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Abstract 

Inflammasome is a complex composed of several proteins and an important part of the natural immune 
system. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is 
composed of NLRP3, apoptosis associated speck like protein (ASC) and pro-caspase-1. It plays an 
important role in many diseases. Hydrogen sulfide (H2S) is an important signaling molecule that regulates 
many physiological and pathological processes. Recent studies indicated that H2S played 
anti-inflammatory and pro-inflammatory roles in many diseases through influencing NLRP3 
inflammasome, but its mechanism was not fully understood. This article reviewed the progress about the 
effects of H2S on NLRP3 inflammasome and its mechanisms involved in recent years to provide 
theoretical basis for in-depth study. 
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Introduction 
A decade ago, inflammasome was described as a 

large intracellular signaling platform, which contains 
a cytoplasmic pattern recognition receptor, especially 
a nucleotide-binding oligomerization domain-like 
receptor (NLR). Although several types of 
inflammasomes have been identified so far, 
nucleotide-binding oligomerization domain-like 
receptor protein 3 (NLRP3) inflammasome is the most 
characteristic one [1]. The researches indicated that 
the abnormal activation of NLRP3 inflammasome was 
related to the pathogenesis of various autoimmune, 
chronic inflammatory and metabolic diseases, 
including gout, atherosclerosis and type 2 diabetes 
[2-4].  

Hydrogen sulfide (H2S) is an important signaling 
molecule that regulates many physiological and 
pathological processes. Recent studies indicated that 
H2S played anti-inflammatory and pro-inflammatory 
roles in many diseases through influencing NLRP3 
inflammasome, but its mechanism was not fully 
understood. In this review, we summarized the recent 

studies on the anti-inflammatory or pro-inflammatory 
effects of H2S on NLRP3 inflammasome in a variety of 
diseases to provide ideas for the relevant basic 
research in the future. 

Overview of NLRP3 inflammasome  
Inflammasome is a complex composed of several 

proteins and an important part of the natural immune 
system. A variety of inflammasome have been found: 
NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, NLRP12, 
NLRC4, IPAF and AIM2. NLRP3 inflammasome is the 
most thoroughly studied one, which is composed of 
NLRP3, apoptosis associated speck like protein (ASC) 
and caspase-1 precursor (pro-caspase-1) (Figure 1) 
[5-10]. By activating caspase-1, NLRP3 inflammasome 
can induce the maturation and secretion of 
pro-inflammatory factors: Interleukin-1beta (IL-1β) 
and Interleukin-18 (IL-18). Mature IL-1β is an effective 
proinflammatory mediator in many immune 
responses, including the recruitment of natural 
immune cells to the infection site and the regulation of 
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adaptive immune cells. Mature IL-18 plays an 
important role in the production of IFN-γand the 
enhancing the cytolytic activity of natural killer cells 
and T cells [11]. The actived caspase-1 also induces a 
proinflammatory form of cell death [12]. Therefore, 
NLRP3 inflammasome can regulate the immune 
response of the body and strictly control the 
inflammatory reaction in the pathophysiological 
process. NLRP3 inflammasome can be activated by 
different stimuli including pathogen associated 
molecular patterns (PAMPs) and damage associated 
molecular pattern (DAMPs). The first stimuli, which 
is mediated by proinflammatory pathways, such as 
toll like receptor (TLR)-mediated activation of nuclear 
factor-kB (NF-kB), promotes the upregulation of the 
components of the inflammasome. The second 
stimuli, including reactive oxygen species (ROS) 
production, intracellular potassium (K+) 
concentration and the distuption of lysosomal 
membrane, promotes the assembly of inflammasome 
and leads to the activation of caspase-1, which can 
catalyze the pro-IL-1β into active IL-1β [1, 9, 13-15]. 
NLRP3 inflammasome has been reported to be related 
to the pathogenesis of many complex diseases, such as 
type 2 diabetes [16], atherosclerosis [17-20], obesity 
and gout [21], Alzheimer's disease and Parkinson's 
disease[22, 23].  

Overview of H2S and the mechanism of 
H2S acting on NLRP3 inflammasome 

Over the years, H2S has been regarded as a toxic 
gas with an unpleasant smell. However, since the 
1990s, more and more researches have indicated that 

H2S, together with nitric oxide (NO) and carbon 
monoxide (CO), belongs to a class of 
gasotransmitters.There is increasing evidence that 
H2S can be produced in multiple organ systems in 
mammals, including humans and fish [24-27]. In 
mammalian cells, H2S is produced by endogenous 
enzymatic and non-enzymatic pathways. The 
enzymatic generation of H2S, which may be important 
for the regulation in given cells under special 
conditions, is the focus of the research. Several 
different mammalian enzymatic systems for H2S 
production have been described in detail. Most 
commonly, three typical H2S-producing enzymes are 
identified: cystathionine-gamma-lyase (CSE), 
cystathionine-beta-synthase (CBS) and 
3-mercaptopyruvate thiotransferase (3-MST). 
Cystathionine is produced by β-substitution reaction 
of homocysteine with serine catalyzed by CBS. CSE 
catalyzes the elimination of α, γ-cysteine of 
cystathionine to produce cystenine. Under the 
catalysis of CBS and CSE, cysteine can form H2S 
through β elimination reaction. 3-mercaptopyruvate 
(3-MP) is produced by transferring amines from 
cystine to α-ketoglutarate via cysteine 
aminotransferase (CAT). 3-MST catalyzes the sulphur 
of 3-MP to convert into H2S (Figure 2) [28]. For the 
inhibition of the synthesis of endogenous H2S, there 
are several small molecular compounds, which can 
inhibit the synthesis of endogenous H2S, targeting at 
three kinds of H2S producing enzymes. Although 
these compounds have their limitations (potency, 
selectivity), these molecules, especially in 
combination with genetic methods, can be used to 

describe biological processes involving 
endogenous H2S production [29]. H2S has the 
physiological functions of relaxing blood 
vessels, lowering blood pressure [30, 31], anti- 
apoptosis [32], anti-inflammation [33], 
anti-oxidation and regulating endoplasmic 
reticulum stress [34]. At present, the effect of 
H2S on NLRP3 inflammasome has gradually 
become a research hotspot. 

H2S can inhibit TLR4/NF-κB pathway 
[35, 36], clear ROS [37], suppress K+ efflux [38] 
and promote lysosomal membrane rupture 
[39], which are related to NLRP3 activation. 
Therefore, it can be inferred that H2S can act 
on NLRP3 inflammasome through the above 
pathways (Figure 3). 

H2S plays liver protection roles by 
influencing NLRP3 inflammasome 

Exogenous H2S can inhibit the 
inflammatory response of hepatocytes by 
influencing NLRP3 inflammasome to protect 

 

 
Figure 1. Formation of the NLRP3 inflammasome. The activation of NLRP3 inflammasome 
involves the assembling of the components of NLRP3 inflammasome (NLRP3, ASC and caspase-1) 
to form a complete NLRP3 inflammasome complex. This inflammasome complex allows the 
cleavage of pre-caspase-1 into its active isomer, caspase-1, which then cleaves pro-IL-1β and 
pro-IL-18 to their active isomers IL-1β and IL-18 respectively. The increase of these 
pro-inflammatory proteins eventually leads to pyroptosis. 
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liver. Our previous studies showed that in the 
lipopolysaccharide (LPS)-induced hepatocyte 
inflammation model, the protein expression level of 
NLRP3 inflammasome and the level of IL-1β were 
significantly increased and H2S reversed these 
changes, which indicated that H2S could significantly 
inhibit NLRP3 inflammasome-mediated inflam-
matory response [40]. We also found that in the oleic 
acid (OA)-induced hepatocyte inflammation model, 
the level of autophagy was decreased significantly 
and the protein expression level of NLRP3 
inflammasome was increased, while exogenous H2S 
could counteract the OA-induced change. 3-MA, an 
autophagy inhibitor, could reverse the inhibitory 
effect of H2S on NLRP3 inflammasome induced by 
OA, indicating that exogenous H2S could inhibit the 
protein expression of NLRP3 inflammasome by 
promoting autophagy in OA-induced hepatocyte. Our 
in-depth mechanism research showed that in 
OA-induced hepatocyte, H2S could inhibit the NLRP3 
inflammasome-mediated inflammation and activate 
the AMP-activated protein kinase (AMPK)/ 
mammalian target of rapamycin (mTOR) pathway 
and autophagy. 3-MA, an autophagy inhibitor, could 
counteract the effect of H2S, suggesting that 
autophagy mediated the effect of H2S on NLRP3 
inflammasome-mediated inflammation. In addition, 
compound C, an AMPK inhibitor, could inhibit 
autophagy and counteract the anti-inflammatory 
effect of exogenous H2S. In summary, exogenous H2S 
inhibited NLRP3 inflammasome-mediated 
inflammation of hepatocytes through promoting 
autophagy via AMPK/mTOR pathway (Figure 4) [41, 
42]. Through consulting a large number of related 
literatures, we found that exogenous H2S could inhibit 
endoplasmic reticulum stress (ERS) in many diseases 
[28], and there was interaction between ERS and 
NLRP3 inflammasome [43], so whether exogenous 

H2S can inhibit NLRP3 inflammasome-mediated 
inflammatory response through ERS needs further 
study. One of the liver injuries in nonalcoholic fatty 
liver disease (NAFLD) is inflammatory liver injury 
[44], in view of our previous studies, it can be inferred 
that exogenous H2S can atteuate NAFLD by inhibiting 
NLRP3 inflammasome, which is still further proven. 
NLRP3 inflammasome will be an important target of 
NAFLD treatment. 

Paraquat (PQ) poisoning is a serious clinical 
problem due to the lack of specific antidotes and the 
accidental or suicide PQ intake leading to high 
mortality. Studies have shown that oxidative stress 
and ROS-mediated inflammation were the main 
causes of PQ poisoning [45]. Liver is the main source 
of endogenous antioxidants and plays an important 
role in enzyme metabolism and detoxification. 
Therefore, the liver is more vulnerable to PQ 
poisoning [46, 47]. It has been reported that PQ 
activated NLRP3 inflammasome, resulting in the 
secretion of IL-1β and IL-18 in macrophages. 
Therefore, the inhibition of NLRP3 
inflammasome-mediated inflammatory response may 
be beneficial to the treatment of PQ poisoning [48, 49]. 
Zhenning Liu et al.found that in PQ-induced rat liver 
injury, H2S could significantly inhibit the protein 
expression level of NLRP3 inflammasome, 
pro-caspase-1 and the secretion of IL-1β and activate 
Nrf2 signal pathway. The nuclear factor 
erythroid-2-related factor 2 (Nrf2) gene knockout or 
siRNA-Nrf2 could counteract the protective effect of 
H2S, suggesting that H2S could alleviate PQ-induced 
liver injury by inhibiting NLRP3 
inflammasome-mediated inflammatory response 
through Nrf2 signal pathway (Figure 4)[50]. The 
inhibitory effect of H2S on NLRP3 inflammasome has 
therapeutic effect on PQ-induced liver injury. 

 

 
Figure 2. Summary of the production process of endogenous H2S. CBS:cystathionine-beta-synthase; CSE:cystathionine-gamma-lyase; 3-MST: 3-mercaptopyruvate 
thiotransferase; 3-MP:3-mercaptopyruvate;CAT:cysteine aminotransferase 
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Figure 3. H2S influences NLRP3 inflammasome through signal 1 and signal 2. Signal 1 is mediated by microbial ligands recognized by TLR which activates the NF-kB 
pathway to promote the protein expression level of pro-IL-1β and NLRP3. The signal 2 promotes the assembly of the NLRP3 inflammasome complex. Under noninfectious 
conditions, K+ efflux leads to the activation of NLRP3 inflammasome. Various endogenous and exogenous particulates, including uric acid crystal, promote lysosomal damage to 
activate NLRP3 inflammasome. Additionally, the increase of ROS level in the cell also activates the NLRP3 inflammasome. H2S can influence NLRP3 inflammasome through the 
above pathways. ASC: apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain; NF-kB: nuclear factor kappa-light-chain-enhancer of activated 
B cells; ROS: reactive oxygen species; TLR:toll-like receptor 

 
Figure 4. H2S plays liver protection roles by influencing NLRP3 inflammasome. H2S significantly inhibits NLRP3 inflammasome-mediated inflammatory injury induced 
by lipopolysaccharide and suppress NLRP3 inflammasome-mediated inflammatory injury induced by oleric acid through promoting autophagy via AMPK/mTOR pathway. H2S can 
alleviate NLRP3 inflammasome-mediated inflammatory injury induced by paraquat poisoning through Nrf2 signal pathway. AMPK: AMP-activated protein kinase; 
mTOR:mammalian target of rapamycin; Nrf2:nuclear factor erythroid-2-related factor 2 

 

H2S plays renal protection role by 
influencing NLRP3 inflammasome 

Acute renal injury is a clinical syndrome caused 
by many factors, which is characterized by rapid 
decline of renal function [51]. It has been reported that 
NLRP3 inflammasome participated in the 
inflammatory process, which might be the key to the 
development of acute renal injury [52]. Yuhong Chen, 
et al. found that exogenous H2S could inhibit the 

protein expression level of NLRP3 inflammasome to 
attenuate LPS-induced rat acute renal injury [53]. The 
signal transduction mechanism of the 
above-mentioned action of H2S needed further study. 
Renal fibrosis and renal injury are important clinical 
features of many chronic kidney diseases (CKDS) [54]. 
It has been shown that NLRP3 inflammasome was 
involved in the pathogenesis of CKDS [55, 56]. In the 
model of injury and fibrosis of unilateral ureteral 
obstruction (UUO) mice, exogenous H2S could 
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alleviate macrophage infiltration, tissue fibrosis, and 
inhibit NF-κB and IL-4/signal transducer and 
activator of transcription 6 (STAT6) signaling 
pathways and NLRP3 inflammasome, and NLRP3 
inhibitor had the effect similar to that of H2S, which 
suggested that H2S alleviated renal fibrosis via 
inhibiting NLRP3 inflammasome. These studies also 
showed that NLRP3 inflammasome activation 
contributes to macrophage infiltration and tissue 
fibrosis, and NF-κB and IL-4/STAT6 signaling 
pathways were related to macrophage infiltration. So, 
it could be inferred that H2S alleviates renal fibrosis in 
response to UUO by suppressing macrophage 
infiltration through inhibition of NLRP3 
inflammasome via NF-κB and IL-4/STAT6 signaling 
pathways, which needed to be further proven [57-59]. 

H2S plays neuroprotection role by 
influencing NLRP3 inflammasome 

Intracerebral haemorrhage (ICH) is a devastating 
stroke with high mortality and incidence rate. 
Countless evidences from preclinical and clinical 
studies suggested that inflammatory mechanisms 
were involved in ICH-induced secondary brain injury 
[60, 61]. Studies have shown that the activation of 
NLRP3 inflammasome played an important role in 
the development of neuroinflammation after ICH [62]. 
Exogenous H2S could inhibit the activation of NLRP3 
inflammasome and the subsequent release of IL-1β 
induced by ICH. Purinergic P2X7 receptor (P2X7R) is 
an ATP gated, non-selective cation channel, belonging 
to the family of ionotropic P2X receptors. It was 
reported that P2X7R interacts with NLRP3 
inflammasome, which was responsible for the 
recruitment and activation of NLRP3. H2S could 
suppress the P2X7R expression and the 
overexpression of P2X7R could upregulate the 
expression of NLRP3 inflammasome on microglia 
after ICH. These results suggested that H2S could 
suppress NLRP3 inflammasome-mediated neuroin-
flammation by inhibiting P2X7 receptor after ICH in 
rats [63]. As we all know, H2S plays an important role 
in antioxidation, therefore, it is reasonable to 
speculate that in addition to inhibiting the expression 
of P2X7R, H2S can also inhibit NLRP3 
inflammasome-mediated neuroinflammation by 
directly eliminating the ROS after ICH, which still 
needs to be studied. Ischemic stroke is one of the main 
causes of the disability and death worldwide [64]. 
Inflammatory response was often involved in 
ischemic stroke injury [65]. H2S could play a 
neuroprotective role by inhibiting the activation of 
NLRP3 inflammasome in ischemic brain [66].The 
inhibitory effect of H2S on NLRP3 inflammasome has 
potential therapeutic value for ischemic stroke injury. 

H2S inhibits NLRP3 inflammasome in 
macrophages 

Fatty acids (FA) have been shown to induce 
inflammation in primary human macrophages [67]. In 
FA-induced RAW264.7 cell, the protein expression 
level of NLRP3 inflammasome and the level of IL-1β 
and IL-18 were increased and the the TLR4/ NF-κB 
pathway was activated, while H2S could counteract 
these changes. NLRP3 siRNA reduced the level of 
IL-1β and IL-18 induced by FA, suggesting that 
NLRP3 inflammasome mediated FA-induced 
inflammation. TLR4 inhibitor and NF-κB inhibitor 
reduced the protein expression level of NLRP3 
inflammasome induced by FA, suggesting that 
TLR4/NF-κB mediated the activation of NLRP3 
inflammasome induced by FA. In summary, it could 
be inferred that exogenous H2S suppressed NLRP3 
inflammasome-mediated inflammation by inhibiting 
TLR4/NF-κB pathway in FA-induced RAW264.7 
cells, which needed further study [35]. It has been 
shown that mitochondrial uncoupling protein 2 
(UCP2) regulated NLRP3 inflammasome by inducing 
lipid synthesis in macrophages [68], So whether 
exogenous H2S could regulate lipid synthesis 
pathway by inhibiting NLRP3 inflammasome needed 
further research. The activation of NLRP3 
inflammasome in macrophages has been considered 
to be involved in diseases [69-75]. Exogenous H2S 
could inhibit NLRP3 inflammasome-mediated 
inflammation in human macrophages exposed to 
H2O2, which was related to the reduction of 
mitochondrion ROS (mtROS). The in depth study on 
the mechanism of the above effect showed that H2S 
decreased the production of mtROS by 
S-sulfhydrating c-Jun at cysteine-269. The suppression 
of S-sulfhydrated c-Jun of H2S could reverse the 
inhibition of H2S on NLRP3 inflammasome, 
suggesting that H2S inhibited the NLRP3 
inflflammasome activation via sulfhydration of c-Jun 
at cysteine-269. The S-sulfhydrated c-Jun of H2S 
increased SIRT3 expression, and in the macrophages 
of SIRT3−/− mice exposed to H2O2, the inhibition of 
H2S on NLRP3 inflammasome was diminished, which 
suggested that H2S inhibited NLRP3 inflammasome 
through SIRT3 [76]. The modification of c-jun by H2S 
may provide ideas for the treatment of NLRP3 
inflammasome involved diseases. In primary human 
macrophages, H2S inhibited monosodium urate 
(MSU)-induced NLRP3 inflammasome activation, 
xanthine oxidase (XO) activity and mtROS generation 
while febuxostat (a XO-inhibitor) diminished 
MSU-induced mtROS generation and NLRP3 
inflammasome activation, which suggested H2S was 
capable of inhibiting NLRP3 inflammasome by 



Int. J. Biol. Sci. 2020, Vol. 16 
 

 
http://www.ijbs.com 

2757 

suppressing XO activity [77, 78]. 

H2S plays a protective role by influencing 
NLRP3 inflammasome in diabetes 

Chronic, low-level systemic and aseptic 
inflammation is a common feature of diabetic 
cardiomyopathy (DCM) [79]. A study showed that 
inhibiting NLRP3 inflammasome could significantly 
alleviate DCM [80]. H2S has been reported to protect 
cardiomyocytes from inflammation and cell death in 
diabetic models [81, 82]. In high glucose(HG)-induced 
H9c2 cardiac cells, the protein expression level of 
NLRP3 inflammasome and the level of IL-1β and 
IL-18 were increased and the the TLR4/NF-κB 
pathway was activated, while H2S could counteract 
these changes. NLRP3 siRNA reduced the level of 
HG-induced IL-1βand IL-18, indicating that NLRP3 
inflammasome mediated HG-induced inflammation. 
TLR4 inhibitor and NF-κB inhibitor reduced the 
protein expression level of HG-induced NLRP3 
inflammasome, indicating that TLR4/NF-κB 
mediated the activation of NLRP3 inflammasome in 
HG-induced H9c2 cardiac cells. In summary, it could 
be inferred that exogenous H2S suppressed NLRP3 
inflammasome-mediated inflammation by inhibiting 
TLR4/NF-κB pathway in H9c2 cardiac cells, which 
needed further study [36]. HG could cause lipid 
metabolism disorder, and NLRP3 inflammasome 
participated in lipid metabolism process [70], so 
whether H2S could improve lipid metabolism through 
NLRP3 inflammasome to alleviate DCM needed 
further study. Diabetic retinopathy is a common 
complication of diabetes mellitus, which is also the 
main cause of visual impairment and blindness [83]. 
Chronic hyperglycemia damaged not only the retinal 
vessels but also the retinal pigment epithelial cells 
(RPE)[84]. In HG-induced RPE cells, HG increased the 
production of intracellular ROS and the level of IL-1β 
and IL-18 and activated NLRP3 inflammasome while 
H2S counteracted these changes. Knock down of 
NLRP3 decreased the level of IL-1β and IL-18, 
suggesting that NLRP3 inflammasome mediated the 
HG-induced inflammation. In conclusion, H2S inhibits 
HG-induced inflammation of human retinal pigment 
epithelial cells through inhibiting NLRP3 
inflammasome [85]. In HG-induced 3T3-L1 
adipocytes, H2S has the effect similar to the above 
[86]. H2S has therapeutic effect on diabetes through 
inhibiting NLRP3 inflammasome. Diabetes- 
accelerated atherosclerosis is the most common 
cardiovascular complication of diabetes mellitus [87]. 
H2S also decreased the HG-induced endothelial injury 
and the protein expression level of NLRP3 
inflammasome in vivo and in vitro, while the 
silencing of NLRP3 had the effect similar to that of 

H2S, suggesting that H2S protected against 
diabetes-accelerated atherosclerosis by inhibiting the 
activation of NLRP3 inflammasome [88]. It provided 
the new evidences for the treatment of cardiovascular 
diseases with H2S. NLRP3 inflammasome is related to 
lipid metabolism, and H2S can promote lipolysis [89], 
so It can be deduced that H2S can promote lipolysis by 
inhibiting NLRP3 inflammasome against 
diabetes-accelerated atherosclerosis, which needs 
further study. 

H2S plays a protective role in other 
inflammatory reactions by inhibiting 
NLRP3 inflammasome 

Repeated exposure of mice to high 
concentrations of ozone has been shown to cause 
chronic lung inflammation, emphysema and airflow 
restriction [90]. In ozone exposed mice, ozone 
increased the protein expression level of the NLRP3 
inflammasome, cleavage caspase-1 and the level of 
p38 mitogen-activated protein kinases (MAPK) 
phosphorylation and decreased the level of protein 
kinase B (Akt) phosphorylation, while H2S 
counteracted these changes [91]. Therefore, it can be 
inferred that H2S can alleviate lung inflammation 
caused by ozone exposure through supressing NLRP3 
inflammasome and p38MAPK/Akt pathways, which 
needs to be proven by using specific inhibitors or 
specific knock-out mice to block certain pathways. It 
is reported that NLRP3 inflammasome mediated 
dextran sodium sulfate (DSS)-induced colitis. H2S 
could reduce the inflammation of colitis induced by 
DSS through inhibiting the activation of NF- κB 
pathway, so it could be infered that H2S could relieve 
DDS-induced colitis through suppressing NLRP3 
inflammasome via NF- κB pathway, which neede 
further study [92-95]. In DSS-induced colitis, H2S 
decreased the protein expression level of NLRP3 
inflammasome, pro-caspase-1, and Nrf2 and the 
silencing Nrf2 has the effects similar to the above, 
which indicated that H2S inhibited NLRP3 
inflammasome through Nrf2 pathway [96]. H2S could 
ameliorate endothelial dysfunction and hypertension 
[97, 98]. The mechanism research showed that H2S 
could improve endothelium-dependent contraction 
and relaxation and reduce the protein expression 
levels of NLRP3 inflammasome and the level of IL-1β 
in spontaneously hypertensive rats. The above 
ameliorative effects of H2S were abolished by LPS (a 
NLRP3 activator), suggesting that H2S ameliorated 
endothelial dysfunction and hypertension by 
inhibiting NLRP3 inflammasome [99]. It suggested 
that the effect of H2S on NLRP3 has potential 
therapeutic function in the treatment of hypertension. 
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H2S promotes NLRP3 inflammasome to 
promote diseases development 

Besides the anti-inflammatory effect, H2S can 
also promote the inflammatory reaction to participate 
in the development of diseases through promoting 
NLRP3 inflammasome. The studies showed that in 
human monocyte, H2S could induce NLRP3 
inflammasome dependent secretion of IL-1β and IL-18 
by promoting the assembly of NLRP3 inflammasome 
to contribute to diseases development [100, 101]. In 
broiler thymus, the atmospheric H2S could activate 
NLRP3 inflammasome to decrease thymus index, 
thymus immunoglobulin and T lymphocyte number 
and damaged thymus morphology, which suggested 
that the atmospheric H2S has immunotoxicity. The 
mechanism study of the above actions showed that 
TLR-7/myeloid differentiation factor 88(MyD88)/NF- 
κB pathway was activated by H2S. So It can be 
inferred that H2S might activate NLRP3 
inflammasome via TLR-7/MyD88/NF-κB pathway, 
which needed to be further proven [102].Under what 
conditions does H2S promote NLRP3 needs further 
study. 

Summary 
H2S has both anti-inflammatory and 

pro-inflammatory effects and the mechanism has not 
been fully studied. The current researches have 
showed that the mechanism of H2S in inflammation 
was related to the concentration of H2S, the stage of 
development of inflammatory diseases and the types 
of tissues affected by H2S. For example, the low 
concentration of H2S can inhibit the inflammatory 
response to reduce the inflammatory damage of 
tissues and organs, while the high concentration of 
H2S can promote the inflammatory response to 
aggravate the inflammatory damage. Similar to the 
above, the effects of H2S on NLRP3 inflammasome are 
either inhibition or promotion. Whether H2S can 
inhibit NLRP3 inflammasome to play a protective role 
or promote NLRP3 inflammasome to participate in 
the development of diseases, especially the latter, 
needs further study. No matter what role H2S plays, 
the research and development of H2S donor or H2S 
inhibitor related drugs will provide a new way for the 
treatment of inflammatory diseases. In addition, the 
mechanism of H2S acting on NLRP3inflammasome 
has not been fully studied. For example, whether H2S 
can act on NLRP3 inflammasome by influencing 
lysosomal rupture or K+ efflux remains to be 
elucidated. 

In conclusion, NLRP3 inflammasome may be a 
potential target for H2S therapy in inflammatory 

diseases with the in-depth study of the effect of H2S 
on NLRP3 inflammasome. 
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