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Abstract 

Alcoholic liver disease (ALD) is the most prevalent type of chronic liver disease worldwide with a wide 
spectrum of liver pathologies ranging from simple steatosis to steatohepatitis, cirrhosis, and even 
hepatocellular carcinoma. It has been demonstrated that ALD is mediated in whole or in part by a central 
signaling molecule sirtuin 1 (SIRT1), a conserved class III histone deacetylase.SIRT1 plays beneficial roles 
in regulating hepatic lipid metabolism, inhibiting hepatic inflammation, controlling hepatic fibrosis and 
mediating hepatocellular carcinoma in ALD. However, underlying molecular mechanisms are complex 
and remain incompletely understood. The aim of this review was to highlight the latest advances in 
understanding of SIRT1 regulatory mechanisms in ALD and discuss their unique potential role as novel 
therapeutic target for ALD treatment. 
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Introduction 
Alcohol abuse is the leading cause of alcoholic 

liver disease (ALD) worldwide [1]. Now, ALD has 
becoming a major public health problem worldwide 
and a leading cause of morbidity and mortality 
worldwide. It covers multiple pathological types, 
including simple steatosis, alcoholic steatohepatitis 
(ASH), progressive fibrosis, advanced cirrhosis, and 
hepatocellular cancer (HCC) [2, 3]. Notably, ASH is 
recognized as a potential precursor for fibrosis and 
hepatocellular carcinoma [2, 4].Despite extensive 
research on understanding the mechanism of ALD, 
there are still no targeted therapies available. 

The sirtuins are a family of evolutionarily 
conserved NAD-dependent class III histone 
deacetylase [5-7]. The sirtuins family consist of seven 
members (SIRT1 - 7) and sirtuin 1 (SIRT1) is the most 
extensively studied among them [8]. They regulate 
many cellular and physiological processes in normal 
and diseased conditions [7]. Recent reports indicate 
that sirtuins play important roles in regulating the 
ALD related metabolic processes [9-11]. Early studies 
reported that ethanol exposure reduces SIRT1 gene 
and protein expression levels[11].The decreased 

SIRT1 levels plays crucial roles in the regulation of 
ALD by modifying the acetylation status of various 
target molecules, including histones, transcriptional 
regulators, and its co-regulators [11-14]. In this 
review, we will summarize the latest advances about 
roles of SIRT1 in ALD, with a focus on how SIRT1 
regulates lipid metabolism, oxidative stress and 
inflammation, fibrosis and HCC in the liver. We will 
also discuss the more potential mechanisms of alcohol 
regulation of SIRT1 levels in ALD and applications of 
SIRT1 activators as therapeutic agents for ALD 
treatment. 

1. Ethanol regulates hepatic SIRT1 
As summarized in figure 1, ethanol exposure 

decreases SIRT1 expression levels, and ultimately 
inhibits SIRT1 deacetylase activity in the liver [11, 
15-17]. However, the specific mechanism needs 
further clarification. 

Ethanolis mainly metabolized through the 
oxidative pathways that are mediated by alcohol 
dehydrogenase (ADH) and aldehyde dehydrogenase 
(ALDH), which resulting in reduction of NAD+ [2]. 
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SIRT1 is a NAD(+)-dependent deacetylase and thus 
ethanol mediated decreased NAD+/NADH levels 
could inhibit SIRT1 activity in liver [18, 19]. SIRT1 is 
highly sensitive to intracellular oxidation state. In 
addition to the main oxidative metabolism pathways 
mentioned above, both the reaction catalyzed by 
microsomal CYPs, mainly CYP2E1,and the pathway 
mediated by peroxisomal CAT, compose a small 
percentage of alcohol oxidation[20, 21].The 
unfavorable products of oxidative metabolism in 
ALD, including acetaldehyde and acetate, may 
ultimately down-regulate hepatic SIRT1 and activity 
[22]. Interestingly, deletion of SIRT1 drastically 
exacerbates ethanol mediated oxidative stress, 
indicating that the inhibition of SIRT1 in ALD may 
format a feedback loop to further suppress SIRT1 
through ROS production [15]. In addition, the 
localization of SIRT1 determines its activity and 
function. In general, SIRT1 is predominately located 
in the nucleus and exert protective roles in liver, as 
reported previously [23]. SIRT1 translocated from the 
nucleus to the cytoplasm from the nucleus to the 
cytoplasm when liver tissue exposure to alcohol [24]. 
Therefore, ethanol exposure increase ROS production, 

decrease NAD+/NAD ratio and disturb SIRT1 
nucleocytoplasmic shuttling, and ultimately inhibits 
SIRT1 deacetylase activity in the liver[25, 26]. 

In addition, microRNAs (miRs) have been 
recently shown to be widely involved in the 
development of ALD. MiR-217 is dramatically 
up-regulated in livers of chronically ethanol-fed mice 
and overexpression of miR-217 weaken 
ethanol-induced functions of SIRT1 [17, 27]. 
Therefore, hepatic miR-217 inhibition could be an 
attractive therapeutic approach for treating human 
alcoholic fatty liver disease. MiR-34a, another 
important microRNA in ALD progression, was also 
increased in ethanol-exposed mouse liver in vivo [28]. 
Up-regulated miR-34a level contributes to alcoholic 
liver injury through inhibiting SIRT1 expression [28]. 
Beyond miR-217 and miR-34a, other miRNAs are also 
known to regulate SIRT1 [29]. MiR-128-3p, 
miR-miR-9, MicroRNA-29a and miR-22all can 
reducedSIRT1 expression and exacerbated the 
inflammatory response [30-33]. However; their roles 
in the development of ALD will need to be further 
investigated. 

 
 
 

 
Figure 1. Mechanisms of hepatic SIRT1 expression and activity in response to ethanol challenge. Ethanol metabolism is a ROS generation process, which are 
carried out mainly by the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), and partially by CYP2E1.Ethanol-induced oxidative stress directly 
down-regulate NAD+ levels, increase ethanol metabolism product (acetaldehyde and acetate), increase SIRT1 nucleocytoplasmic shuttling, improve miRNAs that are associated 
with ALD progression, and ultimately inhibits SIRT1 gene and protein expression levels in the liver. The decreased SIRT1 levels in ALD result in liver injury and inflammation. 
Meanwhile, high levels excessive ethanol consumption can also directly damage cellular proteins and DNA and disturb ROS signaling, and then damage the liver tissue. 
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2. SIRT1 and steatosis/inflammation 
2.1 SIRT1 and steatosis 

Steatosis is characterized by the accumulation of 
triglycerides (TAGs) in the cytoplasm of hepatocytes. 
Recent studies indicate that ethanol mediated SIRT1 
downregulation promote two key events in the 
development of steatosis. These events include 
alcohol stimulating lipogenesis and inhibiting fatty 
acid oxidation [11, 15, 34-36]. However, the 
underlying mechanism needs to be fully elucidated. 
Emerging evidence demonstrates that ethanol 
induced SIRT1 inhibition is mainly through 
disruption of a signaling network mediated by 
various transcriptional regulators and co-regulators, 
including termed mTOR complex 1(mTORC1), sterol 
regulatory element-binding protein 1c (SREBP-1c), 
peroxisome proliferator-activated receptor α 
(PPARα), lipin-1, AMP-activated kinase (AMPK), 
adiponectin, nuclear transcription factor-κB (NF-κB), 
PPARγ co-activator-1α (PGC-1α)[11, 14, 37]. 
Disruption of the signaling network by ethanol via 
SIRT1 inhibition ultimately leads to steatosis and 
inflammatory injury in liver (Figure 2). 

SIRT1 andSREBP-1c 
Roles of SREBP-1c have been established as lipid 

synthetic transcription factors especially for 
cholesterol and fatty acid synthesis [38]. Previous 
studies have shown that ethanol causes liver steatosis 
by elevating SREBP-1cexpression, which gradually 
promote fatty acid synthesis in animal models [39]. 
Meanwhile, SIRT1 can directly interact with and 
deacetylates SREBP-1c and eventually inhibits 
SREBP-1C activity in regulation of hepatic lipid 
metabolism [40]. Therefore, inhibition of SIRT1 
activity by ethanol feeding was related to an increase 
in the acetylated form of SREBP-1c, and consequently 
leading to the development of steatosis [26]. 
Therefore, regulation of SIRT1-SREBP-1c axis has 
been proposed as one of the underlying mechanisms 
linking ethanol exposure with hepatic steatosis 
development. Interestingly, alcohol also 
down-regulates factors that reduce SREBP-1c 
expression, such as AMP-activated protein kinase 
(AMPK), suggesting the regulation of SREBP-1 
activity by SIRT1 via AMPK dependent- or 
independent-mechanisms in ALD [41]. 

SIRT1 and DEPTOR-mTORC1 
The mechanistic target of rapamycin (mTOR), an 

evolutionarily conserved protein kinase, is part of the 
phosphoinositide 3-kinase (PI3K)-related family [42]. 
mTOR consist of two different functional complexes, 
known as mTOR complex 1 (mTORC1) and mTOR 

complex 2 (mTORC2)[42, 43]. DEP domain-containing 
mTOR-interacting protein (DEPTOR) has recently 
been proved an mTOR binding protein that inhibits 
the mTOR kinase [44, 45]. The present study 
demonstrates thatmTORC1 activation plays a causal 
role in alcoholic steatosis, inflammation, and liver 
injury. Hepatocyte-specific deletion of SIRT1 disrupts 
DEPTOR signaling pathway, promotes mTORC1 
activation, and exacerbates the development of 
alcoholic fatty liver and liver injury in mice [46]. 
Mechanically, Chronic alcohol consumption causes 
SIRT1 suppression in hepatocytes, which lead to the 
downregulation of DEPTOR and activation of 
mTORC1 [46]. Further, studies show that aberrant 
activation of mTORC1 by alcohol stimulates 
transcriptional activity of SREBP-1, promotes the 
cytoplasmic translocation of lipin 1, and inhibits the 
transcriptional activity of PPARα, which in turn 
increases fatty acid synthesis and downregulates fatty 
acid oxidation [46].  

SIRT1 and PPAR-α/ PGC-1α 
PPAR-α and PGC-1α are prominent transcrip-

tional regulators of lipid metabolism [47-49]. On one 
hand, studies found that ethanol consumption can 
indirectly inhibit PPAR-α via up-regulation of 
CYP2E1-derived oxidative stress [50]. On the other 
hand, SIRT1 regulates lipid homeostasis by positively 
regulating PPAR-α [12]. Therefore, SIRT1 
downregulation in ethanol feeding mice reduce 
PPAR-α level, eventually leading to increased fatty 
acid synthesis. Of course, ethanol-induced damage of 
hepatic fatty acid oxidation and lipid accumulation, 
largely by inactivating hepatic PGC-1α, a key 
transcriptional coactivator for PPARα signaling 
pathway. SIRT1 directly interacts with, and 
deacetylates PGC-1α, which subsequently modulates 
PGC-1α activity [51, 52]. Hepatocyte-specific deletion 
of SIRT1 disturbs PGC-1α-PPARα signaling pathway, 
reduces fatty acid oxidation, and causes aggravated 
liver steatosis and inflammation [53]. Impairments of 
both PGC-1α and PPAR-α have been implicated in the 
development of alcoholic steatosis in animals. 
Therefore, it is likely that disruption of 
SIRT1-PGC-1α/PPAR-α axis by ethanol may act as 
one of the main triggers of ALD. 

SIRT1 and AMPK 
The MAPK signaling pathway has been proved 

to play a key role in many biological processes, 
including cell growth, differentiation, metabolism, 
and response to environmental stress [54]. Recent 
studies demonstrated that AMPK/SIRT1 activation 
plays an important protective role in ethanol- 
mediated liver diseases. Mechanically, AMPK can 
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activate SIRT1 by increasing the substrate for SIRT1 
activity that is NAD+ levels, and SIRT1 can also 
activate AMPK via the regulation of classical 
upstream AMPK kinase, liver kinase B1 [55]. 
Therefore, dysregulation of hepatic AMPK signaling 
pathway in response to chronic ethanol exposure act 
as a crucial mechanism for development of ALD in 
animals [56]. Meanwhile, some studies have also 
indicated that chronic ethanol exposure inhibited 
AMPK activity in cultured rat hepatocytes [56]. 
Ethanol-mediated inhibition of hepatic AMPK activity 
contributes to steatosis [41, 57, 58]. More 
fundamentally, ethanol-mediated impairment of 
SIRT1 and AMPK has been reported to be responsible 
for the reduction in PGC-1α and the increase in 
SREBP-1 activities in the livers of several alcohol-fed 
animal models [26, 41, 59]. Further research shows 
that resveratrol activates AMPK is SIRT1 dependent 
[60]. Resveratrol treatment improved SIRT1 activity 
and expression levels, which further stimulates 
AMPK activity in livers of ethanol-fed mice [35, 61]. 
Thus, the protective effect of resveratrol is partly 
dependent on the activation of SIRT1-AMPK 
signaling pathway in the livers of ethanol-fed mice 
[35]. 

SIRT1 and lipin-1 
Lipin-1 is a protein that exhibits dual functions 

as a phosphatidic acid phosphohydrolase (PAP) 
enzyme in the TAGs synthetic pathways and a 
transcriptional co-regulator [62]. Previous studies 
have shown that ethanol exposure up-regulates the 
lipin-1 expression and promote production of 
cytosolic lipin-1 protein, resulting in increased PAP 
activity and TAGs synthesis in cultured hepatocytes 
and in mouse livers[63].Meanwhile, drastically 
decreased Lipin-1expression in the nucleus impaired 
nuclear lipin-1-mediated PGC-1α/PPARα 
transcriptional activity, two key mitochondrial genes 
involved in fatty acid oxidation [17, 63, 64]. 
Downregulation of nuclear-localized lipin-1promote 
activation of SREBP activity, leading to enhanced 
hepatic lipogenesis [65, 66]. In conclusion, 
ethanol-induced significant down-regulation of 
hepatic nucleus lipin-1 gene expression contributes to 
the abnormalities in hepatic lipid metabolism, 
ultimately leading to development of liver steatosis 
[15, 63]. 

SIRT1 appears to be the most upstream signaling 
pathway molecule targeted by ethanol, and lipin-1 is a 
vital downstream regulator that may be responsible 
for ethanol-mediated signaling pathway interference 
that are controlled by SIRT1 in liver [15, 63]. In the 
present, studies demonstrated that ethanol 
administration to Sirt1LKO mice disrupted lipin-1 

signaling pathway, eventually resulting in steatosis 
and inflammation in the liver [15]. Mechanically, 
studies found that ethanol-mediated inhibition of 
SIRT1 leads to reduced serine/arginine rich splicing 
factor 10 (SFRS10) gene and protein expression levels 
in hepatocytes. In short, dysfunction of lipin-1 in 
ethanol metabolism is largely via SIRT1-SFRS10 
inhibition [15]. We have already discussed that SIRT1 
inhibition may directly perturb PGC-1α/PPAR, 
leading to decreased activities of fatty acid oxidation 
enzymes [2, 53]. Interestingly, nuclear lipin-1 function 
is also a transcriptional co-activator by interacting 
with PGC-1α/PPAR-α[64]. The impaired function of 
the SIRT1-lipin-1 axis in alcoholic steatosis may lead 
to inhibited PGC-1α/PPAR-α [15, 64]. These findings 
clearly suggest the role of SIRT1-SFRS10-lipin-1 
pathway in the development of alcoholic steatosis in 
mice. 

SIRT1 and Adiponectin 
Adiponectin is an adipocyte-derived cytokine 

and it has also been discussed that it protects the liver 
from alcohol-mediated damage [67, 68]. The 
adiponectin receptors (AdipoRs), including AdipoR1 
and AdipoR2, mediate the metabolic actions of 
adiponectin [69]. Studies indicated that the 
development of alcoholic fatty liver is associated with 
reduced adiponectin levels, down-regulated hepatic 
adiponectin receptors, and disordered hepatic 
adiponectin signaling pathway in animals [70, 71]. 
Studies have shown that adiponectin exerts its 
protective roles in ALD mainly mediated by various 
transcriptional regulators, including SIRT1, AMPK, 
SREBP-1, Forkhead box O1 (FoxO1)and 
PGC-1a/PPAR-a, and eventually leading to enhanced 
lipid oxidation, reduced lipid synthesis and inhibition 
of hepatic steatosis [56, 71]. The down-regulated 
SIRT1 levels in chronically ethanol-fed mice can 
inhibit hepatic AdipoR1/R2 expression [71]. In turn, 
impairment of SIRT1 signaling pathway by ethanol 
exposure is, in whole or in part, due to 
ethanol-mediated inhibition of adiponectin in liver 
[72]. These results demonstrated thatSIRT1 is an 
important promotor in the events of adiponectin 
decreasing the hepatic steatosis in ethanol -fed mice. 
In addition, reductions in AMPK protein and PPAR-a 
DNA-binding activity in alcohol-fed animal were 
observed and treatment with adiponectin restored the 
ethanol inhibited PGC-1a/PPAR-a activity [68, 71]. 
These observations suggest that hepatoprotective 
roles of adiponectin in ALD are dependent on AMPK. 
Given that SIRT1-AMPK signaling pathway is 
upstream of SREBP-1c, stimulation of SIRT1-AMPK 
signaling pathway by adiponectin should also blunt 
ethanol-mediated SREBP-1c activation. However, it is 
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still not clear whether or not adiponectin can directly 
block the ethanol stimulated SREBP-1c activation. 

FoxO1, a major target of SIRT1, has been 
established as a key player in the regulation of lipid 
metabolism [73]. SIRT1-FoxO1 signaling pathway has 
been shown to affect hepatic AdipoR2 gene 
expression accompanied by improved hepatic FoxO1 
hyperacetylation and enhanced nuclear FoxO1 
protein levels in the livers of ethanol-fed mice [24]. 

2.2 The role of SIRT1 in ethanol-induced 
hepatic inflammation 

A growing body of evidences suggests that 
inflammatory processes are primary contributors to 
the development and progression of ALD, which are 
characterized by presence of inflammatory cells 
infiltration and high levels of pro-inflammatory 
cytokines [37, 74]. Many cell types in the liver 
involved in inflammation of ALD, including 
hepatocyte and myeloid cells, as well as other cell 
types [75]. NF-kB is a transcription factor which plays 
an important role in regulating inflammation [76]. It 
has been shown that SIRT1 participate in the 

pathogenesis of inflammation associated ethanol fatty 
liver diseases[22, 36, 37].Further mechanistic studies 
revealed that inhibition of SIRT1was associated with a 
marked increase in the acetylation of the RelA/p65 
subunit of NF-κB and promotion of NF-κB 
transcriptional activity [22, 77]. Specifically, 
liver-specific deletion of SIRT1 exacerbates 
chronic-binge ethanol-induced fatty liver injury in 
mice, as indicated by substantially enhanced the 
levels of F4/80+ staining in the livers of ethanol-fed 
Sirt1LKO mice and elevated mRNA expression levels 
of pro-inflammatory cytokines compared with the 
livers of ethanol-fed WT mice[15]. Consistently, 
myeloid cell-specific disruption of SIRT1 in mice 
reveals that SIRT1 deficiency in macrophages induces 
NF-κB hyperacetylation, resulting in hepatic 
inflammation [78]. Conversely, mice with moderate 
overexpression of SIRT1 gene show beneficial effects 
on the liver by decreasing the proinflammatory 
cytokines including IL-6 and TNF-αt through 
downregulation of NF-kB activity [79].  

 
 
 

 
Figure 2. The roles of SIRT1 in the pathogenesis of alcoholic steatosis and inflammation. Lipogenesis and fatty acid β-oxidation are two major factors that are 
responsible for this impaired hepatic lipid balance in ALD. Ethanol-mediated SIRT1 inhibition and SIRT1 dysfunction promote the development of steatosis through reducing 
PPARα and PGC-1α level, inhibiting AMPK activity, decreasing circulating adiponectin, activating PAP and mTORC1activities, elevating SREBP-1c expression. These impaired 
networks subsequently lead to accumulated hepatic triglycerides, increased fatty acid synthesis, decreased fatty acid oxidation, enhanced inflammatory response and steatosis 
development. In addition, the inhibition of SIRT1 in Kupffer cells was related to a marked increase in the acetylation of NF-κB, which leads to inflammation of ALD 
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Chronic inflammation acts as a widely 
recognized hallmark in ageing process [80, 81]. 
Accumulating studies have proved that SIRT1 
involved in many biological processes through 
regulating protein acetylation, thus, promotes 
longevity [82, 83]. Previous studies researched that 
hepatic expression of SIRT1 protein was 
downregulated in the middle-aged mice compared to 
young mice, which lead to more liver injury and 
inflammation induced by ethanol feeding in 
middle-aged mice and aged mice when compared to 
young [84]. These data indicate that SIRT1 is an 
essential negative inflammatory regulator in alcohol 
induced liver diseases; thereby reducing 
inflammatory cells infiltration and pro-inflammatory 
cytokines production in the liver (Figure 2). 

SIRT1 and Alcoholic Fibrosis 
Liver fibrosis is characterized by excessive 

accumulation of the extracellular matrix (ECM)[85]. 
The cell type that is predominantly responsible for 
fibrotic processes is hepatic stellate cells (HSCs), 
which comprise approximately 5–10%of total resident 
cells in normal human liver [85]. It is well accepted 
that HSCs activation is the critical event accompanied 
with upregulation of transforming growth factor beta 
1(TGF-β1) and activate collagen production in liver 
fibro-genesis [86]. Recently, the roles of SIRT1 in 
alcoholic fibrosis had also been widely reported [84, 
87]. Studies found that overexpression of SIRT1 
attenuated TGF-β1-induced expression of 
myofibroblast markers [87]. Consistently, ethanol fed 
liver-specific deletion of SIRT1 (Sirt1LKO) promotes 
ethanol-mediated liver fibrosis in the livers, as 
indicated by increased levels of α-SMA and early 
markers of hepatic fibrosis such as collagen I, tissue 
inhibitor of metalloproteinase 1 (Timp-1), or 
TGF-β1[15]. In addition, HSC-specific SIRT1 knockout 
mice were more susceptible to ethanol-induced liver 
fibrosis with upregulation of alpha-smooth muscle 
actin (α-SMA), platelet derived growth factor (PDGF) 
and Collagen alpha-1(V) chain (Col5a1) mRNA levels 
[84]. Downregulation of SIRT1 expression in HSCs 
from middle-aged mice contributes to the increased 
ethanol-induced liver injury and fibrosis, which 
accompanied by PDGFR-α and c-Myc expression 
upregulation [84]. Both PDGFR-α and c-Mycare are 
two of the most important factors that promotes HSC 
activation via TGF-β signaling [88, 89]. 
Correspondingly, restoration of SIRT1expression 
ameliorated short-term plus binge ethanol-induced 
liver injury and fibrosis in middle-aged mice [84]. 
Therefore, activation of SIRT1 may be a potential 
therapeutic strategy for the treatment of ALD in 
elderly patients (Figure 3).  

3. SIRT1 and Hepatocellular carcinoma 
Hepatocellular carcinoma (HCC) is an 

increasingly diagnosed disease state in the liver for 
which alcohol is a leading risk factor for promoting 
HCC development [90]. SIRT1 is a protein deacetylase 
known to act as a tumor promoter or suppressor in 
different cancers [91-93]. Recent studies have 
demonstrated that SIRT1 is strongly associated with 
the clinical outcomes of HCC. In HCC cells, SIRT1 had 
a predominant nuclear localization where its 
expression promotes tumorigenesis, while, 
cytoplasmatic SIRT1 may have tumor-suppressive 
roles [94, 95].Although SIRT1 appears to be a 
promising target for preventing ALD, there are few 
studies that have reported the roles of SIRT1 in 
ethanol-fed HCC due to lack of appropriate models 
[96]. Previous studies demonstrated that chronic, 
heavy ethanol consumption accelerates hepatocellular 
carcinoma progression accompanied by elevated 
SIRT1 expression, which are strong correlated with 
the upregulation of PGC-1α in HCC specimen [95, 97]. 
Meanwhile, few literatures reported that SIRT1 was 
downregulated in human HCC samples and 
hypothesized SIRT1 functions as a potential tumor 
suppressor [93, 98]. These findings are somewhat 
paradoxical, because of many SIRT1 protective roles 
in ALD. Of course, some experimental and clinical 
evidence suggest that many unique mechanisms, like 
decreased immune surveillance induced by impaired 
NK cells function contribute to the development of 
HCC specifically in patients with ALD [99]. It is 
worthwhile to furtherly investigate whether SIRT1 
regulates this pathway in alcoholic HCC (Figure 3). 

Conclusion & future perspective 
ALD is a major cause of advanced liver disease 

worldwide. Here, we have summarized the latest 
progress on the roles of SIRT1 in ethanol-induced 
steatosis, inflammation, fibrosis, and HCC. As 
summarized in figure 1, ethanol exposure reduces 
SIRT1 gene and protein expression levels, induces 
SIRT1 nucleocytoplasmic shuttling. As summarized in 
figure 2, Ethanol-mediated impairment of hepatic 
SIRT1 signaling via multiple transcriptional 
regulators and co-regulators in the liver contributes to 
development of alcoholic steatosis and inflammation. 
As summarized in figure 3, downregulation of SIRT1 
in hepatocytes and HSCs contributes to 
ethanol-induced liver injury and fibrosis in mice, 
while elevated SIRT1 expression accelerates 
hepatocellular carcinoma progression. Even though 
the mechanism of the roles of SIRT1 in alcoholic liver 
disease has been extensively explored, there are still 
many problems that need to be explored. 
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Figure 3. The roles of SIRT1 in the progression of alcoholic liver fibrosis and HCC. Chronic ethanol exposure result in elevated release of LPS, which enters the liver 
and activates resident macrophages (Kupffer cells), release proinflammatory cytokines and chemokines, eventually promote HSC activation via downregulation of PDGFα and 
c-Myc. Meanwhile, downregulation of SIRT1 in hepatocytes and HSCs contributes to the increased susceptibility to ethanol-induced liver injury and fibrosis in mice. Chronic, 
heavy ethanol consumption accelerates hepatocellular carcinoma progression accompanied with elevated SIRT1 expression, which are strong correlated with the upregulation 
of PGC-1α in HCC specimen. Interestingly, HCC generation partly due to impaired NK cell function in ALD. 

 
Firstly, the more precise mechanisms by which 

ethanol inhibits SIRT1 activity will require further 
elucidation. Given that SIRT1 can be regulated at 
multiple posttranslational modifications and these 
epigenetic alterations can contribute to the initiation 
and progression of ALD, it will be important to 
identify whether ethanol affects acetylation, 
phosphorylation, O-linked N-acetyl β-D glucosamine 
(O-GlcNAcylation) and the 3- untranslated region 
(UTR) of mRNA modification of SIRT1, which all can 
eventually weaken the activity of SIRT1.Previous 
studies have been reported IL-6 stimulation enhanced 
JAK1-mediated Sirt1 phosphorylation [100]. Increased 
O-GlcNAcylation level dynamically modifies SIRT1 at 
Ser-549 thus enhancing its catalytic activity when the 
cell is under stress condition [101]. RNA-binding 
protein RPS3 contributes to hepatocarcinogenesis by 
post-transcriptionally up-regulating SIRT1 [102]. 
Therefore, it will be important to determine whether 
and how ethanol mediated SIRT1 undergoes these 
post-transcriptional modifications during the ALD 
process. 

Beside, HCC is a heterogeneous tumor 
associated with multiple molecules and various 
signaling pathways in its development and 
progression [103]. Although the role of SIRT1 within 
the progression of HCC has been intensively studied 
in recent years, the roles of SIRT1 in liver cancer are 
still controversial. In some reports, SIRT1 is frequently 
overexpressed in HCC, where it promotes 
tumorigenic, metastasis, and chemoresistance [94]. 
However, in other reports it was also shown that 

SIRT1 protein levels were decreased in HCC when 
compared to their normal controls [98]. Therefore, the 
overexpression of SIRT1 resulted in antitumor effect 
in HCC [104]. The question of whether SIRT1 is a 
tumor suppressor or oncogene in HCC caused by 
long-term heavy drinking remains unclear. Furtherly, 
it’s necessary to identify the roles of SIRT1 in different 
pathological stages of ethanol-induced HCC. 

Lastly, an increasing number of studies suggest 
that natural compounds might provide a novel 
strategy for ALD treatment [105]. Resveratrol, SIRT1 
activator, is the most extensively studied and 
promising for ALD[106, 107].Unfortunately, even 
though beneficial action of resveratrol has been well 
established in ALD animal models, resveratrol is 
restricted in clinical application by its poor oral 
bioavailability, chemical stability and low water 
solubility [37]. 
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TAGs: triglycerides; FA: fatty acid; DEPTOR: 
mTOR-interacting protein; mTORC1: mTOR ( 
mechanistic target of rapamycin) complex 1; 
SREBP-1c: sterol regulatory element-binding 
proteins-1c; FoxO1: Forkhead box transcription factor 
O1; TLR4: toll like receptor 4; HSC: Hematopoietic 
stem cell; NF-κB: nuclear transcription factor-κB; 
TLR4: toll like receptor 4; TGF-β: transforming growth 
factor beta; PDGFR-α: PDGF receptor-α; α-Sma: 
alpha-smooth muscle actin; Timp-1: tissue inhibitor of 
metalloproteinase 1; NK cells: Natural killer cells; 
LPS: Lipopolysaccharide; PGC-1α: PPARγ 
co-activator-1α. 
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