In the same year, Xu et al. proposed another 
explanation based on mitochondria function related 
to the effects of coactivator-associated arginine 
methyltransferase 1 (CARM1), which interacts with 
and methylates PKM2 at three arginine residues 
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(R445, R447 and R455). Methylated PKM2 localizes to 
the mitochondria-associated endoplasmic reticulum 
membrane, through interaction with inositol 
1,4,5-trisphosphate receptors (IP3Rs), decreasing 
mitochondrial membrane potential (ΔΨm) and Ca2+ 
uptake, which is essential for activating pyruvate 
dehydrogenase (PDH) to support OXPHOS and thus 
ultimately promoting aerobic glycolysis[38]. Hence, 
PKM2 methylation is an important regulator of the 
switch between OXPHOS and aerobic glycolysis in 
cancer cells. PKM2 can also further promote the 
aerobic glycolysis process in tumor cells by affecting 
the PPP, which will be described later. Therefore, the 
specific mechanism and status of PKM2 methylation 
in tumor cell metabolism are still worth studying. 

Hexokinases (HKs) 
HKs catalyze the first step in glycolysis, the ATP 

dependent phosphorylation of glucose to yield 
glucose-6-phosphate (G6P). Four major hexokinase 
isoforms, encoded by separate genes, are expressed in 
mammalian tissues: HK1, HK2, HK3, and HK4. HK2 
is often expressed at high levels in tumor cells [39,40]. 
Hypomethylation of the promoter is responsible for 
the upregulation of HK2 in liver cancer and 
glioblastoma [41]; this upregulation then enhances 
aerobic glycolysis and tumor proliferation [42]. HK2 
has also been found to be mediated by microRNAs in 
ovarian cancer, such as miR603 and miR145 [43,44], 
whose precursor genes are modulated by DNMT3a. 
Given these findings, microRNAs can be considered 
inhibitors of the Warburg effect. And the inhibitory 
effects of miR603 and miR145 can be enhanced by the 
use of 20(S)-Rg3, an inhibitor of DNMT3a.  

GAPDH 
GAPDH converts glyceraldehyde-3-phosphate 

(G3P) and NAD+ into 1,3-bisphosphoglycerate 
(1,3-BPG) and NADH. It also plays an important role 
in aerobic glycolysis and has been found to be 
upregulated in the contexts of several kinds of cancer, 
but the exact cause of the upregulation remains 
unclear. Recently, Lei et al. proposed a new 
explanation for how GAPDH functions in the 
Warburg effect [45]. They focused on CARM1, which 
methylates GAPDH at R234 and inhibits its catalytic 
function in hepatocellular carcinoma (HCC). 
Therefore, aerobic glycolysis was repressed and the 
proliferation and growth of HCC cells are repressed. 

Mitochondrial dysfunction caused by 
DNA methylation is a potential trigger 
for aerobic glycolysis  

Mitochondria are the most important organelles 
for cell energy metabolism. As the end product of 

glycolysis, pyruvate enters the mitochondria for 
further reactions to produce ATP and metabolites 
through the tricarboxylic acid (TCA) cycle and 
OXPHOS. Abnormalities in the structure or function 
of mitochondria are very common in tumors, such as 
mitochondrial DNA (mtDNA) damage in tumor cells, 
which affects mitochondrial respiration and energy 
synthesis [46,47]. There is abundant evidence 
suggesting mitochondrial dysfunction is a potential 
trigger for aerobic glycolysis [48-50] (Figure 2). 

Abnormalities in mtDNA 
MtDNA accounts for only a very small 

proportion of the total cellular DNA [51-53], but its 
gene expression products play crucial roles in 
mitochondrial and cellular functions. MtDNA 
encodes several important proteins related to the 
mitochondrial respiratory chain [54,55]. Therefore, 
changes in mtDNA status will directly affect 
mitochondrial function and ultimately glycolysis 
status. Whether methylation of mtDNA exists has 
long been debated in the growing field of tumor 
metabolism research [56-60]. Shock et al. first reported 
the presence of m5c and hm5c in mitochondria which 
might be derived from mtDNA cytosine methylation, 
and the existence of mitochondrial DNA 
methyltransferase 1 (mt-DNMT1) which bound to 
mtDNA and modifies the mitochondrial genome and 
function [61]. Sunil et al. further identified the 
DNMT1 in mitochondria as isoform 3 [62]. Marianne 
et al. first directly proved the potential functionality of 
this molecule in tumor cells [63] and some other 
studies have also suggested a direct relationship 
between mtDNA methylation and tumors [64,65]. 
Notably methylation of mtDNA generally leads to 
OXPHOS dysfunction [66]. The methyl donor SAM is 
also important to mtDNA methylation [67]. The 
SLC25A26 gene encodes the SAM mitochondrial 
carrier (SAMC) which catalyzes the import of SAM 
into mitochondria [68]. In cancer cells, upexpression 
of SAMC increases mitochondrial SAM levels, 
promotes mtDNA methylation, leads to decreased 
expression of key respiratory subunits, and decreases 
the release of cytochrome B, thus impairing 
mitochondrial OXPHOS and ROS balance [69]. The 
glycolysis function then is further strengthened for 
compensation in tumor cells, even in the presence of 
oxygen.  

Abnormalities in mitochondrial health 
Another cause of mitochondrial dysfunction is 

the accumulation of unhealthy mitochondria. The 
mitochondrial quality control protein—Mieap can 
induce intramitochondrial lysosome-like organella 
that plays a critical role in eliminating oxidized 
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mitochondrial proteins in mitochondria [70,71]. It 
dramatically induces the accumulation of lysosomal 
proteins in mitochondria without destroying the 
mitochondrial structure, leading to increased ATP 
synthesis and decreased ROS generation. [72]. An 
existing model for the mechanism by which Mieap 
induces lysosome-like organelles enter into 
mitochondria is chaperon-mediated autophagy 
(CMA) way, one of the three main pathways of 
autophagy. In this mechanism, lysosomes can 
specifically absorb oxidized proteins containing a 
common motif through the interaction of 
lysosome-associated membrane protein 2A 
(LAMP2A) and heat shock protein 70 (HSP70) [73]. If 
entire structure of lysosomes or lysosomal like 
organelles can enter and reside in the mitochondria, 
these organelles may act though a CAM-like 
mechanism in the mitochondria to eliminate and 
degrade oxidative proteins. The exact mechanism by 
which Mieap helps lysosomes enter the mitochondria 
without damaging normal mitochondrial structures 
remains unclear. However, in many kinds of tumor 
cell lines, Mieap expression is often inhibited by 
promoter methylation, leading to ROS accumulation, 
protein oxidation and subsequent mitochondrial 
destruction [74]. 

Abnormalities in key TCA cycle enzymes  
The TCA cycle is the first reaction cycle 

undergone by glycolysis products in the 
mitochondria. Abnormalities in TCA enzymes lead to 
mitochondrial dysfunction and are potential triggers 
of aerobic glycolysis. PDH mainly mediates the entry 
of pyruvate into the TCA cycle, while the family of 
PDH kinases (PDKs) inhibits PDH activity to promote 
aerobic glycolysis and tumor progression [75,76]. 
Leclerc et al. observed that PDH kinase 4 (PDK4) is 
distinctly upregulated by hypomethylation of its 
promoter [77]. In addition, 2-hydroxyglutarate (2-HG) 
produced by IDH1/2 mutation [32], as well as the 
accumulation of succinate and fumarate caused by 
mutations in fumarate hydratase (FH) [78] and 
succinate dehydrogenase (SDH), can not only 
promote the Warburg effect by inhibiting the 
degradation of HIF [79], but also enhance the 
methylation level of the whole genome by inhibiting 
TET enzymes [80]. 

DNA methylation participates in the 
glycolysis bypass pathways 

Tumor cells are rapidly and malignantly 
proliferating cells, that require many raw materials to 
support their continuous proliferation. Hence, Heiden 

 
Figure 2. Mitochondrial dysfunction caused by DNA methylation is a potential trigger for aerobic glycolysis. (a) MtDNA is crucial for mitochondrial function. Once mtDNA is 
methylated by mt-DNMTs, OXPHOS is inhibited. Due to promoter hypermethylation, SAMC is downregulated, and mitochondrial SAM levels decrease. Hence, the methylation 
status of mtDNA may be downregulated. (b) Mieap-mediated, lysosomal involved oxidative protein clearance is an important pathway for the maintenance of normal 
mitochondrial function. Hypermethylation of Mieap causes mitochondria to become severely dysfunctional. (c) The activity of PDH can be inhibited by PDKs, which are 
modulated by DNA methylation. 
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et al. proposed another explanation for the Warburg 
effect: proliferating cells have important metabolic 
requirements that extend beyond ATP [81]. The PPP, a 
glycolysis bypass route, plays an important role in the 
production of raw material production, such as 
nucleic acid and amino acid sugar phosphate 
precursors. Moreover, the Warburg effect is also 
affected by changes in the expression levels of PPP 
enzymes in the nonoxidative pathway. 

Transketolase (TKT) like-1(TKTL1) is an 
essential gene that encodes an enzyme responsible for 
the TKT reaction in nonoxidized portion of PPP. 
There is considerable evidence that tumor cells can 
upregulate the activity of TKT [82] and induce the 
expression of TKTL1, whose expression has been 
shown to be increased due to promoter 
hypomethylation[83]. Wenyue et al. showed that high 
expression of TKTL1 in tumor cells significantly 
increases the production of lactate and pyruvate, 
which are hallmarks of the Warburg effect [84]. In 
addition, they demonstrated that TKTL1 promotes the 
stability and accumulation of HIF1-α, which is a key 
molecule for DNA methylation and aerobic 
glycolysis, that will be discuss later.  

Nuclear factor erythroid 2 (NF-E2)-related factor 
2 (Nrf2) is a master transcriptional activator of 
cyto-protective genes [85,86]. Its main function is 
protecting cells from the effects of allogeneic 
organisms and oxidative stress. However, high Nrf2 
expression in tumor cells is often associated with poor 
prognosis [87,88]. Mitsuishi et al. analyzed Nrf2 from 
the perspective of its effects on tumor metabolism 
[89]. Nrf2 directly activates glucose 6-phosphate 
dehydrogenase (G6PDH), PGD, TKT, transaldolase 
and IDH, which are key enzymes of PPP, through 
well-conserved antioxidant response elements 
(AREs). Thus, Nrf2 has been shown to promote 
NADPH and nucleotide production in tumor cells 
[90]. Under normal conditions, Nrf2 is continuously 
degraded in a keap1-dependent manner through the 
ubiquitin-proteasome pathway [91,92]. Upon the 
increased methylation in the promoter region, the 
expression level of keap-1 is significantly decreased, 
which activates Nrf2 and PPP enzymes, as has been 
confirmed in lung cancer cells and glioma cells [93,94].  

Most studies tend to the catabolism of glucose, 
ignoring the role of anabolism in aerobic glycolysis. 
Gluconeogenesis, a process that converts a variety of 
non-sugar substances into glucose or glycogen, is less 
investigated than glycolysis but may play an equally 
important role in switching the metabolism of tumor 
cells to aerobic glycolysis. Because glycolysis involves 
a three-step irreversible reaction, gluconeogenesis is 
not a simple reversal of glycolysis. Notably, the 
gluconeogenesis pathway can be modulated by DNA 

methylation. Cai et al. reported that betaine, a methyl 
donor, can significantly change the methylation 
statuses of CpGs in the promoters of 
gluconeogenesis-associated genes [95].  

Fructose-1,6-bisphosphatase (FBP) plays a 
crucial role in the process of gluconeogenesis which 
catalyzes the hydrolysis of fructose-1,6-bisphosphate 
into fructose-6-phosphate and inorganic phosphate. 
There are two isoforms of FBP in humans: FBP1 and 
FBP2. FBP1 is widely reported to be downregulated, 
due to abnormal methylation of its promoter sequence 
in non-small cell lung cancer (NSCLC) [96], HCC [97], 
basal-like breast tumor [98], gastric cancer [99], small 
intestinal neuroendocrine tumor [100] and colon 
cancer [101]. Although studies on FBP2 have rarely 
been reported, hypermethylation in the FBPs 
promoter region has been shown to occur in gastric 
cancer cells [102]. 

In addition, FBP1 has been reported to be a 
tumor suppressor that regulates tumor glucose 
metabolism and inhibits aerobic glycolysis, such as by 
increasing glucose uptake and macromolecules 
biosynthesis [98,103]. FBP1 has also been 
demonstrated to be involved in posttranslational 
modification of PKM2 which is a crucial glycolytic 
enzyme [104-106]. Koeck et al. found that 
upregulation of FBP1 significantly increases 
mitochondrial complex I activity. In contrast, loss of 
FBP1 inhibits oxygen consumption and ROS 
production [107]. Li et al. reported that ectopic FBP1 
expression in renal cell carcinoma reduces lactate 
secretion, NADPH level, PPP flux and glycolysis 
derived TCA cycle intermediates levels [108]. These 
data provide mechanistic insights that loss of FBP 
caused by DNA methylation may result in glycolytic 
flux, glucose uptake, ATP production maintenance 
[98,109], and OXPHOS functional inhibition [98], all of 
which are features of the Warburg effect. 

FBP, a key enzyme of gluconeogenesis pathway, 
mainly converts lactate and pyruvate into glucose for 
reuse, which is beneficial to cells. However, in tumor 
cells, FBP acts as a tumor suppressor and inhibits 
aerobic glycolysis. We hypothesize that FBP can 
promote glycolytic flux into the gluconeogenesis 
pathway and destroy the acidic environment. 
Moreover, gluconeogenesis, the reverse pathway of 
glycolysis, requires much more energy than glycolysis 
since it must overcome the three-step irreversible 
glycolysis reaction [110,111], which is not efficient for 
smart tumor cells. 

Oxygen-sensing pathway connects DNA 
methylation and aerobic glycolysis. 

As the central protein of the hypoxia regulatory 
pathway, HIF has been demonstrated to be associated 
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with the Warburg effect. HIF consists of 
oxygen-related α-subunits (HIF1-α and HIF2-α) and a 
constitutively expressed β-subunit (HIF1-β) [112]. 
Among the subunits, HIF1-α is believed to be the one 
most related to tumor glycolysis [113]. Under 
conditions of normal oxygen, a-ketoglutarate- 
dependent prolyl-hydroxylases (PHDs) promotes the 
hydroxylation of HIF-α proline residues [114-116], 
which becomes the optimal recognition sites for the 
von Hipppel-Lindau (VHL) tumor suppressor 
protein. VHL binding activates ubiquitination 
pathways to degrade HIF [117-119]. Hydroxylation 
requires oxygen and α-ketoglutarate, and produces 
carbon dioxide and succinate. In the absence of 
oxygen, PHD activity is inhibited, and the HIF-α 
subunit is no longer degraded; rather it binds to the 
constitutively expressed HIF-β subunit to form a HIF 
dimer. HIF dimer then enters the nucleus and binds to 
hypoxia response elements (HREs) (Figure 3) 
[120-122]. 

The presence of hypoxic regions is characteristic 
of the microenvironment of solid tumors, such as liver 
cancers [123]. HIF regulates many genes in multiple 
cell types, including those related to glycolysis [124]. 
This regulation allows tumor cells to transfer the 
center of energy metabolism from OXPHOS to 

glycolysis under hypoxic condition [125]. Many 
studies have demonstrated that the expression levels 
of glycolysis related genes such as 6-phosphofructto- 
1-kinase (PFK-1), PKM2 and 6-phosphofructo-2- 
kinase/fructose 2,6-bisphosphatase genes (PFKF 
B1-4), are increased in tumor cells under hypoxia 
condition[126,127]. Keith B et al. reported that 
elevated HIF activity stimulates the expression of 
glycolysis-related genes, such as LDHA, 
phosphoglycerate kinase 1 (PGK1), and activated 
PDH kinase 1(PDK1) to inhibit glycolytic flux into the 
TCA cycle in clear cell renal cell carcinoma (ccRCC) 
[128]. Bo Li et al. found that FBP1 suppresses HIF 
activity and eventually reduces the expression of HIF 
target genes (PDK1, LDHA and GLUT1) [103].  

Hu et al. first demonstrated that HIF1-α and 
HIF2-α have unique targets, and that HIF1-α (not 
HIF2-α) stimulates glycolysis-related gene expression. 
Swati Dabral et al. found that Ras association domain 
family 1A (RASSF1A) can bind to HIF1-α, block its 
degradation in the PHD-VHL-lysosome pathway, and 
thus enhance the activation of the glycolytic switch in 
lung cancer cells [129]. HIF-1α can also inhibit 
mitochondrial function and thus promote aerobic 
glycolysis. After entering the mitochondria, pyruvate 
dehydrogenase (PDH) catalyzes the conversion of 

 

 
Figure 3. The oxygen-sensing pathway connects DNA methylation and aerobic glycolysis. (a) The HIF complex can recruit P300 and CBP and then stimulate the HREs in the 
promoters of its target genes, promoting glycolysis-related gene expression. (b) CITED4 can competitively bind P300 and CBP, thereby inhibiting HIF’s function. However, 
CITED4 is regulated by DNA methylation. (c) Wwox, which is regulated by DNA methylation, could disrupt HIF1-α's stability by affecting the PHD pathway. (d) LIMD1 acts as 
a scaffold to bind PHDs and VHL, which are key molecules for the degradation of HIF1-α. LIMD1 and VHL can be inhibited by DNA methylation. 
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pyruvate into acetyl coenzyme A and enters the TCA 
cycle. HIF-1α can activate PDK1 (phosphatidylino-
sitol-dependent protein kinase 1), which can then 
phosphorylate and inhibit pyruvate dehydrogenase 
(PDH) E1α[130], thus inhibiting acetyl coenzyme A 
synthesis, and blocking the TCA cycle and thereby 
freeing pyruvate from mitochondrial OXPHOS. 
Therefore, we can conclude that HIF is closely related 
to glycolysis. 

The finding described above reveal that HIF 
plays an important role in aerobic glycolysis. In 
addition, there is considerable evidence that HIF can 
be regulated by DNA methylation (Figure 3). M 
Koslowski et al. first revealed the relationship 
between tumor-associated CpG demethylation and 
HIF-1α. In colon cancer cell lines, treatment with the 
DNA-demethylating agent 5-azacitidine significantly 
enhances the expression of HIF-1α its target genes. 
The potential mechanism involves positive 
autoregulation of HIF-1α is governed by a 
methylation-sensitive HRE in its promoter [131]. 

Furthermore, DNA methylation is involved in 
regulating the functional pathways of HIF. After 
HIF-1α and HIF-β combine to form a stable dimer and 
translocate to the nucleus, the HIF dimer needs to 
recruit the transcriptional adapter/histone acetyl-
transferase protein, P300 and CREB-binding protein 
(CBP), to the promoter of its target genes for 
transcription stimulating [132,133]. Carboxy-terminal 
domain 4 (CITED4) could competitive bind P300/CBP 
and inhibit the HIF complex. Due to 
hypermethylation of its promoter, the expression of 
CITED4 is inhibited in breast cancer, while that of HIF 
and its target genes is significantly increased [134]. 

In addition, DNA methylation regulates HIF 
degradation pathways. As a tumor suppressor, 
WW-domain containing oxidoreductase (Wwox) has 
been reported to modulate glucose metabolism [135]. 
Abu-Remaileh M et al. found under aerobic 
conditions, Wwox loss activates glycolysis-related 
gene expression and inhibits pyruvate entry into the 
TCA cycle which are features of the Warburg effect 
[136]. The authors explained that these effects happen 
because Wwox disrupts HIF1-α's stability via 
affecting the PHD pathway and inhibiting its 
transcriptional activity [137]. Ekizoglu S.et al. found 
that the expression level of Wwox and the 
methylation of its promoter are inversely correlated. 
In other words, Wwox expression is regulated by 
DNA methylation [138]. The tumor suppressor 
protein LIM domain containing protein (LIMD1) has 
been demonstrated to act as a scaffold to bind PHDs 
and VHL, which are responsible for HIF degradation 
[139]. And Panda CK et al. showed that upregulation 
of HIF1-α and its target genes was due to high 

methylation status of LIMD1 and VHL in cervical 
carcinoma [140].  

Although HIF1-α is often thought to be 
associated with glycolysis, HIF-2α has also been 
showed to regulate GLUT-1, which could enhance 
aerobic glycolysis and glucose transport into renal 
carcinoma cells [141]. Some research has shown that a 
target gene of HIF2-α, endothelial PAS domain- 
containing protein 1 (EPAS1), is modulated by DNA 
methylation. Blockade of the transcription of EPAS1 
by DNMT3a can inhibit tumor proliferation in renal 
cell carcinoma and glioblastoma cell lines [142,143].  

Abnormal conditions related to DNA 
methylation  

The methyl donor SAM is a key factor for DNA 
methylation. The main principle of DNA methylation 
is the addition of a methyl group contributed by SAM 
to CpG dinucleotides to create m5c. Folate is an 
important source for SAM synthesis. After absorption 
in the small intestine, folate is converted into its active 
form, tetrahydrofolate (THF), which then combines 
with one carbon unit to form methylene THF. It is a 
raw material for DNA and RNA synthesis. Reductase 
converts methylene THF into 5-methyl-THF, which is 
combined with homocysteine (Hcy) to form 
methionine; methionine then is converted to SAM 
[144]. 

Low-folate nutritional status (LF) has been 
reported to play a roles in lung cancer [145] and colon 
cancer [146]. LF leads to low SAM expression, which 
reduces the methylation levels in tumor cells, thereby 
changing the functions of tumor cells. In addition, Jin 
Fan et al. first demonstrated that folate metabolism is 
a crucial method for NADPH production; these 
authors knocked down the folate-dependent 
enzymes, methylenetetrahydrofolate dehydrogenase 
(MTHFD), which significantly reduced NADPH/ 
NADP+ ratios [147]. In addition, MTHFD expression 
has been found to be related to the progression of 
cancers [148]. It has even been shown that the folate 
pathway produces more NADPH than the PPP. 
Roland Nilson et al. reported that MTHFD2 is 
overexpressed in 12 tumor types [149]. Under LF, 
NSCLCs have been reported to undergo metabolic 
reprogramming, which includes elevation in lactate 
release, acidification of the microenvironment, the 
change in the NADH/NAD+ redox status and 
NADPH/NADP+ ratios. Changes in these 
characteristics will inhibit aerobic glycolysis. And The 
LF-induced aerobic glycolysis phenotype of NSCLC 
can be reversed by the DNA methylation inhibitor 
5-azacitidine. This result suggests that the LF status 
promotes the Warburg effect by reducing methylation 
levels in tumor cells [150]. The methionine salvage 
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pathway is another crucial pathway for SAM 
production [151,152]. Serine metabolism was thought 
to promote the methionine salvage pathway, a bypass 
pathway for glycolysis, through a range of anabolic 
processes, including NADPH, methylene THF and 
nucleotides [153]. These metabolites are all important 
intermediates for the methionine salvage pathway to 
promote SAM and DNA methylation. 

Future perspectives 
The synergistic effect of The Warburg effect and 

DNA methylation is worthy of further study, which is 
conducive to further revealing the mechanism of 
tumor development and tumor therapy. 

The synergistic effects for tumor immunity 
Aerobic glycolysis and DNA methylation not 

only work together to regulate tumor cells directly, 
but also may influence the development of tumors by 
regulating the function of the immune system. 
Aerobic glycolysis is considered to be a metabolic 
hallmark of activated T cells. Pearce EL et al. 
suggested that aerobic glycolysis augments effector T 
cell responses, including expression of the 
proinflammatory cytokine interferon (IFN)-γ via 3′ 
untranslated region (3′UTR)-mediated mechanisms 
[154]. Li et al. found that aerobic glycolysis can 
promote effector T cell differentiation [155]. While GA 
et al. reported that DNMT3a can also regulate T cell 
development and suppress T-cell acute lymphoblastic 
leukemia transformation [156]. Hence, further 
studying DNA methylation and aerobic glycolysis in 
immune cells could be of great significance for 
enhancing understanding of tumor immune 
tolerance.  

The synergistic effects for tumor therapy 
Both DNA methylation and the Warburg effect 

are important mechanisms of tumor development and 
provide us with new strategies for tumor treatment. 
The Warburg effect provides advantages for the 
growth of tumor cells; therefore, some drugs can 
alleviate mitochondrial OXPHOS defects and inhibit 
glycolysis by regulating the energy acquisition 
pathways of cells. For example, 2-deoxy-d-glucose 
(2-DG), a glucose analog, affects glucose metabolism, 
depleting cancer cells of energy and eliciting 
antitumor effects [157]. Dichloroacetic acid (DCA) can 
reverse the Warburg effect by inhibiting PDK1 to 
switch cytoplasmic glucose metabolism to OXPHOS, 
providing a new approach to antitumor therapy [158]. 
3-Bromopyruvate (3-BP) is also a widely recognized 
inhibitor of glycolysis [159]. As a trigger of the 
Warburg effect, ROS are produced mainly through 
mitochondria. Strategies for mitochondrial 

metabolism have been reported in many clinical 
studies [160]. In addition to limitation of aerobic 
glycolysis, inhibition of DNA methylation is also 
considered an important approach for cancer therapy. 
The DNA methylation inhibitors decitabine 
(5-aza-2'-deoxycytidine) and 5-azacitidine have been 
widely used in the treatment of leukemia [161].  

Many studies have shown that the regulation of 
ROS and DNA methylation play a synergistic role in 
the treatment of tumors. Poly (adp-ribose) polymerase 
(PARP) inhibitors (PARPi) are an effective anti-tumor 
drug for breast and ovarian cancer. And DNA 
methylation inhibitor decitabine can mediate the 
activation of PARP by increasing the accumulation of 
ROS, and promote the sensitivity of PARPi to tumors 
through the cAMP/PKA pathway, so as to play a 
more effective anti-tumor effect in collaboration with 
PARPi[162]. Zhou et.al proposed that Live-attenuated 
measles virus vaccine as a potential oncotherapeutic 
agent, confers cell contact loss and apoptosis of 
ovarian cancer cells via ROS-induced silencing of 
E-cadherin by DNA methylation [163]. Deepika et.al 
reported a special hypoxia-selective epigenetic agent 
RRx-001, which induces reactive oxygen species and 
nitrogen (RON), and in turn induces oxidative and 
nitrogen narrative stress, leading to cell death in 
myeloma. RRx-001 also inhibits DNA methylation by 
down-regulating DNA methyltransferase (DNMTs) 
and induces tumor cell apoptosis [164]. These suggest 
that combining multiple mechanisms to treat tumors 
may yield better results. 

Elucidating the relationship between various 
important tumorigenesis mechanisms, finding out the 
root cause of dysfunction, and developing new 
combination treatment will be the development 
direction of tumor therapy. 

Conclusion 
DNA methylation, a type of epigenetic 

modification, plays an important role in both normal 
and tumor cells. The Warburg effect, a characteristic 
marker of abnormal metabolism in tumor cells, 
warrants further study. In this review, we have 
summarized the correlations between DNA 
methylation and the Warburg effect, and have 
discussed the mechanism by which DNA methylation 
may contributed to the Warburg effect. DNA 
methylation can regulate glycolysis related enzymes, 
inhibit mitochondrial functions and glyconeogenesis- 
related enzymes, promote aerobic glycolysis, enable 
the rapid energy needs of tumor cells to be met and 
reduce ROS damage. The PPP, which produces 
NADPH for redox equilibrium and raw material 
production, can also be modulated by DNA 
methylation. HIF has been widely reported to 
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promote aerobic glycolysis and is closely associated 
with DNA methylation. We have also discussed how 
abnormal DNA methylation conditions can affect 
aerobic glycolysis, further supporting the important 
role of DNA methylation in the occurrence and 
development of Warburg effect. However, as Otis W. 
Brawley once said, “One cancer cell is smarter than 
100 brilliant cancer scientists”. Thus, there is still 
much to be learned about the association between 
DNA methylation and the Warburg effect. 
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