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Abstract 

Long non-coding RNAs (lncRNAs) are a diverse class of longer than 200 nucleotides RNA transcripts that 
have limited protein coding capacity. LncRNAs display diverse cellular functions and widely participate in 
both physiological and pathophysiological processes. Aberrant expressions of lncRNAs are correlated 
with tumor progression, providing sound rationale for their targeting as attractive anti-tumor therapeutic 
strategies. Emerging evidences support that lncRNAs participate in tumor-stroma crosstalk and stimulate 
a distinctive and suitable tumor microenvironment (TME). The TME comprises several stromal cells such 
as cancer stem cells (CSCs), cancer-associated endothelial cells (CAEs), cancer-associated fibroblasts 
(CAFs) and infiltrated immune cells, all of which are involved in the complicated crosstalk with tumor 
cells to affect tumor progression. In this review, we summarize the essential properties and functional 
roles of known lncRNAs in related to the TME to validate lncRNAs as potential biomarkers and 
promising anti-cancer targets. 

Key words: long non-coding RNA, tumor microenvironment, immune cells, cancer-stem cells, cancer-associated 
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Introduction 
Long noncoding RNAs (lncRNAs) are a large 

class of transcribed RNA molecules that are greater 
than 200 nucleotides in length and have limited 
protein coding potential for the lack of functional 
open readings (1, 2). In term of functions of lncRNAs, 
guide, decoy, signaling and scaffold functions have 
been identified (3). Guide lncRNAs modulate gene 
expression via recruiting chromatin modifying 
enzymes to specific genomic regions, while decoy 
lncRNAs sequester transcription factors away from 
chromatin. Signaling lncRNAs serve as molecular 
signals and integrate with specific signaling pathways 
or events. Scaffold lncRNAs act as platforms to recruit 
multiple proteins to assemble functional units, such as 
ribonucleoprotein complexes, and regulate gene 
expression. To date, lncRNAs have been found to 
actively participate in the regulation of various 
aspects of tumor development, including growth, 

metastasis and recurrence (4-6). Indeed, lncRNAs can 
function as oncogenes or tumor suppressors, and 
aberrant expressions are linked to various human 
cancers, such as prostate cancer (7), colorectal cancer 
(8) and hepatocellular carcinoma (9). Notably, like 
circulating miRNAs, lncRNAs can also be detected in 
the sputum, blood, and urine of cancer patients, 
indicating that some lncRNAs may be potential 
non-invasive diagnosis targets for human cancers. For 
example, lncRNA PCA3, specifically expressed in the 
prostate, has been developed as an early diagnosis 
marker of prostate cancer, which is more sensitive and 
specific than serum prostate specific antigen (PSA) 
(10, 11). LncRNAs are also being prime targets for 
cancer therapy (5). LncRNAs appear to form a 
secondary structure and act as multicomponent 
complexes, making lncRNAs attractive for cancer 
therapeutic intervention (12). In addition, several 
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other features, such as low abundance and tissue 
specificity, also support lncRNAs as potential 
efficacious anti-tumor targets. LncRNA H19, 
upregulated in many cancers, exerts oncogenic effects 
through promoting cancer progression, angiogenesis, 
and metastasis (13, 14). H19-DTA (BC-819) is a DNA 
plasmid that carries the diphtheria toxin gene under 
the regulation of the H19 promoter sequence and 
therefore has a potential therapeutic effect on a 
variety of tumors overexpressing H19 gene. 
Currently, BC-819 has been advanced into a series of 
phase I/IIb clinical trials for patients suffering from 
bladder, ovarian, and pancreatic cancer 
(https://www.clinicaltrials.gov/), and four 
completed clinical trials have demonstrated BC-819 is 
safe and feasible for tumor treatment (15-17). In short, 
lncRNAs are emerging as promising biomarkers and 
therapeutic targets in cancer. 

Tumor progression is significantly attributable to 
a distinctive and suitable tumor microenvironment 
(TME), that is largely maintained by a variety of 
stromal cells including cancer stem cells (CSCs), 
cancer endothelial cells (CECs), cancer-associated 
fibroblasts (CAFs) and infiltrated immune cells (18, 
19). Stromal cells are recruited and activated, acting 
together to trigger downstream signals that promote 
tumor formation, angiogenesis and metastasis (20, 

21). This has attracted increasing attention aimed at 
identifying these stromal cells as potential targets for 
novel cancer therapies. Recently, numerous studies 
revealed that various lncRNAs play significant roles 
in the regulation of TME, particularly stromal cells. 
The main objective of this review is to discuss the 
basic properties and functional roles of the lncRNAs 
in the contribution of the TME, to lay a foundation for 
lncRNAs-based therapies in cancer treatment.  

LncRNAs play crucial roles in the 
modulation of the TME 
LncRNAs as modulators of infiltrated immune 
cells 

Different types of infiltrated immune cells are 
important components of the TME and act together to 
help cancer cells to escape immune surveillance, thus 
generating a tumor-promoting microenvironment for 
proliferation and metastasis of cancer cells (22). The 
roles of lncRNAs in the differentiation and function of 
various immune cells, including T cells, dendritic cells 
(DCs), natural killer cells (NKs), tumor-associated 
macrophages (TAMs) and myeloid-derived 
suppressor cells (MDSCs), are increasingly well 
understood (Fig. 1 and Table 1).  

 

 
Figure 1. LncRNAs act as modulators between immune cells and tumor cells. Immune cells include CD8+ T cells, regulatory T cells (Tregs), dendritic cells (DCs), natural killer 
cells (NKs), tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). +: promoting the tumor progression; -: inhibiting the tumor progression; NR: 
Not Reported. 
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Table 1. LncRNAs act as modulators between immune cells and tumor cells 

LncRNA Cancer type Stromal cells Mechanism of action Ref. 
lnc-EGFR Hepatocellular carcinoma Tregs Lnc-EGFR binds to EGFR, and activates AP-1/NF-AT1/FOXP3 axis, promoting Tregs 

differentiation and tumor progression 
27 

Flicr - Tregs Flicr inhibits the expression of FOXP3 and curtails the immunosuppressive function of Tregs 28 
Flatr - Tregs Flatr promotes the expression of FOXP3 and enhances the immunosuppressive function of Tregs 29 
lnc-Tim3 Hepatocellular carcinoma CD8+ T Lnc-Tim interacts with Tim-3 to release Bat3 and induces exhaustion of CD8+ T cells, exerting 

HCC immune evasion 
31 

lnc-sox5 Colorectal cancer CD8+ T Lnc-sox5 suppresses the infiltration and the cytotoxicity of CD8+ T by increasing IDO1 
expression and therefore promotes the tumorigenesis  

8 

lnc-DC - DCs Lnc-DC binds directly to the C terminus of STAT3 and activates it, thus promoting DCs 
differentiation. 

35 

HOTAIRM1 - DCs HOTAIRM1 induces upregulation of CD14 and B7H2, thus blocking cells to enter into the DC 
differentiation pathway 

36 

lnc-CD56 - NKs Lnc-CD56 may function as a positive regulator of CD56, and be essential for the developmental 
and diverse functions of NKs 

39 

GAS5 Liver cancer NKs GAS5 regulates miR-544/RUNX3 to enhance the killing effects of NKs, leading to inhibition of 
tumor growth. 

40 

CASC2c Glioblastoma multiforme TAMs CASC2c suppresses the M2 polarization by repressing expression of FX in GBM cells and 
inhibiting ERK1/2 and AKT in macrophages. 

43 

LINC00662 Hepatocellular carcinoma TAMs LINC00662 activates Wnt/β-catenin signaling and further promotes M2 polarization, promoting 
tumor growth and metastasis. 

44 

MM2P Osteosarcoma TAMs MM2P promotes M2 polarization by inducing phosphorylation on STAT6, resulting in 
macrophage-promoted tumor progression. 

45 

CCAT1 Prostate cancer TAMs CCAT1/miR-148a/PKCζ prevents cell migration of prostate cancer by altering macrophage 
polarization. 

46 

NIFK-AS1 Endometrial cancer TAMs NIFK-AS1 inhibits M2 polarization of macrophages and malignant phenotype of endometrial 
cancer cells through targeting miR-146a. 

47 

LNMAT1 Bladder cancer TAMs LNMAT1 activates CCL2 expression to recruit macrophages into the tumor and ultimately 
promote lymphatic metastasis of bladder cancer. 

50 

lnc-BM Breast cancer TAMs lnc-BM induces STAT3-dependent expression of CCL2 to attract macrophages, promoting breast 
cancer brain metastasis. 

51 

lnc-CHOP - MDSCs Lnc-CHOP upregulates the expression of ARG1 and NOS2 to enhance the immunosuppressive 
function of MDSCs. 

54 

lnc-C/EBPβ - MDSCs lnc-C/EBPβ inhibits the expressions of ARG1 and NOS2, to suppress immune-suppressive 
function and differentiation of MDSCs. 

55 

Olfr29-ps1 Melanoma MDSCs Olfr29-ps1promotes functions of monocytic MDSCs and thus tumor growth, through a 
m6A-modified regulatory network. 

56 

Tregs: regulatory T cells; DCs: dendritic cells; NKs: natural killer cells; TAMs: tumor-associated macrophages; MDSCs: myeloid-derived suppressor cells. 
 

LncRNAs as modulators of T cells 
T cells, a predominant immune cell type in the 

TME, exert dual roles in tumor progression (23). 
Cancer cells exploit the immunosuppressive 
properties of T cells, while weakening the effective 
functions of anti-tumor T cells (24). LncRNAs have 
been recognized as important regulators of several T 
cell functions. Regulatory T cells (Tregs), an 
immunosuppressive subset of CD4+ T cells 
characterized by the expression of the master 
transcription factor forkhead box protein P3 (FOXP3), 
frequently accumulate in the TME and even represent 
the major population of infiltrating CD4+ T cells (25, 
26). There is growing evidence that some lncRNAs, 
such as lnc-EGFR, Flicr and Flatr, are involved in Treg 
biology. Among them, lnc-EGFR is highly expressed 
in Tregs of patients with hepatocellular carcinoma 
(HCC), where it acts as an activator of Tregs 
differentiation. Mechanistically, lnc-EGFR binds 
specifically to EGFR, inhibits its ubiquitination and 
subsequent degradation, and sustains the activation 
of its downstream AP-1 and NF-AT1, two 
transcription factors for FOXP3, therefore leading to 
the enhancement of Tregs immunosuppressive 
function and promotion of HCC progression (27). 

Both Flicr and Flatr, two lncRNAs conserved and 
enriched in activated Tregs, were reported to play 
crucial roles in the regulation of FOXP3 expression 
and immunosuppressive function of Tregs (28, 29), 
but their roles in the TME remain unclear. These 
findings indicate that targeting specific lncRNAs in 
Tregs has a broad application prospect in the 
development of anti-tumor therapeutic strategies.  

CD8+ T cells, major population of T cells in the 
TME, exert an efficient anti-tumor attack (30). 
LncRNAs such as lnc-Tim3 and lnc-sox5 participate in 
modulating the function of CD8+ T cells. The 
expression of lnc-Tim3 is up-regulated in HCC 
patients, which is negatively correlated with the 
production of IFN-γ and IL-2 by tumor-infiltrating 
CD8+ T cells. Mechanistically, lnc-Tim3 interacts with 
Tim-3 to release Bat3, and thereby suppresses 
downstream Lck/NF-AT1/AP-1 signaling, resulting 
in the exhaustion of CD8+ T cells and HCC immune 
evasion (31). Similarly, lnc-sox5 is significantly 
increased in colorectal cancer (CRC) and correlated 
with CRC progression. Extensively, lnc-sox5 
knock-down dramatically promotes the infiltration 
and the cytotoxicity of CD8+ T by suppressing the 
expression of indoleamine 2,3-dioxygenase 1 (IDO1) 
and therefore suppresses the tumorigenesis of CRC 
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(8). Collectively, these data suggest that 
dysregulations of lncRNAs in T cells affect immune 
evasion and tumor progression, and might be 
potential targets of tumor immunotherapy.  

LncRNAs as modulators of dendritic cells 
Dendritic cells (DCs) in the TME exhibit an 

important role in cross-priming CD8+ T cells, in 
response to initiate and sustain anti-tumor T cells 
immunity (32-34). Notably, lncRNAs, such as lnc-DC 
and HOTAIRM1, have been implicated in the DCs 
differentiation. Wang et al. (35) showed that lnc-DC is 
exclusively expressed in conventional dendritic cells 
and driven by the transcription factor PU.1, a key 
regulator of DCs differentiation. Knockdown of 
lnc-DC down-regulates the expression of 
function-related genes and antigens uptake by DCs, 
thus impairing DCs differentiation from human 
monocytes and reducing their capacity to stimulate T 
cell activation. Mechanistic evidence has shown that 
lnc-DC exerts these effects by activating STAT3, a 
transcription factor that regulates DCs differentiation. 
Lnc-DC binds directly to the C terminus of STAT3 to 
block SHP1-mediated dephosphorylation of STAT3, 
thus promoting the phosphorylation of STAT3 on 
tyrosine-705 and the expression of genes associated 
with DCs activation. Subsequently, Xin et al. (36) 
reported that lncRNA HOTAIRM1 is downregulated 
during the process of monocyte differentiating into 
DCs. HOTAIRM1 competitively binds to miR-3960, 
hinders miR-3960 from repressing monocyte-related 
HOXA1 mRNA expression and induces subsequent 
upregulation of two monocyte markers CD14 and 
B7H2, thereby sustaining monocyte phenotype and 
blocking cells entry into the DCs differentiation 
pathway. However, the role during tumor 
progression of these lncRNAs within DCs awaits 
further investigation. 

LncRNAs as modulators of natural killer cells  
Natural killer cells (NKs) play a critical role in 

the anti-tumor immune response and participate in 
controlling tumor progression and metastasis, due to 
their cytotoxic potential and ability to release 
immunoregulatory cytokines (37, 38). The typically 
studied lncRNA in the NKs is lnc-CD56, which is 
involved in the regulation of CD56, a classical human 
NKs surface marker. Knockdown of lnc-CD56 reduces 
the expression of CD56, suggesting lnc-CD56 may be 
a positive regulator of CD56 and essential for the 
development and diverse functions of NKs (39). 
Recently, Fang et al. (40) found that lncRNA GAS5 is 
down-regulated in NKs of patients with liver cancer, 
while up-regulated in activated NKs compared with 
non-stimulated NKs. Overexpression of GAS5 in 

activated NKs increases IFN-γ secretion, NKs 
cytotoxicity, and the percentage of CD107a+ NKs 
through regulating miR-544/RUNX3, hence, 
enhancing the killing effects of NKs and inhibiting 
tumor growth. Moreover, down-regulation of GAS5 is 
associated with liver cancer progression, conferring a 
worse overall patient survival (41). These findings 
highlight the importance of lncRNAs in NKs 
functions and anti-tumor immune response. 

LncRNAs as modulators of tumor-associated 
macrophages 

Tumor-associated macrophages (TAMs) are key 
regulators of the TME, and orchestrate various aspects 
of tumor progression. In response to 
microenvironmental signals, TAMs undergo the 
polarization of pro-inflammatory M1 or 
anti-inflammatory M2 and, therefore, have anti-tumor 
or pro-tumor abilities (42). Several lncRNAs 
expressed in tumor cells are involved in the 
polarization of TAMs to affect tumor progression (Fig. 
2). For example, in glioblastoma multiforme, lncRNA 
CASC2c inhibits macrophage migration and 
polarization to the M2 subtype, via binding to 
coagulation factor X (FX) and commonly inhibiting its 
expression and secretion. The reduction of FX 
secreted in the tumor microenvironment results in the 
decrease of the phosphorylation and activation of 
ERK1/2 and AKT in macrophages, which plays a 
crucial role in the M2 macrophage polarization (43). In 
contrast, in HCC, lncRNA LINC00662 induces 
WNT3A expression and secretion, and consequently 
activates Wnt/β-catenin signaling in macrophages in 
a paracrine manner. Therefore, LINC00662 promotes 
M2 macrophage polarization and consequently 
results in HCC tumor growth and metastasis. Clinical 
data further confirm that high expression of 
LINC00662 in HCC is correlated with overactivated 
WNT3A, M2 macrophage polarization and poor 
prognosis of HCC patients (44). In addition, a 
high-throughput profiling shows that lncRNA-MM2P 
is specifically upregulated during the polarization of 
M2 macrophages. Knockdown of lncRNA-MM2P in 
macrophages reduces phosphorylation on STAT6, 
suppresses the transcription of M2-related genes in 
macrophages, and ultimately blocks M2 macrophage 
polarization. Thus, targeting lncRNA-MM2P impairs 
macrophage-promoted tumor angiogenesis and 
progression (45). Besides, lncRNAs, CCAT1 and 
NIFK-AS1 expressed in macrophages, also play a key 
role in modulating the polarization of TAMs in 
prostate cancer and endometrial cancer, respectively 
(46, 47).  

Furthermore, tumor-derived CCL2 is released 
into the TME and recruits macrophages to promote 
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tumor progression (48, 49). LncRNAs are also 
involved in regulation of TAMs infiltration in tumor 
through affecting CCL2 expression (Fig. 2). For 
example, lncRNA LNMAT1 is markedly upregulated 
in lymph node (LN)-metastatic bladder cancer and 
associated with LN metastasis and prognosis. 
Specifically, LNMAT1 epigenetically activates CCL2 
transcription by enhancing hnRNPL-mediated 
histone H3 lysine 4 trimethylation (H3K4me3) at the 
CCL2 promoter. LNMAT1-induced CCL2 in bladder 
cancer cells contributes to recruit macrophages into 
the tumor and ultimately promotes lymphatic 
metastasis of bladder cancer (50). Similarly, high 
expression of lnc-BM also promotes breast cancer 
brain metastasis, through inducing STAT3-dependent 
expression of CCL2 to attract macrophages to the 
tumor (51). Taken together, lncRNAs expressed in 
TAMs or secreted by tumor cells modulate the 
function of TAMs through diverse mechanisms, 
further affecting tumorigenesis and metastasis, 
reminding us that targeting these lncRNAs in the 
TAMs or tumor cells may be a potential anti-tumor 
strategy. 

LncRNAs as modulators of myeloid-derived 
suppressor cells  

Myeloid-derived suppressor cells (MDSCs) are 
the central cell population with potent 
immunosuppressive activity on T cells (52, 53). It has 
been demonstrated that some lncRNAs such as 
lnc-CHOP and lnc-C/EBPβ, are involved in the 
modulation of generation, recruitment and 
immunosuppressive functions of MDSCs. Lnc-CHOP 

interacts with CHOP and C/EBPβ isoform 
liver-enriched inhibitory protein (LIP) to promote the 
activation of C/EBPβ, and results in the expression of 
major molecules linked to MDSC immunosuppressive 
activity, including ARG1 and NOS2 (54). In contrast, 
lnc-C/EBPβ was reported to bind with LIP to inhibit 
the activation of C/EBPβ, and further reduce 
immunosuppressive function and differentiation of 
MDSCs (55). A recent study showed that lncRNA 
Olfr29-ps1, is expressed in MDSCs and upregulated 
by the proinflammatory cytokine IL6. Olfr29-ps1 
promotes immunosuppressive function and 
differentiation of monocytic MDSCs, through a 
N6-methyladenosine (m6A)-modified regulatory 
network (56). These findings reveal diverse 
mechanisms by which lncRNAs regulate the function 
of MDSCs and also provide potential therapeutic 
targets. 

LncRNA as modulators of cancer stem cells 
Cancer stem cells (CSCs), a rare sub-population 

within tumor, are key components of the TME, that 
have the ability of self-renewal and limitless 
proliferation (57). CSCs are believed to be responsible 
for tumor initiation, progression and resistance to 
therapies (58, 59). Several studies described that 
various lncRNAs are able to modulate self-renewal, 
maintenance and differentiation of CSCs through 
different molecular mechanisms (Fig. 3 and Table 2). 
To date, lncH19, lncTCF7, lncARSR, UCA1 and 
HOTAIR are the most highlighted lncRNAs in CSCs. 

 

 
Figure 2. The regulatory roles of lncRNAs in TAMs. LncRNAs are involved in regulation the polarization of TAMs or CCL2-mediated macrophages recruitment to affect tumor 
progression. M2: M2 macrophage. 
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Table 2. LncRNAs act as modulators between cancer stem cells (CSCs)/cancer-associated endothelial cells (CAEs)/cancer-associated 
fibroblasts (CAFs) and tumor cells 

LncRNA Cancer type Stromal cells Mechanism of action Ref. 
H19 Prostate cancer CSCs H19 increases the expression of Oct4 and Sox2 to promote the sphere-forming capacity. 61 
H19 Breast cancer CSCs H19 sponges and inhibits miRNA let-7 and enhances the expression of LIN28, contributing to the maintenance of stem 

cells. 
62 

lncTCF7 Hepatocellular 
carcinoma 

CSCs lncTCF7 activates the Wnt signaling cascade to prime CSC self-renewal and tumor propagation.  63 

HOTAIR Liver cancer CSCs HOTAIR enhances liver CSC growth through dissociating the CREB-p300-RNApolII complex to repress expression of 
SETD2. 

68 

HOTAIR Breast cancer CSCs HOTAIR maintains BCSCs self-renewal capacity by negatively regulating miR-34a and consequently Sox2. 65 
ARSR Renal carcinoma CSCs ARSR promotes the expansion of renal CSCs through interaction with YAP, to block its phosphorylation. 69-71 
UCA1 Liver cancer CSCs UCA1 promotes the malignant transformation of hepatocyte-like stem cells via activating telomere length extension 

and c-Myc expression. 
78 

H19 Glioma CAEs H19 promotes glioma-induced endothelial cell proliferation, migration and tube formation via increasing the 
expression of VASH2. 

82 

H19 Liver cancer CAEs CD90+ liver cancer cells package H19 inside exosomes, which is released to promote functions of endothelial cells. 83 
MALAT-1 - CAEs MALAT-1 promotes the proliferation rate of HUVECs by upregulation of FOMX1 expression. 84 
MALAT-1 Neuroblastoma CAEs MALAT1 promotes endothelial cell migration, invasion and vasculature formation via increasing the expression of 

FGF2. 
85,86 

HOTAIR Nasopharyngeal 
carcinoma 

CAEs HOTAIR promotes endothelial cell tube formation and angiogenesis through activating the transcription of VEGFA 
and Ang2 expression. 

87 

HOTAIR Glioma CAEs HOTAIR promotes the angiogenic function by activating VEGFA and glioma cell-derived vesicles.  88 
ZEB2NAT Bladder cancer CAFs ZEB2NAT promotes the CAFs-mediated initiation of efficient metastasis in a TGFβ1-dependent process.  93 
HOTAIR Breast cancer CAFs HOTAIR promotes the CAFs-mediated tumor development in a TGFβ1-dependent process. 94 
LINC00092 Ovarian cancer CAFs CAFs-secrete CXCL14 induces LINC00092 upregulation to promote tumor metastasis by enhancing PFKFB-2 

translation. 
95 

DNM3OS Esophageal cancer CAFs CAFs-promoted expression of DNM3OS confers significant radio-resistance via regulating DNA damage response.  96 
H19 Colorectal cancer CAFs H19 expressed by CAFs contributes to chemo-resistance of colorectal cancer through activating the β-catenin 

pathway. 
97 

 
lncRNA H19 is one of the first non-coding RNAs 

identified as a cancer-related lncRNA (60). In prostate 
cancer, H19 level modulations are positively 
correlated with the expression of key pluripotency 
transcription factors (Oct4, Sox2) and the 
sphere-forming capacity, uncovering a role for H19 as 
a potential stemness regulator (61). In breast cancer, 
H19 acts to sponge miRNA let-7 and inhibit its 
biological function, subsequently leading to the 
elevation of LIN28, the core pluripotency factor that is 
crucial for the maintenance of breast cancer stem cells 
(BCSCs) (62). In HCC, lncTCF7 recruits the SWI/SNF 
chromatin remodeling complex to TCF7 promoter to 
regulate TCF7 transcription, activating the Wnt 
signaling cascade and thus priming liver CSCs 
self-renewal and tumor propagation (63).  

Hox transcript antisense intergenic RNA 
(HOTAIR) is an oncogenic lncRNA, the expression of 
which is elevated in multiple CSCs (64-66), and 
positively associated with advanced tumor 
progression and poor prognosis (67). HOTAIR is able 
to promote liver cancer stem cell malignant growth 
through downregulation of SETD2, a specific 
methyltransferase for histone H3 lysine 36 
(H3K36me3) and required for ATM activation upon 
DNA double-strand breaks (DSBs) (68). Additionally, 
HOTAIR is highly up-regulated in BCSCs models, 
and tightly regulates self-renewal capacity of CSCs 
through transcriptional inhibition of miR-34a and 
consequent upregulation of Sox2 (65). 

The lncRNA activated in renal cell carcinoma 
with sunitinib resistance (ARSR) was recently 

identified as a novel lncRNA. ARSR is highly 
expressed in primary renal CSCs and predicts poor 
prognosis. ARSR processes self-renewal capacity and 
promotes the metastasis of renal CSCs. 
Mechanistically, ARSR interacts with Yes-associated 
protein (YAP) to block its phosphorylation by LATS1, 
thus facilitating YAP nuclear translocation, which is 
required to sustain CSCs self-renewal (69-71).  

The lncRNA urothelial cancer associated 1 
(UCA1) is highly expressed in multiple human 
cancers, including hepatocellular cancer, gastric 
cancer, colorectal cancer and lung cancer, which 
confers a worse overall patient survival (72-77). 
Notably, UCA1 plays a critical role in governing 
growth and malignant transformation of CSCs 
through the upregulation and activation of telomerase 
reverse transcriptase (TERT) and oncogene C-myc. 
Mechanistically, excessive UCA1 leads to increased 
binding capacity of UCA1 to CyclinD1. Therefore, 
UCA1-CyclinD1 complex is recruited to c-Myc 
promoter region, increasing the outcome of oncogene 
C-myc (78). On the other hand, UCA1-CyclinD1 
complex also activates lncRNA H19 transcription via 
reducing DNA methylation on H19 promoter region. 
Strikingly, overexpression of H19 enhances the 
binding of TERT, thus enhancing the cell telomerase 
activity and extending the telomere length (78). 
Besides, UCA1 enhances the phosphorylation of RB1, 
which could promote the interplay between histone 
lysine methyltransferase SET1A and pRB1. Then, the 
complex induces the trimethylation of H3K4 on 
telomere capping essential gene TRF2 promoter 
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region, causing TRF2 overexpression and 
consequently prolonging the telomere length (79). 
Taken together, these observations highlight the 
critical role of multiple lncRNAs in modulating CSCs 
maintenance and self-renewal and provide a potential 
application for targeting lncRNAs as an alternative 
effective strategy. 

LncRNAs as modulators of cancer-associated 
endothelial cells  

Cancer-associated endothelial cells (CAEs), 
important components of the TME, are responsible for 
angiogenesis and regulation of tumor growth and 
metastasis (80, 81). Altered expression of lncRNAs in 
CAEs also affects tumor progression through 
modulating the biological behaviors of CAEs (Fig. 3 
and Table 2).  

H19 expression is significantly up-regulated in 
glioma microvessels and glioma-induced endothelial 
cells (GECs). H19 regulates the proliferation, 
migration and tube formation of GECs by targeting 
miR-29a, which decreases the expression of vasohibin 
2 (VASH2), an angiogenic factor (82). H19 derived 
from tumor cells could also affect angiogenesis of 
CAEs. CD90+ liver cancer cells package H19 inside 
exosomes, which is released to influence endothelial 
cells by promoting angiogenesis and stimulating their 
adhesive properties (83). 

MALAT1 can also regulate the properties of 
CAEs. Researchers have found that knockdown of 
MALAT1 expression significantly inhibits the 
proliferation of human umbilical vein endothelial 

cells (HUVECs), which is mediated by upregulation of 
miR-320a and hence, downregulation of cell cycle 
regulator FOMX1 expression in HUVECs (84). In 
neuroblastoma, up-regulation of MALAT1, induced 
by hypoxia, results in endothelial cell migration, 
invasion and vasculature formation via increasing the 
expression of the pro-angiogenic factor, FGF2 (85, 86). 
These data demonstrate that MALAT1 plays an 
important role in endothelial cell proliferation and 
tumor angiogenesis. 

HOTAIR is extremely abundant in 
nasopharyngeal carcinoma cells (NPC) and functions 
as an angiogenesis activator. Specifically, HOTAIR 
promotes endothelial cell tube formation and 
angiogenesis through directly activating the 
transcription of angiogenic factor VEGFA (87). 
Furthermore, in glioma cells, the angiogenic function 
of HOTAIR is mediated not only by the regulation of 
VEGFA expression, but also by direct transmission 
into endothelial cells via glioma cell-derived vesicles 
(88). Collectively, deregulated lncRNAs expressions 
in CAEs do affect the tumor progression, suggesting 
that targeting lncRNAs both in CAEs and tumor cells 
might be a new approach for cancer therapy. 

LncRNA as modulators of cancer-associated 
fibroblasts  

Cancer-associated fibroblasts (CAFs), the 
activated fibroblasts, are one of the most dominant 
components of the tumor microenvironment (89, 90). 
CAFs are able to promote tumor progression, such as 
proliferation, invasion and angiogenesis, through the 

 

 
Figure 3. LncRNAs act as modulators between cancer stem cells (CSCs)/cancer-associated endothelial cells (CAEs)/cancer-associated fibroblasts (CAFs) and tumor cells. +: 
promoting the tumor progression. 
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secretion of growth factors, cytokines and chemokines 
(91). Although the role of lncRNA in CAFs 
modulation is poorly investigated, some studies 
suggested that they can contribute to: i) CAFs 
phenotype and function; ii) enhancement of 
CAFs-triggering signals (e.g. TGF-β1) to induce 
epithelial-mesenchymal transition (EMT) and 
metastasis of tumor cells (Fig. 3 and Table 2). 
High-throughput sequencing technologies reveal 
numerous novel lncRNAs differentially expressed in 
distinguishing CAFs from normal ovarian fibroblasts 
(NOFs), followed by the functional network to predict 
those specific lncRNAs involved in the pro-metastatic 
phenotype of CAFs (92).  

TGF-β1 secreted by CAFs induces the metastatic 
activity of cancer cells by regulating the expression of 
lncRNAs. For example, CAFs-mediated upregulation 
of lncRNA ZEB2NAT transcription in bladder cancer 
cells that promotes EMT via the secretion of TGF-β1, 
which is linked to poor clinical outcome (93). 
Similarly, CAFs-secreted TGF-β1 induces the 
transcription of lncRNA HOTAIR to promote EMT 
and metastasis in breast cancer cells (94). Moreover, 
the lncRNA, LINC00092, is induced upon stimulation 
by CAF-secreted CXCL14 in ovarian cancer and 
correlated with poor prognosis in patients. 
Mechanistically, LINC00092 binds with fructose-2, 
6-biphosphatase 2 (PFKFB2), thereby promoting 
ovarian cancer metastasis by altering glycolysis and 
sustaining CAFs-like features of fibroblasts (95).  

In addition, CAF-promoted lncRNAs are also 
involved in radio-resistance and chemo-resistance. In 
esophageal cancer cells, CAFs-promoted expression 
of lncRNA DNM3OS confers significant 
radio-resistance via regulating DNA damage 
response in a FOXO1-dependent manner (96). 
Moreover, lncRNA H19 expressed by CAFs was 
reported to contribute to chemo-resistance of 
colorectal cancer through activating the β-catenin 
pathway (97). Collectively, these studies indicate the 
importance of lncRNAs in the interaction between the 
CAFs and cancer cells, reminding us that targeting 
lncRNAs could be a new approach for cancer therapy. 

Conclusion and further perspective  
Here, we have summarized recent advancement 

involving of lncRNAs within the tumor 
microenvironment and their roles in the crosstalk 
between infiltrated immune cells, CSCs, CAEs, CAFs 
and tumor cells, as well as some of the underlying 
molecular mechanisms. lncRNAs exert their functions 
in different ways to modulate tumor growth and 
progression. As yet, only a few lncRNAs have been 
well-studied in the tumor-stroma crosstalk, 
warranting further studies on the identification of 

more new types of lncRNAs and their mechanisms 
involved in the future. A better understanding of the 
role of lncRNAs within the tumor microenvironment 
may lead to the discovery of potential biomarkers and 
development of novel targeted therapies. 

At present, the pressing issue is to systematically 
elucidate the key aspects of lncRNAs, including the 
expression, structure, function and regulatory 
mechanism. The improvement of analytical 
technologies for the specific biological functions of 
lncRNAs may help explore its greatest relevance to 
various cancers. Such information will provide a basis 
for considering lncRNAs as ideal diagnostic markers 
or even therapeutic targets. In addition, approaches of 
targeting lncRNAs should be considered and 
optimized, such as the use of siRNA to induce 
lncRNA degradation and CRISPR/Cas9 mediated 
gene editing. How to specifically deliver the 
respective molecules into targeted cells is still a great 
challenge.  

In summary, the functional importance of 
lncRNAs within tumor microenvironment is gradu-
ally characterized; clinical application of lncRNAs still 
needs to be studied further. With the deep-going 
research, lncRNAs-associated tumor-stroma crosstalk 
will open up a new era of anti-tumor therapy. 
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