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Abstract 

With the continuous development of medical image informatics technology, more and more high-throughput 
quantitative data could be extracted from digital medical images, which has resulted in a new kind of 
omics-Radiomics. In recent years, in addition to genomics, proteomics and metabolomics, radiomic has 
attracted the interest of more and more researchers. Compared to other omics, radiomics can be perfectly 
integrated with clinical data, even with the pathology and molecular biomarker, so that the study can be closer 
to the clinical reality and more revealing of the tumor development. Mass data will also be generated in this 
process. Machine learning, due to its own characteristics, has a unique advantage in processing massive 
radiomic data. By analyzing mass amounts of data with strong clinical relevance, people can construct models 
that more accurately reflect tumor development and progression, thereby providing the possibility of 
personalized and sequential treatment of patients. As one of the cancer types whose treatment and diagnosis 
rely on imaging examination, radiomics has a very broad application prospect in head and neck cancers (HNC). 
Until now, there have been some notable results in HNC. In this review, we will introduce the concepts and 
workflow of radiomics and machine learning and their current applications in head and neck cancers, as well as 
the directions and applications of artificial intelligence in the treatment and diagnosis of HNC. 
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Introduction 
Head and neck cancer (HNC) is the eighth 

leading cause of cancer-related deaths [1]. Now the 
main treatment modalities for head and neck tumors 
include surgery, radiotherapy, chemotherapy and 
immunotherapy [2]. Due to tumor heterogeneity 
which serve as a known prognostic factor in HNC, a 
uniform treatment plan is not conducive to improved 
patient outcomes [3]. Therefore, personalized 
treatment plan should be implemented for each 
patient to improve the survival time and minimize the 
side effects [4]. In addition to tissue and blood tests, 
the diagnosis and treatment plan of HNC are also 
highly dependent on imaging, including computed 
tomography (CT), magnetic resonance imaging (MRI), 
and positron emission tomography (PET) [5]. 
However, structural based medical images are 
traditionally evaluated subjectively and qualitatively, 
and in most cases, the experience of reader can greatly 
influence the results. In recent years, the emergence of 
radiomics has attracted attention, which can extract 

quantitative imaging features from conventional 
medical images, and these features can also be 
combined with pathology and molecular biomarker, 
so as to more accurately assess the biological state of 
tumors and make personalized diagnosis and 
treatment plans for patients [6-10]. 

In recent decades, radiomics has become a new 
and evolving field in medical imaging [11-12]. With 
radiomics, people have discovered new image bio-
markers, by collecting high-throughput quantitative 
features of oncology medical images. More and more 
research has shown that medical images contain more 
information than is available to the naked eye, and 
that extractable image parameters will in turn have 
some correlation with tumor clinical characteristics 
[11,13-15]. Radiomics is designed to be used as a 
clinical decision support tool by extracting 
quantitative data from medical images. Mass data will 
also be generated in this process [7,11,16-17]. Machine 
learning has promising application in radiomics due 
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to its algorithms that are best suited for analysis of 
high-dimensional data [18-20]. In recent years, due to 
the unprecedented development of machine learning 
algorithms, coupled with the fact that the data 
required already exist and are easily available, there 
have been many studies using radiomics in the 
diagnosis, treatment and prognosis of HNC. In this 
review, we summarized the radiomics research of 
HNC, and introduced its general principles and 
typical workflow, as well as its future prospects and 
limitations in the field of HNC. 

Workflow of radiomics and machine 
learning 

Over the last decade, various “-omics” concepts 
have emerged one by one with the progress of 
high-throughput computer algorithms, which 
referring to the collective characterization and 
quantification of pools of biology information (e.g. 
proteomics, genomics, metabolomics). In recent years, 
more and more attention has been paid to radiomics, 
which refers to the automated extraction of 
mathematically defined radiological features from 
two- or three-dimensional (2D or 3D) medical images, 
as well as the application of data mining and analysis 
techniques [21-22]. Radiomics consists of extracting 
hundreds of quantitative features through automated 
or semi-automated software. It based on a hypothesis 
is that mineable data can be extracted from medical 
images and provides additional information about 
tumors’ phenotype, genes, and proteins for use in 
patients [15, 23-24]. In recent years, more and more 
researchers have begun to focus on predicting 
molecular biomarkers, predicting therapeutic 
responses, and predicting survival prognostics in 
patients with HNC by extracting radiomics 
information features (including shape description, 
intensity, and texture characteristics) from different 
imaging patterns (e.g. CT, MRI, PET, ultrasound 
images) [11,13]. Some subfields of radiomics focus on 
the identification and scientific exploitation of 
relationships between quantitative bioimaging and 
genomic features of tumors. Previous studies have 
shown that the characteristics of medical images can 
distinguish between the biological characteristics of 
some tissues, such as tumors, inflammation and 
necrosis. Sometimes these characteristics also could be 
used to study the correlation with disease diagnosis 
and prognosis [25-28]. At the same time, some 
characteristics of medical images can be reflective of 
molecular and genetic characteristics of tumors 
[29-32]. 

In a typical radiomics workflow, image 
acquisition is often the first step and a critical one 
[33-34]. Researchers must obtain high-quality, 

standardized imaging. The data source of radiomics is 
always obtained from retrospective medical imaging 
images. Different imaging techniques can lead to 
differences in image signals and image textures in 
medical imaging due to different acquisition 
parameters and reconstruction schemes [35-36]. If the 
parameters collected vary widely, this can introduce 
signal changes that are not caused by biological 
effects. For radiomics image analysis, a large number 
of images need to be selected. These are ideally 
standardized for image characteristics in resolution, 
reconstruction and acquisition parameters, as well as 
clinical characteristics such as tumor stage, tumor 
classification or prognosis [37-39]. 

The next step is to delineate (“segmentation”) 
the target area and volume in a medical image, 
generating sub-parts of the image in 2D and 3D 
images called areas of interest (ROI) and volume of 
interest (VOI) [33-34]. Segmentation must be 
reproducible and reliable, and it can be divided into 
manual, semi-automatic or automated execution. 
Manual separation requires two independent 
physicians (clinicians or imaging physicians) to 
complete, which can be time-consuming and 
labor-intensive, and the results are subject to observer 
variability and are not suitable for large-scale cohort 
studies. Semi-automatic image separation still 
requires human-machine coordination and an 
experienced physician is required to have an 
identification and modification of the automatically 
separated boundaries. Automatic image separation 
does not require human involvement, avoids 
heterogeneity between and within evaluators, and 
results are more repeatable, faster, and more suitable 
for large imaging datasets [34,40]. The raw data needs 
to be preprocessed to distinguish the signals from the 
noise, and the selection of this step is very important 
because it will directly affect the extracted features 
[41]. 

Then the extraction of radiomics features would 
be implemented, which are usually performed fully 
automated by professional software [42-43]. The 
radiomics features include shape features, which are 
used to represent the shape and geometry of ROI, 
such as head and neck tumor volume, length axis 
ratio, surface area/volume ratio, etc. [44]. The first- 
order feature is used to study the distribution of voxel 
values without considering spatial relationships, such 
as the mean, median, standard deviation, and peak of 
the voxels strength. 

Second-order features, or texture features, are 
used to analyze the characteristics of the spatial 
distribution relationship of voxel intensity between 
voxels, and can be used to measure heterogeneity 
within tumors, such as a co-occurrence matrix 
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(GLCM) that could calculates the correlation between 
two gray levels at a certain distance and a certain 
direction in an image, calculates the gray-level run 
length matrix (GLRLM) of continuous voxels with the 
same intensity in a fixed direction, and the 
neighborhood gray-level different matrix (NGLDM) 
between the quantized voxel intensity and the 
average speed-up intensity of neighboring voxel 
within a certain distance [45-47]. Deep learning is a 
sub-field of machine learning that has risen to the 
forefront of artificial intelligence, and one of the most 
popular deep learning tools available today, the 
convolutional neural network (CNN), can also be 
used to extract depth characteristics [48-49]. 
Convolutional analysis is performed on the image 
through the CNN, and the data in the fully connected 
layer is used as the obtained depth feature. These 
features can continue to be used in the CNN or in 
other classifiers [50-51]. In the stage of radiomics 
feature extraction, a large amount of data will be 
obtained. Before using these features, redundant 
features, unrelated or useless features should be 
excluded, leaving only a subset of features that are 
valid for modeling [42,44]. In Figure 1, we 
summarized the general workflow of radiomics. 

Radiomics extracts valid, quantitative features 
from medical images that can be combined with other 
routine prognostic markers such as clinical staging, 
tissue molecular markers, and pathological features 
[10]. Various studies have shown that this type of 
predictive model based on medical images combined 

with various other data is superior in the evaluation 
of disease and survival prediction [13,53-55]. It has 
been shown that machine learning is a powerful 
statistical tool that is required to effectively develop 
and apply such large amounts of high-dimensional 
data. The choice of modeling method depends on the 
type of data and the purpose of the study. Machine 
learning methods include decision trees (DT), random 
forests (RF), logistic regression, bayesian models, 
support vector machines (SVM) and recently, deep 
learning which has gained much attention [56-59]. 
The technique has been widely used in the 
development of various predictive models for HNC. 

Application of radiomics and machine 
learning in head and neck cancers 

Multiple radiomics studies in HNC have 
reported in various magazines recent years. These 
studies generally focus on the diagnostic prediction of 
radiomics in HNC (pre-treatment staging, 
pathological subtypes, differentiation of tumors from 
inflammation or necrosis), and prediction of tumor 
status after treatments (include the status of certain 
pathogenic viruses, the prediction of early recurrence 
or lymph node metastasis), the prediction of survival 
and adverse reactions after treatments. Some 
researchers have studied radiogenomics to explore 
the prediction of expression of some molecules in 
HNC. 

 

 
Figure 1. Typical radiomics workflow. ROI is first delineated. Then extract the features from the ROI, and finally model and analyzed. 
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Table 1. Radiomics assesses pre-treatment grading of head and neck cancers 

Study Number of 
patients 

Tumor characteristics Imaging 
modality 

Parameter 
prediction 

Feature selection method, model Machine learning 
algorithm 

Wang et al. 2019 
[64] 

Train:150pts 
Validation:61pts 

Locally advanced LC CE-CT T stage LASSO. Multivariable logistics 
model 

LASSO, SVM, CHAID 

Ren et al. 2018 
[65] 

Train: 85pts 
Validation: 42pts 

HNSCC T2, CE- T1  T stage LASSO. Rad-score LASSO 

Wu et al. 2019 
[69] 

Train: 137pts 
Validation: 69pts 

HNSCC CE-CT Degree of tumor 
differentiation 

KPCA, random forest classifier and 
VT. Multivariable logistics model 

RF, K-PCA 

Mukberjee et al. 
2020 [67] 

Train: 113pts 
Validation: 71pts 

HNSCC CE- CT Histopathologic 
features 

PCA. Regularized regression  PCA 

Katsoulakis et al. 
2020 [71] 

Train: 77pts 
Validation: 83pts 

HNSCC CE- CT from 
TCIA 

Molecular 
differences 

CERR. Logistic regression RF, deconvolution 
analysis, logistic 
regression 

Ren et al. 2020 
[70] 

Train: 59pts 
Validation: 29pts 

SCC of the oral tongue 
and floor of mouth  

T1, T2, CE- T1, 
DWI 

Histologic grade  LASSO. Rad-score  
 

LASSO 

Romeo et al. 
2020 [66] 

Total: 40pts Oropharyngeal and oral 
cavity SCC 

CE- CT T stage and Nodal 
status 

Heterogeneity CAD. Machine 
learning classifiers 

Naïve bayes, KNN, RF 
and so on 

Wang et al. 2019 
[68] 

Train: 96pts 
Validation: 24pts 

PTC (prospective) T2, CE-T1, 
DWI 

Aggressiveness 
level 

LASSO and selection operator. 
Machine learning classifiers 

LASSO, gradient 
boosting classifier, 
logistic regression 

Train: Training dataset; Total: Only one dataset used; Validation: Validation dataset; CE-CT: Contrast-enhanced CT; CE-T1: Contrast-enhanced T1; DWI: Diffusion weighted 
imaging; HPV: Human Papillomavirus; PCA: Principal component analysis; CERR: Computational environment for radiological research; CAD: Computer-aided diagnosis 
and detection systems; CHAID: Chi-square automatic interaction detection; KNN: K-nearest neighbor. 

 
 

Pre-treatment related predictive modeling 
Pre-treatment staging is an important part of 

tumor diagnosis and a factor closely related to tumor 
prognosis. Studies have shown that T-stage of head 
and neck tumors, viral-related status, and lymph node 
status greatly influence the prognosis of cancer 
patients [60-63]. However, the current diagnostic 
methods focus on pre-treatment tissue biopsy, 
serological testing and traditional medical image 
diagnosis, which can determine tumor staging to a 
certain extent, but ultimately are local, qualitative and 
subjective. Reliable assessment of tumor staging by 
radiomics prior to treatment can help guide treatment 
selection and reduce recurrence and adverse event 
rates. Wang et al. [64] reported the use of radiomics 
combined with machine learning to create a T-staging 
model of locally advanced laryngeal cancer (LC), the 
performance of the model was evaluated by the area 
under the receiver operating characteristic curve 
(AUC). The predictive performance of the nomogram 
incorporating radiomic signature and T category 
reported by radiologists is the best with an AUC of 
0.892 (95% CI: 0.811 to 0.974). Ren et al. [65] extracted 
imaging features from MRI of 85 patients in the 
training cohort and demonstrated that MRI radiomics 
signature could distinguish stage III- IV from stage 
I-II head and neck squamous cell carcinoma 
(HNSCC). Radiomics signature may serve as a 
complementary tool for preoperative staging. Romeo 
et al. [66] prediction of tumor grade and nodal status 
in oropharyngeal and oral cavity squamous-cell 
carcinoma using a radiomic approach. It has been 
reported that apparent diffusion coefficient based 
radiomics can be a useful and promising non-invasive 

method for predicting histologic grade of squamous 
cell carcinoma (SCC) of the oral tongue and tongue 
and floor of mouth. In HNSCC, radiological analysis 
was also used to design non-invasive biomarkers and 
to accurately distinguish well-differentiated from 
moderately differentiated and poorly differentiated 
HNSCC, with an AUC of 0.96 and an accuracy of 0.92. 
It has been reported that radiomics CT models have 
the potential to predict characteristics typically 
identified on pathologic assessment of HNSCC [67]. 
In a cohort of 96 papillary thyroid carcinoma (PTC) 
patients, a prospective study enrolled consecutive 
patients who underwent neck MR scans and 
subsequent thyroidectomy during the study interval. 
Machine learning-based MRI prediction models can 
distinguish between aggressive and non-aggressive 
PTC before surgery, and this approach facilitates the 
formation of personalized PTC treatment plans [68]. 
We identified eight studies investigated the feasibility 
of radiomics for the classification of HNC before 
treatment (Table 1). Thus far, these exploratory 
studies show that radiomics prediction model has the 
potential to become another non-invasive diagnostic 
tool for HNC before treatment, which can make the 
staging of tumors more objective and accurate, and 
even predict the malignancy of tumors and have a 
certain guiding effect on the subsequent treatment. 

In the last 3 years, there have been an increasing 
number of studies to predict tumor response to 
certain treatments. It is well known that the treatment 
of HNC is mainly surgery, but there are also various 
treatment options with induction chemotherapy, 
concurrent chemoradiation, targeted therapy or 
immunotherapy [72-73]. In order to better formulate 
personalized treatment plans for cancer patients, a 
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sequential treatment system can be realized as soon as 
possible. The establishment of a radiomics model that 
can predict the treatment effect or the incidence of 
complication after treatment plays a very important 
role in achieving the above goals. While Bologna et al. 
Wang et al. and Zhao et al. [74-76] they retrospectively 
extracted radiomics signatures of each type of 
weighted images from MRI of naso-
pharyngeal carcinoma (NPC) patients. Selected the 
useful radiomics features by least absolute shrinkage 
and selection operator (LASSO) to form a valid model 
to predict early response of NPC patients to induction 
chemotherapy, which helps to personalize risk 
stratification and treatment of NPC patients. Jin et al. 
[77] reported their preliminary results based on 
radiomics features from CT scans in 70 patients with 
esophageal cancer (EC), they found that the model 
with radiomic features combined with dosimetric 
parameters is promising and outperforms that with 
radiomic features alone in predicting the treatment 
response of patients with EC who underwent 
concurrent chemoradiation. Acute xerostomia is the 
most common side effect of radiation therapy for 
HNC. Pota et al and Liu et al. [78-79] conducted a 
study on HNC and NPC, respectively. They obtained 
CT scans of patients before, during, and after 
treatment to obtain imaging features and establish the 
best model to use during the initial treatment phase to 
predict the development of acute xerostomia after 
radiation therapy in cancer patients. Radiation 
induced brain injury is a relatively common brain 
complication in patients with NPC after radiation 
therapy. Although this adverse reaction is not fatal in 
general, but it seriously affects patients’ life treatment. 
Researchers extracted 10320 textural features by 
analyzing MRI multiple-weighted images of 242 

patients with NPC who had undergone radiation 
therapy. Three prediction models were established 
using the RF method, all of which could dynamically 
predict radiation induced brain injury in advance, 
enabling early detection and allowing clinicians to 
take preventive measures to stop or slow down the 
deterioration of radiation induced brain injury [80]. 
Eight studies explored the ability of radiomics to 
predict the response of HNC to certain treatments or 
early prediction of complication after treatment 
(Table 2). 

Prediction models for recurrence, 
metastasis and survival 

The most extensive research of radiomics in 
HNC is its prediction of prognosis, including the 
study of its relationship with prognostic indicators 
such as progression-free survival (PFS), overall 
survival (OS), five-year survival rate, distant 
metastasis (DM), and local recurrence (LR). With the 
development of medical diagnosis and treatment 
technology, HNC has made great progress in the use 
of therapeutic drugs [82-84]. However, due to the 
specificity of the growth site of HNC, many patients 
are already in advanced stage when they are found, 
which makes the prognosis of HNC still poor, with 
the five-year survival rate ranging from 25% for 
hypopharyngeal cancer to 80% for NPC [85-86]. 
Therefore, scientists are interested in more accurately 
predicting LR, lymph node metastasis (LNM) and 
even distant metastasis (DM) of HNC and the survival 
rate of patients, which can also better serve in the 
development of personalized treatment plans for 
patients. 

 

Table 2. Radiomics predicts tumor response and adverse symptom after treatment 

Study Number of patients Tumor 
characteristics 

Imaging modality Therapy/Symptom Outcome, model Machine learning 
algorithm 

Yu et al. 2019 
[81] 

Train: 51pts; 
Validation: 19pts 

NPC  T2, CE-T1  ART 
 

Replan status of patient. 
Multivariable logistics model 

LASSO, logistic 
regression 

Zhang et al. 
2020 [80] 

Total: 242pts NPC  T2, CE-T1  Early detection of radiation- 
induced brain injury  

Radiation induced temporal lobe 
injury. Random forest  

RF 
 

Pota et al. 
2017 [78] 

Total: 37pts (74 
parotid glands) 

HNC Before RT (CT1), at the 
middle of treatment 
(CT2) and after RT (CT3)  

Xerostomia, shrinkage of 
parotid glands 

Parotid shrinkage rate and 12-months 
xerostomia. Machine learning 
classifiers 

Naïve bayes, LFA  
 

Jin et al. 2019 
[77] 

Train: 70pts 
Validation: 24pts 

EC Before treatment (CT1), 3 
months after CRT(CT2)  

Concurrent chemoradiation 3 months after CRT, Machine learning 
classifiers 

SVM, RBF, XGBoost, 
PCA 

Liu et al. 
2019 [79] 

Total: 35pts NPC Five CT sets acquired at 
treatment position 
during the RT 

Acute xerostomia Patients’ saliva was collected every 
other 10 days during the RT. 
Multivariate Cox regression 

Multivariate machine 
learning algorithms  

Bologna et al. 
2020 [74] 

Total: 50pts (25 
responders and 25 
non-responders) 

Sinonasal 
cancers 

T1, T2, ADC Induction chemotherapy  
 

T1+T2+ADC model displayed the 
highest; radiomics score 

PCA, naïve bayes, 
SVM, KNN and so on 

Wang et al. 
2018 [75] 

Total: 120pts NPC  T2, T2FS, CE- T1 Induction chemotherapy Early response to induction 
chemotherapy; logistic regression 

Logistic regression 

Zhao et al. 
2019 [76] 

Train: 100pts 
Validation: 23pts 

NPC 
 

T1, T2, CE- T1 Induction chemotherapy  
 

PFS; multivariable logistic regression  
 

LASSO, SVM, logistic 
regression  

ART: Adaptive radiotherapy; LFA: Likelihood-fuzzy analysis; RBF: Radial basis function; XGBoost: Extreme gradient boosting algorithm; CRT: Concurrent chemoradiation; 
T2FS: T2 weighted fat-suppressed; RT: Radiation therapy; EBV: Epstein-Barr virus; ADC: Apparent diffusion coefficient. 
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People used MRI images from 360 patients with 
NPC as a training cohort for feature extraction from 
the maximal axis region of the tumor. Eleven features 
were selected to construct the radiomics score 
(Rad-score), which was significantly associated with 
local recurrence-free survival (LRFS). Rad-scores were 
generated using the Cox proportional hazards 
regression model, and can reliably predict LRFS in 
patients with non-metastatic T4 NPC, which might 
guide individual treatment decisions [87]. There are 
still a lot of imaging genomics combined with 
machine learning of various algorithms to build 
predictive models for LR of HNC. From the M.D. 
Anderson cancer center head and neck quantitative 
imaging working group, which analyzed CT/MRI 
and PET images from 465 patients with HNC. 
Machine learning methods were applied to yield a 
radiomic signature consisting of features with 
minimal overlap and maximum prognostic 
significance, and derived from pre-treatment imaging 
consisting of 2 radiographic signatures [88]. In thyroid 
and EC, predictive models of radiomics have also 
been used [89-94]. LNM is a significant prognostic 
factor in patients with HNC, and the ability to predict 
it accurately is essential to optimizing treatment. The 

accuracy of LNM identification strongly depends on 
the physician’s experience, therefore, the 
establishment of an automatic prediction model for 
LNM can greatly help physicians in their practice [34]. 
Radiomics models are built based on handcrafted 
features, while deep learning learns the features 
automatically. In order to have better prediction, 
many researchers have proposed hybrid prediction 
models [95-98]. Another research group used the 
PyRadiomics platform, and extracted the imaging 
features of primary tumors in all patients who did not 
exhibit DM before treatment. This retrospective 
cohort analysis included 176 patients with NPC. Then 
used minimum redundancy-maximum relevance and 
LASSO algorithms to select the strongest features and 
build a logistic model for DM prediction [99]. From 
these existing exploratory studies, it is easy to see that 
most researchers have extracted radiomics signatures 
manually or semi-manually from various types of 
imaging images of training cohorts, then used 
machine learning algorithms to extract valid features 
and build predictive models, and then used 
independent cohorts to verify the validity of the 
models. Table 3 summarizes the reported studies of 
representative predictive models of this type in HNC. 

 

Table 3. Radiomics predicts recurrence and metastasis of head and neck cancer 

Study Number of patients Tumor type Imaging modality Outcome, feature selection method, 
model 

Machine learning 
algorithm 

Zhang et al. 2019 [87] Train: 80pts 
Validation: 60pts 

NPC T2, CE- T1  LR-free survival. Radiomics score, Cox 
regression  

Logistic Regression 

Bogowicz et al. 2017 
[100] 

Train: 93pts 
Validation: 56pts 

HNSCC CE- CT 
 

LC and HPV status. PCA in 
combination with univariable logistic 
regression. Multivariable logistic 
regression  

Logistic regression, PCA 

Martens et al. 2020 [101] Train: 103pts 
Validation: 71pts 

HNSCC PET, low-dose-CT  LR, DM, OS. RadCat tool Cox 
regression analysis. Multivariable 
logistic regression 

Logistic regression 

Li et al. 2018 [97] Total: 306pts, 20 of 
whom developed with 
recurrence 

NPC CT, MR, PET  LR. PCA. Machine learning classifiers PCA, ANN, KNN, SVM 

Liu et al. 2019 [90] Total: 120pts PTC Preoperative 
ultrasound images  

Metastasis. Support vector machine 
classifier 

SVM 

Wu et al. 2020 [98] Train: 141pts 
Validation: 96pts 

HNC PET, CT LR. PCA. Multivariate Cox 
proportional hazards regression 

PCA 

Zhou et al. 2020 [95] Total: 188pts HNSCC PET, CT DM. Machine learning classifiers SVM, DT and KNN  
Bogowicz et al. 2017 
[102] 

Train: 128pts 
Validation: 50pts 

HNSCC PET, CT LR. PCA and LASSO. Multivariable 
Cox regression  

PCA, LASSO 

Tan et al. 2018 [89] Train: 154pts 
Validation: 76pts 

ESCC Arterial-phase CT LMR. Rad-score, logistic regression  LASSO, logistic 
regression 

Vallieres et al. 2017 [103] Total: 300pts HNC Pre-treatment 
FDG-PET and CT 

LR and DM. Machine learning classifier Random forests 

Kwan et al. 2018 [104] Total: 300pts 36 DM 
pts 

HPV-related 
Oropharyngeal 
Carcinoma  

CT 
 

DM. PyRadiomic. Radiomics score Logistic regression 

Park et al. 2019 [92] Train: 400pts 
Validation: 368pts 

PTC Neck ultrasound  LNM. LASSO. Rad-score, LASSO 
regression  

LASSO 

Zhang et al. 2019 [105] Train: 360pts 
Validation: 120pts 

Non-metastatic 
T4 NPC 

T1, T2, CE- T1 LR, Rad-score, cox proportional 
hazards regression 

Logistic regression  
 

Zhang et al. 2019 [99] Total: 176pts NPC PET, CT DM. LASSO. Multivariate logistic 
regression 

Logistic regression 

M.D. Anderson Cancer 
[88] 

Train: 255pts 
Tune: 165pts 
Validation: 45pts 

HNC CT, MRI, PET 5-year LCR. Multivariable Cox 
regression  

DT 
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Study Number of patients Tumor type Imaging modality Outcome, feature selection method, 
model 

Machine learning 
algorithm 

Bahig et al. 2019 [106] Total: 176pts, 20 
supraglottic , 5 
pyriform sinus tumors 

LHSCC DECT LRR. Univariate Cox regression  
 

DT 
 

Lu et al. 2019 [93] Train: 154pts 
Validation: 67pts 

PTC non-contrast and 
venous CE- CT 

LNM. SVM. Multivariable logistic 
regression 

SVM, logistic regression 

Qu et al. 2018 [94] Train: 90pts 
Validation: 91pts 

EC MRI LNM. LASSO. Multivariable logistic 
regression 

LASSO, elastic net 
regression, logistic 
regression 

Martens et al. 2020 [107] Train: 103pts 
Validation: 71pts 

HNSCC 18F-FDG-PET, CT  LR, DM, OS. Rad- score. Multivariable 
survival regression 

Logistic regression 

ANN: Artificial neural network; LCR: Local control rate; DECT: Dual-energy computed tomography; LHSCC: Larynx and hypopharynx squamous cell carcinoma. 
 
In research reports on the use of radiomics in 

HNC, radiomics models related to predicting survival 
are the most numerous. Shen et al. [108] aimed to 
explore the predictive value of MRI-based radiomic 
model for PFS in nonmetastatic NPC. They collected 
the clinical and MRI data from 327 patients with NPC, 
and five models were established. The prognostic 
performances of these models were evaluated by 
Harrell’s concordance index (C-index). They find that 
the model incorporating radiomics, overall stage, and 
EBV DNA showed better performance for predicting 
PFS in nonmetastatic NPC patients. In HNSCC, Yuan 
et al. [109] consisted of a training cohort (n = 85), and 
LASSO Cox regression model was used to select the 
most useful prognostic features with their coefficients, 
upon which a radiomic signature was generated. 
They find that MRI-based radiomic signature is an 
independent prognostic factor for HNSCC patients. 
Another study identified prognostic and reliable 
machine-learning methods for the prediction of 
overall survival of head and neck cancer patients 
[110]. Others have used pre- and post-operative PET/ 
CT radiomics features for HNSCC and found that 
combining clinicopathological characteristics with 
radiomics features of pre-treatment PET/CT or post- 
treatment PET/CT assessment of primary tumor sites 
as positive or negative may substantially improve 
prediction of OS and DFS of HNSCC patients 
[111-112]. The predictions of radiomics signature 
models based on various types of imaging sequences 
in various types of HNC are represented in Table 4. 
The main types of survival values predicted by each 
type of model and which machine learning algorithms 
were employed are specified in the table. 

Other predictive models 
Tumor heterogeneity is a well-known prognostic 

factor in HNC. A major limitation of tissue- and 
blood-derived tumor markers is the lack of spatial 
resolution to image tumor heterogeneity. Due to the 
hidden growth sites of HNC, it is difficult to obtain 
biopsies before and after treatment. At the same time, 
issue markers derived from tumor biopsies usually 
represent only a small tumor subregion at a single 

timepoint and are therefore often not representative 
of the tumors’ biology or the biological alterations 
during and after treatment. This has also been noted 
by researchers, Gu et al. [138] showed that a radiomics 
model with excellent performance prediction of the 
presence of cytokeratin 19, galectin 3, and thyro- 
peroxidase based on CT images. This model may be 
used to identify benign and malignant thyroid 
nodules. Chen et al. [31] investigated the correlation 
between programmed cell death protein 1 ligand 
(PD-L1) immunohistochemical expression and PET/ 
CT radiomics and found that p16 and Ki-67 staining 
percentages and several PET/CT-derived textural 
features could provide additional information to 
identify tumor PD-L1 expression in HNC. There are 
also several researchers have done studies correlating 
radiomics features with molecular features of HNC 
[10,32,139]. In recent years, some researchers have 
begun to focus on the comparison of the predictive 
performance of radiomics models of different image 
modalities in the same disease [36, 53,140]. 

Discussion 
In recent years, numerous literatures revealed 

that radiomics has been studied in the pre-treatment 
diagnosis of head and neck cancer, including the 
prediction of efficacy and the prediction of survival. 
These studies have yielded promising results and 
have drawn good lessons for subsequent researchers. 
However, there is still a lack of large-scale multicenter 
validation in existing exploratory radiomics studies, 
and the vast majority of validation cohorts are still 
derived from retrospective data from a single 
independent unit. A data platform such as the cancer 
imaging archive (TCIA) has been created, but the 
quality of the data profile is mixed [67]. Although 
relatively reliable conclusions can be drawn from 
some of the mixed data by relying on big data 
techniques, however, differences in parameters 
during image acquisition or noise on the images can 
cause serious interference with the radiomics features 
extracted from them. This interference will inevitably 
affect the model’s ability to generalize to other 
databases as well. 
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Table 4. Radiomics predicts the survival of head and neck cancer 

Study Tumor characteristics Imaging modality Outcome Machine learning methods 
Shen et al. 2020 [108] NPC MRI PFS LASSO 
Xu et al. 2020 [113] NPC PET PFS / 
Ouyang et al. 2017 [114] NPC MRI PFS / 
Zhang et al. 2017 [115] Advanced NPC MRI PFS LASSO 
Lv et al. 2019 [53] NPC PET PFS / 
Peng et al. 2019 [52] NPC PET DFS Deep learning 
Yuan et al. 2019 [109] HNSCC MRI OS LASSO 
Ming et al. 2019 [116] NPC MRI DFS, OS, LRFS, DMFS LASSO 
Mao et al. 2019 [117] NPC MRI PFS / 
Chen et al. 2020 [118] LC CT OS LASSO 
Folkert et al.2017 [119] OC PET ACM, DM Multiparameter logistic regression 
 Foley et al.2018 [120] OC PET OS / 
Chen et al.2019 [121] EC PET DFS, OS Multivariate logistic regression 
Xiong et al. 2017 [122] EC PET PFS SVM, RF 
Feliciani et al. 2018 [123] HNC PET PFS LASSO 
Liao et al. 2019 [124] Oropharyngeal and hypopharyngeal cancer PET OS, PRFS, DFS / 
Lv et al. 2019 [125] HNC PET/CT RFS, MFS, OS / 
Yang et al. 2019 [126] Advanced NPC MRI PFS LASSO 
Leijenaar et al. 2015 [127] OSCC CT OS / 
Agarwal et al. 2020 [111] LC CT LFS / 
Zhong et al. 2020 [128] T3N0M0 NPC MRI DFS Deep learning 
Parmar et al. 2015 [110] HNC CT OS Different machine-learning classifiers 
Liu et al. 2020 [112] HNSCC PET OS, DFS / 
Pan et al. 2019 [130] Oral tongue cancer CT Survival time PCA 
Xie et al. 2020 [129] HNC PET OS, DFS LR, SVM, RF, XG boost classifier 
Cozzi et al. 2019 [131] HNC CT OS, PFS / 
Legar et al. 2018 [132] HNC CT OS, LRC Six machine learning algorithms 
Sörensen et al. 2019 [133] HNC PET OS / 
Haider et al. 2020 [134] OSCC PET OS, PFS / 
Ou et al. 2017 [135] HNC CT PFS, OS PCA 
Miller et al. 2019 [136] OPSCC CT PFS / 
Mes et al. 2020 [137] HNSCC MRI RFS, OS / 
OPSCC: Oropharyngeal Squamous Cell Carcinoma; RFS: Relapse-free survival; ACM: All-cause mortality; LFS: Laryngectomy free survival; PRFS: Primary relapse-free 
survival; RFS: Recurrence-free survival; MFS: Metastasis-free survival; LRC: Locoregional tumor control; DMFS: Disease distant metastasis-free survival; OC: Oropharyngeal 
carcinoma. 

 
 
The relationship between radiomics and clinical 

symptoms has been widely documented, but other 
data types, such as genomics, transcriptomics, 
proteomics, and metabolomics, have been less studied 
in relation to radiomics. In HNC, correlation studies 
between imaging and genomics are now available, as 
important molecular markers such as PD-L1/TP53/ 
FAT1/KMT2D/NOTCH1/Ki-67 can be predicted by 
predictive models of imaging features [10,32,141]. At 
present, the relationship between imaging and 
transcriptomics has been studied in other tumors, but 
its combination with proteomics and metabolomics is 
still less studied. This may be related to the fact that 
currently the histological data are independent of 
each other, and samples with these histological data 
do not have radiomics data. 

The next milestone in radiomics is undoubtedly 
the creation of decision support and predictive tool 
models. In order to achieve this goal, having big data 
of all types of data is a sine qua non, and a strong and 
comprehensive common database is an effective 
solution. To achieve this goal, in addition to the 
involvement of different medical centers from all over 

the world to provide data, a worldwide accepted 
standard should be developed first. This standard 
should establish more uniform regulations in 
radiomics from the acquisition of source data, 
segregation of regions of interest, extraction of 
features to the development of predictive models. 
Although the difficulty and cost of creating and 
managing high-quality public data is enormous, the 
benefits to human medicine are also enormous. 

People have investigated the association 
between PD-L1 expression in HNC patients and 
PET/CT, but did not delve into the efficacy of 
immunotherapy [31]. In other tumors, such as glioma 
and non-small-cell lung cancer, the models found in 
these studies have potential important translational 
implications to identify highly vulnerable patients 
treated with immunotherapy that experience rapid 
disease progression and survival poor outcomes 
[142-143]. These studies demonstrated that clinical 
data combined with radiomics performed better than 
traditional clinical data in predicting the efficacy of 
immunotherapy. Immunotherapy, as a new therapy 
in modern cancer treatment, has been shown to be less 
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effective in many solid tumors, such as HNC, and 
therefore the development of appropriate models to 
predict the efficacy of immunotherapy prior to 
treatment would be of great help in avoiding the 
waste of medical resources and developing more 
accurate and personalized treatment plans. 

In the current study of radiomics in HNC, it can 
be found that the vast majority of studies are still 
based on a single imaging modality, with few studies 
combining multiple imaging modality 
characterization. The predictive power of multiple 
imaging modalities in the same disease is still 
unknown, and our current research direction is trying 
to fill this vacancy. At the same time, as mentioned 
above, the development of predictive models by 
combining imaging modalities with multi-modality 
studies is still in its infancy, and there is still a lot of 
room for improvement, which is the direction we are 
working on at our medical center. The easier access to 
the data required for radiomics, unlike routine 
biopsies or other histology, provides new directions 
for otolaryngologists and craniofacial surgeons to 
study underlying tumors of the skull (in addition to 
routine HNC). As we all know, compared with HNC, 
skull base tumors are more difficult to biopsy and 
diagnose, and because of their insidious development, 
patients often do not show symptoms until later 
stages. In addition, the special and complex 
anatomical structure of the skull base often makes it 
more difficult for skull base surgeons to estimate the 
nature of the tumor and determine the scope of 
resection before surgery. Although relevant studies 
have been done by researchers, such as Li et al. 11 
selected features were finally selected from skull base 
MRI of 210 patients to establish a radiomics model to 
differentiate between skull base chordoma and 
chondrosarcoma [144]. Other researchers have used 
MRI radiomics to predict the likelihood of early 
progression or recurrence in a subset of patients with 
skull base meningiomas due to incomplete resection 
[145-146]. However, the application of radiomics in 
skull base tumors is still rare, which may be due to the 
special location of skull base tumors, and the image 
range including various neurovascular, brain tissue, 
bone and even nasal and orbital conditions, this 
results in a complex image texture. Because of these 
complexities, it is necessary to develop radiomics, 
which can be used to obtain objective information 
through non-invasive testing, combined with machine 
learning to build pathological classification prediction 
models or conventional prognostic models, to guide 
the selection of treatment, design the scope of surgery, 
and even guide the postoperative comprehensive 
treatment. This is also very much in line with the 
concept of sequential cancer treatment. 

With the enhancement of radiomics technology, 
the expansion of public databases, and the 
advancement of deep learning algorithms, radiomics 
will certainly play an important role in the future 
clinical diagnosis, treatment and prognosis. 
Radiomics is expected to lay the foundation for the 
future personalized treatment of otolaryngology 
patients and the sequential treatment of tumors. 
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