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Abstract 

Traumatic brain injury (TBI) is recognized as the disease with high morbidity and disability around world 
in spite of the work ongoing in neural protection. Due to heterogeneity among the patients, it’s still hard 
to acquire satisfying achievements in clinic. Neuroinflammation, which exists since primary injury occurs, 
with elusive duality, appear to be of significance from recovery of injury to neurogenesis. In recent years, 
studied have revealed that communication in neurogenic niche is more than “cell to cell” communication, 
and study on NSCs represent it as central role in the progress of neural regeneration. Hence, the 
neuroinflammation-affecting crosstalk after TBI, and clarifying definitive role of NSCs in the course of 
regeneration is a promising subject for researchers, for its great potential in overcoming the frustrating 
status quo in clinic, promoting welfare of TBI patient. 
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Introduction 
For years, despite decreasing incidence of severe 

types, traumatic brain injury (TBI) is still the disease 
that causes the morbidity and mortality around world 
[1, 2]. Canonically, researchers mainly pour energy 
and captivity into exploring the neural recovery 
methods, such as medicine or cell treatment to 
enhance the neurogenesis [3], whereas little 
achievements were acquired [4]. In common, though 
no delimitation indeed exists, we customarily 
categorize TBI into “primary injury” and “secondary 
injury” [5]. Initiated with tissue damage and cell 
death, innate immune cells are activated, releasing 
“expanding-signal” to recruit other immune 
components to enlarge the reaction. Observation from 
the beds proves secondary injury as major reason 
contributing to the loss of neural cognition and 
function, with lasting and chronic damage to the 
brain, such as loss of glutamate homeostasis [6, 7], 
proteins and phospholipid membranes damaged by 

free radicals [8], and the inflammatory response 
comprised of both classic and neurogenic 
inflammation [9]. In addition, absence of qualitied TBI 
model exactly representing complex clinical situation 
[10, 11], and the lack of knowledge on elucidating the 
pattern of the secondary injury, account for poor 
understanding on treatment and rehabilitation [2]. 

The neuroinflammation occurs after the primary 
injury, is thought to be of great significance in either 
the recovery of injury, or proliferation and 
differentiation of the NSCs [12, 13]. It takes a lot for 
researchers to figures out the definitive role of 
inflammation in the neurogenesis or neural 
regeneration, which turns out to be beneficial in early 
stage but converts to causing damage and 
neurodegeneration in the long run. To further 
complicate matters, simply aims to inhibit the 
inflammatory response, including activation of 
immune cells or the release of some chemokine and 
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cytokine, didn’t work well in the outcome of the TBI 
patient [14]. Understanding the hiding mechanism of 
the neuroinflammation, which has been proved to 
have a double-edged function, and then wielding its 
helpful role in promoting the neurogenesis, is a 
promising approach to tackle with this clinical 
dilemma. 

“Niche” was first proposed as the 
microenvironment sustaining the properties of 
proliferation and differentiation [15]. In TBI, the 
conception is thought as the region echo to the injury, 
and then gradually regulate this progress and 
promote recovery (through extracellular vesicles, 
microRNAs, et). SVZ (subventricular zone) and SGZ 
(subgranular zone) show as the most potential place 
to support the regeneration [16, 17]. The aim of 
treatment on injury comes to recovery of both 
function and structure, referred as neural 
regeneration in brain. The component in the 
neurogenic niche constitute of different cells (neuron, 
glial cells) and structures, ranging from simple to 
delicate. Each member has unique but cooperative 
function to maintain the hemostasis or be activated to 
make a response to the irritation [18-21]. NSCs and its 
progenitor cell, the cluster have the ability to promote 
regeneration and repair the damage caused by TBI, is 
considered as the central players in communication 
and crosstalk in the regeneration progress [18, 22]. 
Providing an panorama of neurogenic niche activity, 
may shed a light on modulating neuroinflammation 
toward to a regeneration-beneficial way, ensued with 
enhancing neural function and cognition in patients 
with TBI.  

A number of the progress and literature 
emerging these years, makes it necessary to further 
summary the inflammation on neurogenesis after the 
TBI. In this review, we propose a sketch of 
post-traumatic neuroinflammatory events, and a 
constellation of resident cells in the niche reacting to 
the inflammation, promoting recovery and 
neurogenesis. Following the communication and 
interaction between the niche cells, involving factors 
are mentioned. In the ensuing sections, we aim to 
investigate NSCs as the leading role in the modulation 
of neurogenesis in the inflammation after TBI. 

Traumatic brain injury and the 
inflammatory response 

To struggle for clear understanding on TBI, even 
nowadays, there still remain controversaries that if 
any model could appropriately mimic the complex 
process in vivo [4, 23]. The primary injury of TBI is 
mainly the injuries about mechanical damage to the 
tissue, cell membrane and BBB [24]. As a 
heterogeneous entity, TBI comprise a series of 

mechanical injury patterns such as extrinsic 
compression from mass lesion, concussion, diffuse 
axonal injury [25], following a range of pathological 
mechanisms by which neuronal injury can be 
aroused, such as ischemia, apoptosis [26], 
mitochondrial autophagy [27], cortical spreading 
depression [28], edema [29] and microvascular spasm. 
The neural inflammation is thought to company with 
these courses all along, and the long-lasting 
inflammatory response seems to link the TBI with 
other neurodegenerative disease (AD, PD, CTE) [30]. 

The inflammatory response in neural system is a 
sophisticated, complex composition of processes 
including the ignition of the sensor, signals 
transducing, activation of the immune cells and at 
last, continuous inflammation. As a paradigm [2], at 
the time of injury happens, the alert signals (ATP, 
HSP, HGMB1, bradykinin) was released into neural 
system, which are generally considered as PAMP or 
DAMP, binding to the receptors on the sensor cells 
[31-33]. Pattern recognition receptors (PRRs), like 
Toll-like receptors (TLR), receptors of advanced 
glycosylation end-products (RAGE) or purinergic 
receptors that are commonly expressed on the innate 
immune cells to trigger the downstream reactivity 
facilitated by the immune active molecules [34]. It is 
established that some receptors and signals are 
associated with the outcome of TBI patient, on the 
evidence that blockade or knockout those can 
effectively reduce cerebral edema, lesion volume and 
the release of inflammatory factors like IL-1β, IL-6 [35, 
36].  

Normally, the inflammation in the neural system 
can be classified into “classical inflammation”, which 
immune response reacts just as other tissue injury (the 
secretion of the substance P) with plot similar with 
periphery, and “neural inflammation”, (involving the 
cells and molecules exclusive in the brain) [14, 37]. 
The damaged tissue or innate immune cells are the 
first to react to the injury, then by secreting 
chemokines and cytokines, the system can in turn 
recruit the glia cells, T cells to aggravate at the injured 
site. Consequently, the inflammation is further 
expanded and augmented, and the resident cells, like 
microglia (MG) or astrocyte (AG), neuron would 
make a difference in inflammation and neurogenesis 
[20, 38], in cooperation with other immune cells from 
periphery.  

The inflammation response doesn’t play a 
clarified role in neurogenesis, for existing evidence 
are unable to come to a definite outcome [39]. 
Inhibition or blockade of the releasing of the cytokines 
like IL-6, IL-1α and TNFα, seems to have beneficial 
results in the inactivation of the immune cells and the 
enlargement of immune response, while has little 
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improvement in clinic outcome [40]. Similarly, 
depleting the neutrophil in mice effectively attenuates 
the immune injuries like edema or tissue loss, 
accompanied by reducing MG activation, but with a 
poor function recovery [41]. And using minocycline 
was found able to reduces chronic MG activation, but 
with an increasing neurodegeneration and aggravated 
cognitive deficits [42, 43]. It seems that in starting 
episode, there exists a mixture component of “pro” or 
“anti” inflammatory, and more “pro” in long term 
[44]. Anyhow, more convincing evidence and finding 
are urged to illustrate this dualism in the 
inflammation. 

Neurogenic niche cells in 
neuroinflammation 
Microglia 

As the "macrophages" of the central nervous 
system, MG accounts for about 5-15% of all brain cells 
[45]. Unlike macrophages in non-nerve tissues, MG 
originates from the yolk sac in the embryonic stage, 
expressing the transcription factor RUNX1, and the 
tyrosine kinase receptor c-kit, developing from the 
red-myeloid precursor cells through the transcription 
factor Pu. 1- and Irf8-dependent pathway [46]. MG is 
highly branched, sensitive to the changes in neural 
environment, constantly detecting changes or external 
stimuli in surrounding environment, responding 
quickly, receiving, transducing and integrating 
corresponding signals to produce a series of 
biochemical activities to maintain the steady state of 
the internal environment [47]. At the same time, with 
changes in various conditions (aging, injury, disease, 
etc.), MG will also show new phenotypic 
characteristics [48]. It’s believed that activation of 
microglial receptor involves not only changes in 
morphology or movement, but also changes in 
neurotransmitter release, modulation of 
neuronal-glial synaptic transmission, and cytokines 
secretion, generation of ROS. Especially, these 
changes are further involved in the process of 
secondary injury. The different types and severity of 
TBI, through the activation of the pertinent receptors, 
will also make the activation of MG follow different 
patterns, thereby showing the pro-inflammatory or 
anti-inflammatory state at different moments [49]. 

Traditionally, at the time inflammation fires, MG 
in resting state will be induced by different 
environments or factors, and "proinflammatory" or 
"anti-inflammatory" effects will appear (For example, 
stimulated by LPS, IFN-γ, the cell shows M1 type, and 
after IL-4 and IL-13 stimulation, it tends to represent 
as M2 type) [50]. Usually, M1 will participate in the 
secretion of pro-inflammatory factors (TNF-α, IL-6, 

et), aggravating inflammatory response of the 
environment, while M2 type may secrete protective, 
anti-inflammatory factors such as IL-10 to regulate the 
inactivation of pro-inflammatory cell phenotype, 
thereby maintaining the homeostasis of the 
environment [49]. Nevertheless, "polarization" in MG 
is not an issue on absolute conversion of phenotypes, 
but a relative status that overlaps in time and space. In 
recent years, with the endeavor in neuroinflammation 
research, the study on MG has become more 
comprehensive, and more scholars have advocated 
abandoning “M1/M2 typing” to represent the 
function state of MG in the study, but combining the 
technical knowledge of transcriptomics, proteomics, 
and single cell sequencing to dynamically observe or 
describe the changes of MG throughout the 
inflammatory response. 

Astrocytes 
With findings in these years, AG, just like MG, 

are thought to make a significant contribution to 
immune response after TBI [51, 52]. Apart from the 
functions in homoeostasis, such as secreting active 
factors, supporting the neuron and the uptake of 
Ca2+, AG also have unique role in neural 
inflammation [53]. Following TBI, the cells are 
activated by mechanical damage, for they are 
sensitive to the physical stretch or pressure, enriched 
with corresponding mechanosensitive ion channels. 
Then, partly like injury tissue, some alert signals are 
released from the cells. Particularly, along with the 
calcium dysfunction [54], ATP participates in the 
cascade amplification reaction, that is, response in 
activation and recruitment of reactive AG, as well as 
other immune members (MG, neutrophil, et). In the 
meantime, with reaction to the injury, other factors 
also be secreted, like MMP-9, endothelin-1, and 
isoprostanes, which as well take part in the repairing 
or maintain the structures and functions in the brain. 
It is well known that AG is of importance in the 
integrity of the BBB [55, 56], the excitotoxicity aroused 
by glutamate, and the formation of glial scar, while 
just like the dualism of the inflammation, the 
reactivity of the AG also presents a double-edged 
effect [53, 57]. 

Reactive astrogliosis is the consequence of the 
response to TBI, with the changing in the morphology 
and the ethology of the AG, which is found to be both 
protective and harmful in the regeneration of the 
neural system. AG not only produce alarmins or 
DAMP (HMGB1, HSP, S100 proteins), interestingly, 
similar with the MG, but also have the TLR4 and 
RAGE to amplify neuroinflammation, inducing 
NF-κB transducing and resulting in the release of 
inflammatory factors such as cyclooxygenase-2, 
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TNFα, connective tissue growth factors (CTGF), and 
MMP-9 [58]. It is also found that NF-κB can trigger 
cell swelling and edema associated with TBI [59], 
probably influenced by the dysfunction of the AQP1 
rather than AQP4 [60]. In addition, in Sox2-deletion 
mice, markedly ameliorated injury-induced tissue loss 
and behavioral deficits was observed [61], which 
indicates the correlation between neuroinflammation 
and other pathologic response, is far beyond 
illustrating. Notably, the secretion of these initial 
signals hides the silver lining of the inflammation in 
TBI, for their can simultaneously aggravate 
inflammatory impairment or restore neural 
microenvironment. 

Neurons 
Neurons are the fundamental constituents and 

basic functional unit in CNS. As fragile and delicate, 
even the mild trauma can lead to neuron loss and 
axonal injury [62]. As the main “victim” in TBI, 
neurons experience a series of pathological course 
which ultimately result in the enlargement of the 
neuroinflammation. The death of the neurons is 
accompanied with the degeneration of the associated 
axons, the two both act as powder-hose in the 
initiation of the neuroinflammation. In closed-head 
TBI model, the activation of the MG is localized at the 
region with injured neurons, which starts as the 
central of the inflammation [63].  

TBI leads to series of profiles changes in neuron 
to present protective or harmful effects, initiating 
consequential inflammation and oxidative stress. For 
instance, induction of nociceptin/orphanin FQ [64], 
accounts for the pain, anxiety and even inflammation 
in rat model [65], and down-regulating IRF6 is proven 
to attenuate neuronal apoptosis [66]. The key to 
enhance the survival of new-born neurons from 
neurogenic niche, is lessening aberrant development 
and ectopic localization [67]. 

Oligodendrocytes 
The study on the oligodendrocytes (OLs) in the 

inflammation after TBI is limited, in spite of the 
existed evidence that the cells are involved in the 
chronic demyelinating diseases. Different from the 
precursor cells (OPCs), those who have the ability in 
proliferation and differentiation, OLs is mature, 
non-differentiated, and sensitive to the excitotoxicity 
[68]. After traumatic axon injury, the OLs are prone to 
demyelination, along with the loss of action potential 
[69]. The loss of myelination, resulted from primary 
injury or secondary injury, may be accompanied with 
the loss of the axons, and induces OLs death end up 
with caspase 3-mediated apoptosis [70, 71]. 
Afterwards, axonal regeneration is inhibited by 

myelin debris and MG is activate as a further trigger 
of chronic neuroinflammation [44, 72, 73], resulting in 
neurodegeneration and cognitive impairment at last. 

OPCs are characterized with PDGFRα and NG2, 
namely NG2+ cells, with various functions in CNS 
like morphological changes, axons protection and glia 
scar formation [74]. It is also found that, after TBI, 
OPCs express GFAP and plausibly have ability to 
differentiate into AG [75]. As reaction to damage, an 
increasing amount of OPCs gather in the injured 
region [70, 76], regulated by NG2, growth factors and 
glutamate [77, 78]. Myelination might be of 
importance in plasticity and recovery of function after 
TBI [79]. However, the role of OPCs in inflammation 
is ambiguous, for their interaction with vessel seems 
to disrupt the BBB and exacerbate neuroinflammation 
in MS [80] (Figure 1). 

Communication, crosstalk and 
integration in neuroinflammation 
Crosstalk among cells in inflammation and 
neural regeneration 

TBI changes the reaction pattern in neurogenic 
niche, activating unique cell interaction in post-injury 
neurogenic response. The relationship between these 
niche cells tends to be more complex, though rather 
novel molecules emerge. It’s likely that these findings 
in cells and molecule are weaving signal network to 
present the series on neuroinflammation after TBI. 

For the controversy above, in recent years, 
researchers incline to categorize the AG into two 
groups, A1 and A2, with different phenotype, which 
resemble MG. A1 characterized as the upregulation of 
C3 and can be harmful for the neurogenesis. 
Especially, it is elicited by the reactive MG that secret 
lL-1α, TNF and C1q, leading to the death of neurons 
and OLs [81]. On the contrary, IL-10 originated from 
AG change the phenotype of MG, as well as 
lymphocyte density, to improve the neural survival 
[82]. The crosstalk between MG and AG after TBI is 
critical in the persistent neuroinflammation [51]. AG 
and OLs can produce IL-33 as the alarmins to promote 
the aggregation of the MG, followed by an altered 
cytokine/chemokine profile [83]. 

Using CSF1R antagonism (PLX5622) to eliminate 
the MG, which is activated by injured neuron, can 
attenuates rod microglial formation and astrogliosis 
[84]. And via downregulation of the purinergic 
receptor P2Y1, microglia could facilitate AG with scar 
formation, to behave as a neuroprotective phenotype 
[85]. After the depletion of the NG2, it comes with 
enhanced astrogliosis and up-regulated anti-inflam-
matory M2 biomarker Arg-1, followed with 
decreasing total number of microglia/macrophages, 
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whereas worsening outcome was observed [86], then 
implicating the complicated mechanism in the 
neuroinflammation.  

The crosstalk among the cells need the 
participation of specific molecule, like thyroid 
hormone (T3) might promote the neurogenesis 
through NSCs indirectly, probably with the neurons 
[87]. 

EVs, or specifically referred as exosomes, 
constituting diverse cargo like RNA, protein or lipids, 
capable of transmitting contents through BBB, appear 
to be the most effective courier in the 
neuroinflammation and nerve regeneration [21, 88, 
89]. Neurons can generate exosomes enriched with 
miR-21-5p to regulate the MG towards to M1 type 
[90]. Correspondingly, glia EVs tend to modulate 
synaptic plasticity via miR-146a-5p [91], even with the 
sphingolipid on the membrane, leading to the 
excitatory transmission increase in neuron [92]. As the 
media in the crosstalk between MG and NSCs, 
exosomes are of key influence on repair of injury [93], 
and increasing microRNA are explored to regulate the 
polarization status of MG, further switching the 
direction of the neuroinflammation [94-97] (Table 1). 

NSC might integrate the inflammatory signal 
in neural regenerative microenvironment 

As the all-around player in CNS, NSCs and its 
progenitor (NPCs) play a pivotal role in the 
communication between different cells with high 

plasticity [18, 103], In the phase after TBI, different 
molecules, cytokines, chemokines, metabolites and 
neurotrophic factors from injured site or regulating 
cell, play roles in the differentiation and proliferation 
of the NSCs [22], requiring an exquisite cooperation. 
Observation on cytokine responses after TBI suggest 
that certain factors induced inflammation may 
function in an indirect way [104], that is to say, some 
intermediary exists. Just as transplantation of NSCs 
can generate OLs promote myelination [105], NSCs 
exhibit potential in regulating or remodeling 
microenvironment. Depletion of the transcriptional 
regulator Id3 leads to a decreasing number of AG 
generated from SVZ NSPCs and Id3(-/-) adult NSPCs 
are unable to differentiate into BMP-2-induced AG. 
While NSPCs deficient for transcription factor E47, 
which is found to be downregulated by Id3, shows 
performance of differentiation again, in the absence of 
BMP-2 [106], indicating a balance in the 
differentiation course of NSCs. Neonatal AG also 
promote the proliferation of NSCs with secreted 
protein [107]. Represented with similar function, 
NPCs secrete factors like TGF-β2 to transform MG 
into protective type [102], who in turn to support the 
maintenance and growth. The reparation on 
demyelination can also be initiated by M2 microglia, 
while through NSCs to bring about 
oligodendrogenesis and myelination [108]. 

 

 
Figure 1. Niche cells in initiation and aggravation of neuroinflammation. Diagram succinctly shows the course of neuroinflammation after TBI. The alarmin signals are 
released from damage tissue and, via activating corresponding receptors on glia cells, initiating microglia, as well astrocytes activation, followed with the cascade in enlargement 
of immune response with inflammatory factors releasing. And reciprocally, inflammation becomes chronic, long-lasting condition in during the crosstalk (function of peripheral 
immune cells has not been illustrated in this figure). 
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Table 1. Effector molecules among niche cells in neuroinflammation crosstalk after TBI 
Cell Type Molecules Effect Ref 
Microglia miR-146a-5p Suppresses Syt1 and Nlg1 expression in receiving neurons; leading to dendritic spine loss as well as a decrease in the 

density and strength of excitatory synapses 
[91] 

 IL-6, IL-1β,TNF-α Enhance reactive astrogliosis and transformation the cells into neuroprotective type [85] 
 IL-1β, miR-155 Activate additional microglia, progressive immune response in CNS [98] 
 sphingosine Modulate synaptic plasticity [92] 
Astrocytes miR-873a-5p Inhibit NF-κB signaling pathway and attenuate neuroinflammation mediated by microglia [95] 
 GJA1-20 k Downregulated the apoptosis rate and upregulated mitochondrial function to promote neuronal recovery [99] 
 IL-10 Ameliorate microglial response and lymphocyte recruitment, promote neuronal survival. [82] 
Oligodendrocytes IL-33 Aggravation of microglia/macrophages [83] 
Neuron miR-21-5p Promote polarization of M1 microglia [90] 
Mononuclear 
Phagocyte 

succinate Activate succinate receptor 1 (SUCNR1)/GPR91 and represent with anti-inflammatory effects [100] 

NSC/NPC IFN-γ Activate Stat1 Signaling in Target Cells [101] 
 TGF-β2 Reprogramming infiltrating monocyte-derived cells into anti-inflammatory type [102] 

 

 
Figure 2. NSCs might integrate the inflammatory signals crosstalk in neuroinflammation. Different cell may down/up-regulate specific molecule/receptors to 
enhance or weaken others. Microglia and astrocytes might mutually influence their phenotype as “pro” or “anti” effect on inflammation, and change the fate of neurons and OPCs. 
Finally, NSPC might act as intermediary among various crosstalk, modulating signals, restructuring microenvironment, and further promote recovery from the injury. 

 
Accumulating evidence has demonstrated that 

NSCs niches is the utmost region as the origin of the 
neural regenerative microenvironment, though its 
program of neurogenesis is a bit distinguished from 
the pattern after TBI. Apart from well accepted SGZ 
and SVZ, some new regions need more evidence to 
play a role in neurogenesis after TBI [109, 110]. And 
intriguingly, these regions seem to show response to 
the TBI rather than SCI [111], probably, on account of 
the different signals in blood. 

BBB might connect the crosstalk between 
periphery and CNS, the collapse of BBB accounts for 
lasting neurodegeneration disease [112]. The 
degeneration of the ECM leads to the disruption of the 
BBB, and ECM-remodeling transcriptional changes 

can be induced by the serum protein albumin via 
TGFβ signaling in primary AG [113, 114]. 

NPCs may be of particular influence in 
secondary cytokine releasing [104], in response to the 
simultaneous inflammatory factors. Researchers 
firstly found that acute inflammation may induce 
neuronal regeneration more than damage in zebrafish 
CNS [115], coupled with unique role of Gata3 [116]. It 
is notable that proliferation of NSCs coincide with the 
expression of TLR4 [117], which can be conjectured 
the subtle connection between neurogenesis and 
inflammation, attracting the interest in inflammation 
regulation after TBI, like NSCs regulating NLRP3 and 
IL-1β, hence attenuating the neurotoxic cascade 
induced by MG [118]. Otherwise, after 
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transplantation, NSC/NPCs tend to alter phenotype 
of MG and ameliorate inflammation [105, 119], that 
betokens EVs from NSCs also show anti-apoptotic 
and anti-inflammatory properties [120]. This might 
attribute to the role of inflammation on 
spatiotemporal reason. It’s reasoned to speculate that 
immune response only assumes beneficial in the 
primary injured part (Figure 2). 

The promising method for regulation of 
neuroinflammation and enhance the 
neurogenesis  

As promising treatments, those focused on the 
regulation of the inflammation, metabolism or the 
neurogenesis are emerging, it is worth believing TBI 
patients can acquire better outcome and welfare. 

Existing evidence has proposed potential 
method to regulate the inflammation. knockdown of 
TLR4 can ameliorate neuroinflammation after TBI, in 
a way by inhibiting autophagy and AG activation 
[121], and salsalate, an unacetylated salicylate, is 
utilized to relieve inflammation and promote function 
recovery [122]. Downregulation of the 
inflammasomes is also a potential method to 
attenuate the damage caused by inflammation 
response [123]. 

New target for the treatment of TBI has been 
aroused, such as CCR5 [124]. And some dynamic 
biomarker, like Nrf2 [125], may be useful to evaluate 
the process TBI came through. Combined using 
minocycline and N-acetylcysteine, inducing 
remyelination and regulating neuroinflammation, 
seems superior to the monotherapy attempts before 
[126, 127].  

Apart from the regulation of the inflammation, 
methods are exploited to improve the oxygenation or 
metabolism status, and weaken neuronal pyroptosis 
[128]. Hyperbaric oxygen therapy and Hydrogen gas 
both seem to be effective to attenuate the injury extent 
[129]. Lactate metabolism in brain is an essential 
feature after TBI [130], and hypertonic sodium lactate 
solution is proved to reverse brain oxygenation and 
metabolism dysfunction after traumatic brain injury 
through vasodilatory, mitochondrial, and anti-edema 
effects [131]. 

Stem cell therapy, for its multi-differentiated 
capability, is a promising method [132, 133]. 
However, though application of iPSC, is still limited 
for ethical issues or bio-safety. MSCs, which is 
thought to be the most optimum candidate to treat the 
neurodegeneration disease, no matter injecting cells 
directly or the extracellular vesicles (exosomes) [89, 
134], striking improvement in both neurogenesis or 
recovery of the function have been acquired [135, 136]. 
Furthermore, a host of ncRNA are involved in the TBI 

diagnosis and treatment [137]. 

Conclusion and future perspectives 
TBI is still the disease affecting long-term quality 

of life with protracted course of neuroinflammation 
[1]. The types of it, though, differ in pathology and 
outcome, the long-last and annoying course of 
inflammation seems to be a common situation. In 
spite of substantial evidence showing that reactivity 
in cell lineage is unable to imitate the exact procedures 
ongoing in vivo, coupled with sufficient 
microenvironment factors, it’s still reasonable to make 
most use of the established model [10], for direct or 
indirect regulation in promising treatments. And it’s 
worth celebrating that certain attempts seems able to 
balance the function of inflammation in neurogenesis. 

To have an explicit vision of neuroinflammation 
in neurogenesis and nerve regeneration, detailed 
work and evidence are needed [2, 14, 39]. Evidence 
available is unable to clarify definitive role of 
inflammation after TBI, in view of complicated and 
mixing essence itself. Existing evidence shows feature 
as “protective” in acute inflammation and “harmful” 
in long term [13], while absence of particular point in 
time makes it harder to make utmost of advantages in 
neuroprotection and promotion in regeneration. 
Switching the polarization status of the MG may be 
potential, and increasing number of drugs or 
molecules have been found to be effective [138-140]. It 
shall bear in mind that the concept in polarization is 
probably appropriate in modulation on inflammatory 
outcome rather than an absolute condition. More 
study on multi-dimensional and comprehensive in 
these immune cells, with burgeoning progress in 
single-cell technology and integrated perception in 
CNS [18, 39, 141]. 

Besides MG, other niche cells represent peculiar 
functions in initiation, enlargement, or modulation of 
the neuroinflammation. AG and MG both serve as 
“mixed bag” [38]. Based on the double function on 
transforming immune response, the crosstalk, or 
glia-crosstalk, makes it complex to understand the 
mechanism underlying. Cytokine, chemokine and 
recently, exosomes are all participating in this 
interplay, depicting a more panoramic network in this 
long-studied subject. 

Despite dwindling since the neonatal [142], 
NSCs and its progenitor cells are capable of repairing 
injury via differentiation, proliferation or 
replacement. A host of work on the stem cells 
transplantation in TBI or SCI have shown gratifying 
results, whereas the translation and clinical 
application is limited for frustrating ethical or 
bio-safety issues. Exosomes, by virtue of its various 
contents and excellent affinity with nervous system, 
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may reveal a better therapeutic potential [19, 88]. 
Acquiring a more comprehensive awareness on the 
relation between neuroinflammation and neurogenic 
niche is essential, in the premise that glia, neuron and 
NSCs all engage in the communication and crosstalk. 

Inflammation in neural regeneration is a 
commonplace, that being said, with more intriguing 
achievements in these years, it’s requisite to balance 
rather than simply inhibiting it. It is important to 
reiterate that, among glias, MG are the most potential 
candidates at present, for its role in magnifying 
inflammatory response, and AG, based on its affluent 
secretion property, is a promising participant as well. 
We didn’t refer to ECM, and vascular endothelial in 
this interplay, those both are of particular importance 
in pathophysiology. What’s more, NSCs, shows 
fundamentality in the course all long. Clarifying its 
activity in integrating all the signals, as well as 
functional signals in promoting proliferation, 
survival, and migration, is of high-priority. It’s 
believable enough that we are laying the key-stone for 
the avenue towards clinic translation and the welfare 
of TBI patients. 
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