Appendix A. Supplementary material

Title: MLKL inhibits intestinal tumorigenesis by suppressing STAT3 signaling pathway

Qun Zhao ^{1,3} \cong , Xinran Cheng ¹, Jian Guo ¹, Yun Bi ¹, Li Kuang ², Jianhua Ren ², Jing Zhong ¹, Longrui Pan ¹, Xudong Zhang ¹, Yang Guo ¹, Yongqiang Liu ⁴, Shu Jin ⁵, Yan Tan ¹, Xianjun Yu ^{1, \boxtimes}

Supplemental Data

Figure S1, Related to Figure 1

Figure S2, Related to Figure 2

Figure S3, Related to Figure 3

Figure S4, Related to Figure 4

Figure S5, Related to Figure 5

Supplemental figures and legends

Figure S1, Related to Figure 1. Clinical scores of disease from the chimeric mice in the AOM/DSS models were calculated at days 12, 31 and 50. * p < 0.05, ** p < 0.01 and *** p < 0.001 versus WT \rightarrow WT groups.

Figure S2, Related to Figure 2. MLKL is dispensable for the self-renewal under physiological conditions

(A) H&E staining of representative intestines from 12-month-old WT and $Mlkl^{-/-}$ mice. (B) qRT-PCR analysis of gene expression in the intestines of WT and $Mlkl^{-/-}$ mice as indicated.

Figure S3, Related to Figure 3. Loss of MLKL stimulates STAT3 signaling

(A) Heat map analysis of differentially mRNA in 6-week-old $Apc^{min/+}$ mice and $Apc^{min/+}Mlkl^{-/-}$ intestinal tissues. (B) Upregulated and downregulated genes in intestinal tissues of $Apc^{min/+}$ mice and $Apc^{min/+}Mlkl^{-/-}$ mice was shown. (C) The expression of CD44 and SOX 9 the intestine of WT and $Mlkl^{-/-}$ mice during regeneration (days 0 and 3). (D) The expression of pSTAT3 and STAT3 target gene in intestinal tissues during regeneration (days 0 and 3) in $Apc^{min/+}$ and $Apc^{min/+}Mlkl^{-/-}$ mice. (E) Protein lysates were isolated from intestine polyps from four groups of AOM/DSS-treated chimeric mice. Lysates were analyzed by western blotting to detect the expression of pSTAT3 and STAT3 target genes. * p < 0.05, ** p < 0.01 and *** p < 0.001.

Figure S4, Related to Figure 4. MLKL deficiency exacerbates IL-6/STAT3 activation HT-29 cells were treated with IL-6 for the indicated time interval in which MLKL was knocked down. Cell lysates collected at indicated time points were analyzed for pSTAT3. * p < 0.05.

Figure S5, Related to Figure 5. Blocking IL-6 signaling suppresses intestinal tumorigenesis

(A) Images of colons isolated from $Apc^{min/+}$ and $Apc^{min/+}Mlkl^{/-}$ animals after 10 weeks of anti-IL6R therapy. (B-C) Hematocrit (B) and thymus weight (C) of $Apc^{min/+}$ and $Apc^{min/+}Mlkl^{/-}$ mice after anti-IL6R therapy for 10 weeks. ** p < 0.01.

Supplemental tables

Group	Day 12					Day 31					Day 50				
WT→															
WT	2	2	2	2	1	1	2	1	1	2	1	1	2	2	2
Mlkl ^{-/-} →															
WT	2	3	3	2	2	1	2	2	1	2	1	1	2	2	2
WT→															
Mlkl ^{-/-}	4	3	4	3	3	3	3	4	2	3	3	2	2	3	4
$Mlkl^{-} \rightarrow$															
Mlkl	4	4	3	4	4	4	4	3	4	3	4	4	3	4	4

Table S1. Related to Fig. 1. The stool and bleeding score