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Abstract 

Head and neck squamous cell carcinoma (HNSCC) is the 9th most common malignant tumor in the world. 
Based on the etiology, HNSCC has two main subtypes: human papillomavirus (HPV) -related and 
HPV-unrelated. HPV-positive HNSCC is more sensitive to treatment with favorable survival. Due to the 
different biological behaviors, individual therapy is necessary and urgently required to deduce the 
therapeutic intensity of HPV-positive disease and look for a more effective and toxicity-acceptable 
regimen for HPV-negative disease. EGFR amplification and PI3K/AKT/mTOR pathway aberrant activation 
are quite common in HPV-positive HNSCC. Besides, HPV infection alters immune cell infiltrating in 
HNSCC and encompasses a diverse and heterogeneous landscape with more immune infiltration. On the 
other hand, the chance of HPV-negative cancers harboring mutation on the P53 gene is significantly higher 
than that of HPV-positive disease. This review focuses on the updated preclinical and clinical data of 
HPV-positive and HPV-negative HNSCC and discusses the therapeutic strategies of different HPV status 
in HNSCC. 
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Introduction 
Head and neck squamous cell carcinoma, 

including those of the lip and oral cavity, nasal cavity, 
paranasal sinuses, oropharynx, larynx, and 
nasopharynx, is the 9th most common malignant 
tumor in the world, representing 6% of all cancer 
cases and up to 2% of all cancer-related deaths [1, 2]. 
HNSCC is a biologically diverse and genetically 
heterogeneous disease. Smoking, betel nut, and 
alcohol consumption are the traditional high-risk 
factors for HNSCC [3-7]. During the past three 
decades, people realized human papillomavirus 
(HPV) [1, 8, 9] and Epstein Barr Virus (EBV) [10-12] 
are associated with the development of HNSCC. 

Based on the etiology, HNSCC has two main 
subtypes: human papillomavirus-related (HPV- 
positive) and human papillomavirus-unrelated 

(HPV-negative). The HPV-positive disease occurs 
predominantly in the oropharynx [13]. In contrast, 
HPV-negative disease is driven by chemical 
mutagenesis associated with tobacco and alcohol 
exposure and origins in anatomic sites [14]. HPV 
infection transforms cells in tonsillar crypts and 
boosts carcinogenesis in the oropharynx [15]. 
HPV-positive HNSCC tending to arise in a younger 
patient population is more sensitive to treatment with 
more favorable survival. Overall survival rates at 3 
years are estimated at 82% in locally advanced 
HPV-positive HNSCC compared to 57% for locally 
advanced HPV-negative HNSCC [1, 9, 16-19]. More 
preclinical and clinical data recommends a different 
therapeutic strategy for HPV-positive and HPV- 
negative HNSCC as two clinically distinct diseases 
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[20]. Recently, many clinical trials design for HNSCC 
based on HPV status (Table 1). As for the different 
biological behaviors, individual therapy is necessary 
and urgently required for deducing the therapeutic 
intensity of HPV-positive disease and looks for a more 
effective and toxicity-acceptable regimen for HPV- 
negative disease [19, 21]. This review summarizes the 
up-to-date research and describes the emerging 
therapeutic strategies on HPV biased HNSCCs. 

HPV status and chemoradiotherapy 
HPV has prognostic but not predictive 
effectiveness of chemoradiotherapy 

Radiotherapy and chemotherapy are critical 
therapeutic ways to treat HNSCC, and they are even 
the gold standard for patients with local advanced 
stage or recurrence and metastasis disease. RTOG 
0129, the most cited trial, reported that HPV-positive 
patients had better 3-year rates of overall survival 
(82.4%, vs 57.1%; p<0.001) [22-25]. Many scholars 
concluded that the clinical outcomes after chemo-
radiotherapy were similar between HPV+ and HPV- 
cohort [16, 17, 20, 25]. Retrospective sub-analyses in 
randomized trials failed to conclude a benefit from 
HPV status: in the DAHANCA 5 study, nimorazole 
with radiotherapy has more effect in the p16-positive 
cohort [26]. However, the TROG 0202 phase III trial 
presented a trend favoring the tirapazamine arm in 
p16-negative patients [27, 28]. In conclusion, the 
present data in HNSCC suggest that HPV (p16) has 
prognostic but not predictive effectiveness of 
chemoradiotherapy. 

HPV-associate disease may not receive 
aggressive chemoradiotherapy 

The clinical significance of HPV status indicates 
the prognosis but cannot change the clinical decision- 
making. According to the guidelines of NCCN 2020, 
surgery or radiotherapy alone can be considered for 
HPV-positive oropharyngeal carcinoma in the T1-2 
N0 stage, surgery, radiotherapy, or concurrent 
radiotherapy and chemotherapy can be regarded as in 
T1-2N1 (lymph nodes smaller than 3cm), while 
tumors in a later stage can consider surgery, 
concurrent radiotherapy, and chemotherapy or 
sequential radiotherapy and chemotherapy after 
induced chemotherapy. For radical radiotherapy, the 
equivalent biological dose (EQD2) is still required to 
70Gy or above (National Comprehensive Cancer 
Network. Head and Neck Cancers (Version 1.2021). 
https://www.nccn.org. Accessed December 27, 2020). 

However, because of the treatment sensitivity of 
HPV-positive oropharyngeal carcinoma, 
appropriately reducing the treatment intensity would 

be an ideal strategy [29]. Therefore, in recent years, 
studies on intensity reduction therapy for 
HPV-positive oropharyngeal carcinoma emerge one 
after another. In 2018, ECOG1308 suggested that local 
advanced HPV-positive oropharyngeal cancer with 
complete remission after induced chemotherapy can 
safely reduce the radiation dose to 54Gy [30]. 
OPTIMA is a phase II trial to explore different 
radiotherapy doses according to recurrence risk. 
Risk-stratified dose and volume de-escalated RT/CRT 
are associated with favorable outcomes and less acute 
and chronic toxicity for HPV-positive oropharyngeal 
cancer [31]. In 2020, ASCO also updated the data of 
ECOG 3311. The moderate-risk group were 
randomized and received standard adjuvant dose (60 
Gy) radiotherapy reduction therapy (50 Gy). 2 years 
PFS was similar in the two groups [32]. 

Reducing the intensity of chemotherapy is 
another strategy for HPV-positive disease. RTOG 1016 
indicates that cetuximab has no merit to improve 
prognosis [33]. In the same period, two other studies 
with a similar design, De-ESCALaTE [34] and TROG 
12.01 [35], also achieved negative results, suggesting 
that cisplatin should still be used as the standard 
treatment. Many ongoing trials are going on to 
uncover the results; however, the treatment of HPV 
negative HNSCC in clinical practice needs more 
exploration. 

EGFR/PI3K/AKT/mTOR pathway might 
be potentially targeted to HPV-associated 
HNSCC 
EGFR/PI3K/AKT/mTOR pathway aberrant 
activation frequently occurs in HPV-positive 
HNSCC 

As described above, HPV status contributes less 
to conventional treatment. As we know, cancer 
derives through the accumulation of genetic and 
epigenetic alteration in genes involved in a variety of 
signaling pathways and precipitates the cancer- 
associated phenotypes [29, 36]. 

EGFR blockade is not a good choice for 
HPV-positive HNSCC 

About 70% of HNSCC has an epidermal growth 
factor receptor (EGFR) overexpression. Hwang et al. 
reported that E5 forms a complex with the EGFR and 
triggers the EGFR pathway activation [37]. Also, E5 
binds the 16 kDa subunit C of the V-H+-ATPase 
inhibits the degradation of EGFR. c-Cbl as a ubiquitin 
ligase associates with the activated EGFR and targets 
it for degradation was hijacked by E5 [38-40]. To sum 
up, E5 is essential to trigger the EGFR pathway. 
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Table 1. Clinical trials based on HPV status in NHSCC 

Clinical trial 
number 

Project name 

HPV+  
NCT03946358 Combination of UCPVax Vaccine and Atezolizumab for the 

treatment of Human Papillomavirus Positive Cancers (VolATIL) 
NCT04260126 Study of PDS0101 and Pembrolizumab combination I/O in subjects 

with HPV16 + recurrent and/or metastatic HNSCC 
NCT02048020 Paclitaxel and Carboplatin before radiation therapy with Paclitaxel 

in treating HPV-positive patients with Stage III-IV Oropharynx, 
Hypopharynx, or Larynx Cancer 

NCT04444869 Testing less intensive radiation with chemotherapy to treat low-risk 
patients with HPV-positive Oropharyngeal Cancer 

NCT03829722 Radiotherapy, Carboplatin/Paclitaxel and Nivolumab for high risk 
HPV-related Head and Neck Cancer 

NCT03618134 Stereotactic Body Radiation Therapy and Durvalumab with or 
without Tremelimumab before surgery in treating participants with 
Human Papillomavirus positive Oropharyngeal Squamous Cell 
Cancer 

NCT04630353 A Study HB-201 in patients with newly diagnosed HPV16+ 
Oropharynx or Locally Advanced Cervical Cancer 

NCT01721525 Induction Chemotherapy with Afatinib, Ribavirin, and weekly 
Carboplatin/Paclitaxel for Stage IVA/IVB HPV associated 
Oropharynx Squamous Cell Cancer (OPSCC) 

NCT03715946 Adjuvant de-escalated radiation + Adjuvant Nivolumab for 
Intermediate-high risk P16+ Oropharynx Cancer 

NCT00257738 0804 GCC: MAGE-A3/HPV 16 Vaccine for Squamous Cell 
Carcinoma of the Head and Neck 

NCT03396718 De-escalation of Adjuvant Radio (Chemo) Therapy for 
HPV-positive Head-neck Squamous Cell Carcinomas 

NCT03578406 HPV-E6-specific anti-PD1 TCR-T cells in the treatment of 
HPV-positive NHSCC or Cervical Cancer 

NCT04534205 A clinical trial investigating the safety, tolerability, and therapeutic 
effects of BNT113 in combination with Pembrolizumab versus 
Pembrolizumab alone for patients with a form of Head and Neck 
Cancer positive for Human Papilloma Virus 16 and expressing the 
protein PD-L1 

NCT04489212 Study of Mucosal Sparing Adjuvant Radiotherapy after Surgical 
Exploration in HPV+ Head and Neck Cancer of Unknown 
Primaries 

NCT03260023 Phase Ib/II of TG4001 and Avelumab in HPV16 positive R/M 
Cancers including Oropharyngeal SCCHN 

NCT03978689 A Phase 1 Study in patients with HPV+ recurrent/metastatic Head 
and Neck Squamous Cell Carcinoma 

NCT04369937 HPV-16 Vaccination and Pembrolizumab Plus Cisplatin for 
“Intermediate Risk” HPV-16-associated Head and Neck Squamous 
Cell Carcinoma 

NCT04252248 Decitabine treatment in HPV-induced anogenital and Head and 
Neck Cancer patients after radiotherapy or as novel late salvage 

NCT03942380 Cell-free tumor DNA in Head and Neck Cancer patients 
NCT02163057 Study of HPV specific immunotherapy in patients with HPV 

associated Head and Neck Squamous Cell Carcinoma 
HPV-  
NCT03944915 De-escalation therapy for Human Papillomavirus negative Disease 
NCT04220749 Radiotherapy vs. Trans-Oral Surgery for HPV-negative 

Oropharyngeal Squamous Cell Carcinoma 
NCT03356223 Evaluation of ABEMACICLIB monotherapy in patients with locally 

advanced/metastatic Head and Neck Cancer after failure of 
Platinum and Cetuximab or anti-EGFR-based therapy and 
harboring an Homozygous Deletion of CDKN2A, and/or an 
amplification of CCND1 and/or of CDK6 

NCT03389477 Los Tres Paso: Neoadjuvant Palbociclib Monotherapy, Concurrent 
Chemoradiation Therapy, Adjuvant Palbociclib Monotherapy in 
patients with p16INK4a negative, HPV-unrelated Head and Neck 
Squamous Cell Carcinoma 

NCT03635164 Radiotherapy with Durvalumab prior to surgical resection for HPV 
negative Squamous Cell Carcinoma 

NCT04169074 Modulation of the tumor microenvironment by Abemaciclib in 
operable HPV-Negative Head and Neck Cancer (HNC) 

NCT03673735 Maintenance Immune Check-point Inhibitor following post- 
operative Chemo-radiation in subjects with HPV-negative HNSCC 

NCT03624231 Feasibility & Efficacy of Durvalumab+Tremelimumab+RT and 
Durvalumab+RT in Non-resect. Locally Advanced HPVnegativ 
HNSCC 

NCT04247282 Anti-PD-L1/TGF-beta Trap (M7824) alone and in combination with 
TriAd Vaccine and N-803 for Resectable Head and Neck Squamous 
Cell Carcinoma not associated with Human Papillomavirus 
Infection 

Decades ago, scholars initiated to block EGFR 
[41-45] on HNSCC. Monoclonal antibodies and 
inhibitors of EGFR had been developed, including 
cetuximab, afatinib, and panitumumab. A 
retrospective analysis from the SPECTRUM trial [46] 
indicated that panitumumab’s therapeutic benefit was 
restricted to the p16 negative patients. A small sample 
from the PRISM trial suggested that patients with p16 
negative trends benefit from panitumumab [47]. 
Afatinib, the 2nd generation of EGFR-TKI, is more 
pronounced in p16 negative tumors [48, 49]. The 
EXTREME trial was the soundest in HNSCC 
recurrent/metastatic disease and showed that 
patients with p16 positive would have more benefit 
from cetuximab [50, 51]. However, more studies 
regarding anti-EGFR, including the PARTNER study 
[52] and some other small sample trials, showed that 
HPV status failed to differentiate the EGFR blockade 
[48, 53, 54]. In 2015, Seiwert et al. analyzed the TCGA 
HNSCC samples and showed fewer EGFR aberrations 
in HPV-negative tumors in genomic analyses [55]. 
Thus, many scholars agree that EGFR expression or 
amplification may not be a predictive factor for EGFR 
blockade therapy. 
HPV trigger PI3K/AKT/mTOR pathway in 
various ways 

The heterogeneity of EGFR blockade therapy, in 
part, because of the downstream driver gene 
mutations, remains an incomplete understanding. 
PI3K mutation is highlighted in HPV-associated 
HNSCC. In the TCGA database, 27.8% PI3K mutated 
in HPV positive cases [55]. Vivian et al. analyzed the 
GWAS data from 151 HNSCC cases and determined 
the PI3K was the most frequently mutated (30.5%), 
and in HPV-associated tumors, only PIK3R1 
(453_454insN), PIK3CA (E542K), and PIK3CA 
(H1047L) were identified [56]. PI3K pathogenic 
mutation is relevant to advanced disease, suggesting 
that PI3K fuels the progress of HPV-associated 
HNSCC [56-59]. However, the PIK3CA mutations are 
not the only genetic alterations that maintain 
activation of PI3K and downstream targets, including 
AKT and mTOR, in HNSCC [60-62]. Indeed, 80-90% 
of HNSCC gain an abnormal activation of the 
PI3K/AKT/mTOR pathway, indicating that multiple 
steps of genetic and epigenetic alteration may involve 
the carcinogenesis which PI3K drives. Downstream 
signaling genes of PI3K, AKT2, mTOR, TSC1, and 
TSC2 were less mutated (<2%) [13, 55, 56, 59, 61]. 

Aside from the PI3K pathway's stromal 
mutations, many studies reveal that E6 can target 
phosphorylase and activate the pathway. HPV E6 
oncoprotein contains a PDZ-binding domain and 
inactivates PTEN [62-65], leading to fuel pAkt [66, 67]. 
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Also, E6 and BPV1 interact with acidic LxxLL motifs 
and activate mTOR [68]. E6‐E6AP complex binds and 
degrades the TSC2 [69]. E6 can degrade the NHERF-1 
and activate the PI3K/Akt pathway [70]. The E7 
protein is known as Rb disruption and results in 
dysfunction of cell cycle checkpoints that promotes 
carcinogenesis [71-73]. Loss-of-function of Rb induces 
AKT activation, and E7 can directly phosphorylate 
Akt at Thr 308 and Ser 473 [74, 75]. Also, E7 can bind 
to the ubiquitous and conserved serine/threonine 
phosphatase, which is crucial to protect AKT 
dephosphorylation and sustain AKT activation [76] 
(Figure 1). 

PI3K inhibitors are promising but still have a 
long way to go 

Many pan-class I PI3K inhibitors have been 
developed and tested. The safety profile of inhibitors 
is acceptable [77]. Single-agent PI3K inhibitor does not 
present a potent effect like EGFR-TKI and works on 
the selected tumor [77-80]. FDA only approves 

alpelisib for breast cancer in PI3K mutated breast 
cancer and paxalisib for DIPG. Alpelisib monotherapy 
is unavailable in all breast cancer, and it needs to 
combine with fulvestrant for its therapeutic effect [81, 
82]. Paxalisib prolongs 5 months overall survival (OS) 
than TMZ, independent of PI3K mutation status [83, 
84]. In HNSCC, only BKM120 monotherapy was 
applied in the clinical trial (NCT01737450). 

Herein, finding a reasonable mode of combined 
therapy is the best choice for targeting PI3K. As the 
same as PI3K inhibitor, mTOR inhibitors often present 
a short-term efficacy [85]. Preclinical and clinical 
studies indicate mTOR blockade results in PI3K and 
Akt’s reactivation via various negative feedback 
blockade [86-88]. Dactolisib, a PI3K/mTOR dual 
inhibitor, exhibits a therapeutic effect superior to 
everolimus in the mouse model. However, excessive 
toxicity in patients restrains Dactolisib for 
pharmaceutical use [89, 90]. MAPK pathway and 
interpathway inhibition should be explored. 

 

 
Figure 1. EGFR/PI3K/AKT/mTOR pathway might be potentially targeted to HPV-associated HNSCC. HPV E5, E6, E7 can activate PI3K/AKT/mTOR in various 
ways. The heterogeneity of the EGFR blockade is attributed to, somehow, the downstream driver gene mutation. About 80-90% of HPV-associated HNSCC has PI3K/AKT/ 
mTOR pathway activation. Monotherapy of PI3K/AKT/mTOR is less effective. PI3K and MAPK pathways conduct in parallel. Combine PI3K with MAPK inhibitors in patients 
where genetic alterations coexist in both pathways that may induce a synthetic lethal. 
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Synthetic lethal with PI3K inhibitors may be 
highlighted for HPV-positive HNSCC 

It is well known that PI3K and MAPK pathways 
conduct in parallel. Combine PI3K with MAPK 
inhibitors in patients whose genetic alterations in both 
pathways coexist [58, 91-93]. Scholars note that 
PIK3CA mutations often coexist with KRAS and 
BRAF mutations [94]. A parallel oncogenic pathway 
activation abrogates the effects of PI3K/Akt/mTOR 
inhibitors [77, 79]. Vemurafenib and dabrafenib are 
two successful drugs targeting BRAF; however, they 
present a very modest effect and only last 6 months 
PFS [95-98]. Vitro drug screening shows that PI3K 
pathway aberrant activation may contribute to BRAF 
inhibitor resistance [99]. As the same, the MEK 
inhibitor presents the same phenotype. Drugs or RNA 
interfere, targeting PI3K rescues the resistance to 
BRAF and MEK inhibitors. An animal model 
double-agent of PI3K and MEK pathway inhibitor 
shows a strong therapeutic effect [94, 100, 101]. 
Unfortunately, a Phase Ib study of the pan-PI3K 
inhibitor Buparlisib combined with the MEK1/2 
inhibitor Trametinib meets the problems of frequent 
dose interruptions and reductions for toxicity ease 
before Phase II trial [102]. In 2018, novel MEK 
inhibitor pimasertib and PI3K/mTOR inhibitor 
voxtalisib also failed due to long-term tolerability and 
limited anti-tumor activity [103]. EMR 20006-012 is 
another trial to evaluate pimasertib (MEK inhibitor) 
with SAR245409 (PI3K inhibitor) and terminates early 
due to low ORR and high rate of discontinuation 
[104]. MEK inhibitor trametinib and the AKT inhibitor 
GSK2141795 combination strategy lunched in cervical 
cancer; AML also terminated due to the high rate of 
discontinuation or lack of clinical efficacy [105, 106]. It 
seems that Ras mutation status does not affect the 
efficacy of the dual blockade of PI3K and MAPK. 

It has been reported that activation might be a 
prognostic marker for radiotherapy in HNSCC and 
indicates PI3K pathway inhibition would potentially 
exert a synergistic effect with radiotherapy [62]. In 
2011, NCCTG N057K showed a well-tolerance of the 
combination of everolimus and radiotherapy; 
however, the group updated their result in 2015, and 
everolimus did not change the clinical outcome [107]. 
A phase Ib clinical trial indicates a novel PI3K 
inhibitor Alpelisib at 250 mg/d combined with 
cetuximab and IMRT is tolerable and presents a 
clinical efficacy in local advanced HNSCC [108]. 
Furthermore, some PI3K inhibitors, such as voxtalisib 
[103, 109], nelfinavir [110, 111], and buparlisib [112], 
also present a favorable safety profile with 
radiotherapy, but the clinical efficacy needs further 
investigation (Table 2). 

Table 2. Clinical trials basing on PI3K/AKT/mTOR pathway in 
NHSCC 

Clinical trial 
number 

Project name 

NCT03740100 Single-arm study with Bimiralisib in patients with HNSCC 
Harboring NOTCH1 loss of function mutations 

NCT02822482 Copanlisib in association with Cetuximab in patients with 
recurrent and/or Metastatic Head and Neck Squamous Cell 
Carcinomas harboring a PI3KCA mutation/amplification and/or 
a PTEN loss 

NCT03795610 Window of Opportunity Study of IPI-549 in patients with locally 
advanced HPV+ and HPV- Head and Neck Squamous Cell 
Carcinoma 

NCT04193293 A Study of Duvelisib in combination with Pembrolizumab in 
Head and Neck Cancer 

NCT03356587 A Biomarker-driven, Open Label, Single Arm, Multicentre Phase 
II Study of Abemaciclib in patients with recurrent or metastatic 
Head and Neck Squamous Cell Carcinoma who failed to 
Platinum-based Therapy 

NCT01602315 A Phase Ib/II Study of BYL719 and Cetuximab in Recurrent or 
Metastatic Head and Neck Squamous Cell Carcinoma 

NCT02537223 Phase I Study of BYL719 in combination with Cisplatin and 
Radiotherapy in patients with Squamous Cell Head and Neck 
Cancer 

NCT02573493 Nab-Paclitaxel and Cisplatin or Nab-paclitaxel as induction 
therapy for locally advanced Squamous Cell Carcinoma of the 
Head and Neck (HNSCC) 

NCT03896412 Detection of Circulating Tumor DNA in p16- Locally Advanced 
Head Neck Squamous Cell Carcinoma 

NCT02051751 A study to evaluate the potential benefit of the addition of 
BYL719 to Paclitaxel in the Treatment of Breast Cancer and 
Head-and-neck Cancer 

NCT03022409 A Study to investigate biomarker effects of pre-surgical 
Treatment with DNA Damage Repair (DDR) agents in patients 
with Head and Neck Squamous Cell Carcinoma (HNSCC). 

NCT01204099 Study of PX-866 and Docetaxel in Solid Tumors 
NCT01252628 Phase 1 and 2 Study of PX-866 and Cetuximab 
NCT02113878 Phase Ib Study of BKM120 with Cisplatin and XRT in high risk 

locally advanced Squamous Cell Cancer of Head and Neck 
NCT02277184 Ficlatuzumab, Cisplatin and IMRT in locally advanced Head and 

Neck Squamous Cell Carcinoma 
NCT01816984 PI3K Inhibitor BKM120 and Cetuximab in treating patients with 

recurrent or metastatic Head and Neck Cancer 
NCT02644122 SF1126 in recurrent or progressive SCCHN and mutations in 

PIK3CA Gene and/or PI-3 Kinase Pathway Genes 
NCT03292250 Korean Cancer Study Group: Translational bIomarker Driven 

UMbrella Project for Head and Neck (TRIUMPH), Esophageal 
Squamous Cell Carcinoma- Part 1 (HNSCC)] 

NCT02298595 Cetuximab, Cisplatin and BYL719 for HPV-associated 
Oropharyngeal Squamous Cell Carcinoma 

NCT01349933 Akt Inhibitor MK2206 in treating patients with recurrent or 
metastatic Head and Neck Cancer 

NCT01195922 Rapamycin Therapy in Head and Neck Squamous Cell 
Carcinoma 

NCT01172769 Efficacy Study of Temsirolimus to Treat Head and Neck Cancer 
NCT03740100 Single-arm Study with Bimiralisib in patients with HNSCC 

Harboring NOTCH1 loss of function mutations 
NCT01111058 Everolimus versus Placebo in Head and Neck Cancer 
NCT01051791 Phase II Study of RAD001 Head and Neck Cancer 
NCT01016769 Temsirolimus + weekly Paclitaxel + Carboplatin for recurrent or 

metastatic Head and Neck Squamous Cell Cancer (HNSCC) 
NCT01313390 Everolimus and Docetaxel in treating patients with recurrent, 

locally advanced, or metastatic Head and Neck Cancer 
NCT03065062 Study of the CDK4/6 Inhibitor Palbociclib (PD-0332991) in 

combination with the PI3K/mTOR Inhibitor Gedatolisib 
(PF-05212384) for patients with Advanced Squamous Cell Lung, 
Pancreatic, Head & Neck and Other Solid Tumors 

 

Targeting P53 is an effective strategy to 
fight against HPV-negative HNSCC 
Directly targeting P53 is good but hard to fight 

Many trials have proved a worse clinical 
outcome in HPV-negative HNSCC. In RTOG 0129 
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trial, 433 patients with oropharyngeal cancer received 
cisplatin with radiotherapy. Compared with 
HPV-positive patients, the OS of HPV-positive tumor 
patients was remarkably worse (the 8-year survival 
rate was 71% vs 30%, HR 0.34, 95%CI 0.22-0.52). All 
the present data indicate that patients with 
HPV-negative tumors should be considered high-risk, 
and intensive, multimodal therapy is needed to avoid 
compromising their survival [22, 23, 25]. 

Genomic alterations are very common in 
HNSCC. HPV−negative cancers harbor significantly 
more mutations in the P53 gene than HPV-positive 
disease; meanwhile, loss-of-function variants in P53 
are almost low to none in HPV-associated HNSCC 
[13, 55]. In HPV-positive HNSCC, E6 promotes the 
MDM2-independent degradation of P53. Inactivation 
variants of P53 driven by tobacco may not be the same 
as the degradation of P53 by HPV E6 [113, 114]. 
Therefore, HPV-positive HNSCC may contain 
full-of-function p53. 

As a transcription factor, P53 plays a crucial role 
in downstream target gene transcription. Under the 
stress of DNA damage, proto-oncogene activation, 
hypoxia, and microtubule damage, P53 is activated in 
the process of signal transduction. As a result, cellular 
behaviors, such as cell cycle arrest, apoptosis, aging, 
and angiogenesis inhibition, are performed to keep 
the benignancy of the cells’. P53 repairs the abnormal 
chromosome distribution in cells after DNA damage 
and mitosis [113, 115, 116]. However, the anti-tumor 
route of targeting the P53 strategy is not easy in the 
past 50 years. 

Decades ago, to overcome the loss function of 
mutated P53, people tried to reintroduce wild type 
P53 into the tumor via adenoviruses as vectors, and 
the virus can then selectively target and kill cancer 
cells. Adenovirus is safe and should be an ideal carrier 
for gene therapy as it can infect both mitoses and 
quiescent cells, and the genome keeps episomal and 
does not integrate into the host cells [117, 118]. Studies 
have shown that the introduction of the Ad-p53 gene 
into P53 mutated HNSCC cells can increase tumor 
cells' radiosensitivity [119]. Moreover, the Ad-p53 
virus is active in vivo and compromise tumor growth 
in the HNSCC animal model. INGN 201 is the first 
candidate of Ad-p53 for the Phase I clinical trial. The 
study recruited 33 patients with recurrent HNSCC 
and received INGN 201 intratumor injection. In the 
resectable cohort, 27% of HNSCC patients remained 
disease-free, with a median follow-up period of 18 
months after surgery. Of the 17 unresectable diseases, 
in 2 cases had PR, 6 cases kept an SD, and 9 cases 
evaluated as PD. Multiple direct intratumor injection 
courses of INGN 201 were well tolerated, and no 
dose-limiting toxicity or serious adverse events were 

observed [120-122]. ONYX-015 is a chimeric virus that 
consists of 2 species of C adenovirus genomes, 
serotypes 5 (Ad5) and serotype 2 (Ad2). ONYX-015 
was designed to efficiently replicate in and lyse 
p53-deficient cells while not affect cells with 
wild-type p53 [123]. In a Phase II trial in recurrent or 
refractory HNSCC patients to evaluate the safety and 
effect of ONYX-015, in the hyper-dose group, 1 
patient had CR, 4 patients had SD, and 2 patients had 
PD, there was no severe AEs observed [124, 125]. 
Besides, the effect of ONYX-015 was dependent on the 
mutant p53 status. 

Loss-of-function P53 mutation is mainly located 
in the DNA binding domain, which effectively 
prevents the mutant p53 from binding to the target 
gene's response elements. p53-reactivating small 
molecules, including CP-31398 and PRIMA-1, are 
developed and tested in HNSCC [126]. Roh et al. 
report that both CP-31398 and PRIMA-1 can attenuate 
HNSCC cells’ proliferation and exert a synergetic 
effect with chemotherapy agents [127]. RITA, another 
p53-Reactivating small molecule, directly disrupts the 
interaction between p53 and MDM2 and presents a 
potent anti-tumor impact on HNSCC, and enhances 
the sensitivity of cisplatin in HNSCC cells [128]. 
However, the cell often obtains the resistance profile 
after directly targeting P53 treatment very soon. 
Adenoviral therapeutic strategies, such as Ad-p53 and 
ONYX-015, and small molecular compounds, have 
progressed to clinical trials in the HNSCC but have 
shown a very mild activity [113, 122, 126, 127]. More 
and more trials list in Table 2 are ongoing to figure out 
the best candidate or partner of P53 RAs. 
DNA damage responders and P53 mutation 
may exert synthetic lethality in HPV-negative 
HNSCC 

Due to the PARP inhibitor's great success, 
scholars move their focus on hunting the synthetic 
lethal genes of P53. There is a complicated synthetic 
lethal relationship between mutated p53 and its 
corresponding target genes in all kinds of tumors. 
Based on the various research results of p53 synthetic 
lethality, the corresponding synthetic lethal 
relationship can be explained from two aspects: 
periodic regulatory genes and aperiodic regulatory 
genes [129, 130]. 

It is well known that p53 activation can lead to 
cell cycle arrest and initiate DNA repair in response to 
DNA damage. Key protein inhibitors that regulate 
DNA damage response and cell cycle progression 
have the potential to be synthetic lethal partners [115]. 
As shown in Figure 2, targeting ataxia-telangiectasia 
mutant (ATM), ATM-Rad3-associated (ATR), DNA- 
dependent protein kinase (DNA-PK), checkpoint 
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kinase-1/2 (Chk1/2), and Wee1 kinase shows up-and- 
coming prospects to overcome mutant P53 HNSCC 
[130]. 

ATM and ATR are members of the 
phosphatidylinositol 3-kinase-related kinase (PIKK) 
family of serine/threonine protein kinases. ATM and 
ATR are two critical factors to initiate the DNA 
damage response as a DNA damage sensor. ATM and 
ATR act as primary regulators of double-strand 
breaks and DNA replication stress, respectively. 
These two kinases perform functionally overlapping 
but non-redundant activities [131, 132]. We have a 
strong rationale to explore ATR inhibitors' anti-tumor 
efficacy in p53-mutated tumors within certain clinical 
settings. The dual loss of ATR and p53 function in 
adult mice is demonstrated to lead to defective hair 
follicle and tissue regeneration [133]. In cancer cells 
treated with DNA-damaging agents, synergistic 
effects between ATR and TP53 have also been 
observed. Dual inhibitory of TP53 and ATR comes 
down in global loss of DNA damage checkpoints and 

exert a synthetic lethality [134]. As a DBS response 
sensor, the preclinical data has presented a potent 
synergistic effect when an ATM inhibitor combines 
with radiotherapy in P53 mutated cells [135]. 
Currently, the small-molecule inhibitors of ATR, ATM 
are developed and progresses to I/II phase clinical 
trial. 

As major regulators of the ATM/ATR pathway, 
Chk1 and Chk2 kinases are functionally overlapping 
activated in response to DNA replication stress, cell 
cycle progression, chromatin remodeling, and 
apoptosis [136, 137]. Basic research indicates that 
Chk1/2 faithfully regulates DNA repair and 
replication when P53 deficiency occurs [134]. 
Gadhikar et al. used Chk1/2 inhibitor AZD7762 in 
mutant p53 OSCC cells. Due to the out-of-control 
G2/M checkpoint, AZD7762 and cisplatin pushed the 
cell into a mitotic catastrophe [138]. Several early 
phase clinical trials on Chk1/2 inhibitors have been 
conducted in HNSCC. 

 

 
Figure 2. Targeting P53 is an effective strategy to fight against HPV-negative HNSCC. HPV-negative cancers harbor a mutation in the P53 gene as a result of 
tobacco and alcohol consumption. DNA damage occurs in p53 wild-type cells; the cell cycle checkpoints of G1 and G2/M are activated, which prevents the accumulation of DNA 
damage and may induce senescence. DNA damage repair carries out cell cycle arrest and initiates by acting on G1 and G2/M cell cycle checkpoints. In p53 mutated tumor cells, 
due to the lack of G1 checkpoint regulated by p53, it is more dependent on the G2-M cell cycle checkpoint when DNA is damaged. When p53 mutated cells are injured by 
chemotherapy or radiotherapy, blocking the G2/M cell cycle checkpoint push the unrepaired chromosome into M phase and result in a mitosis catastrophe. 
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Table 3. Clinical trials targeting P53 and DNA damage responder 
inhibitor in NHSCC 

Number Project name 
NCT02842125 Safety and Efficacy of Intra-Arterial and intra-tumoral Ad-p53 

with Capecitabine (Xeloda) or Anti-PD-1 in Liver Metastases of 
Solid Tumors and recurrent Head and Neck Squamous Cell 
Cancer 

NCT03544723 Safety and efficacy of p53 Gene Therapy combined with Immune 
Checkpoint Inhibitors in Solid Tumors. 

NCT00003257 Gene Therapy in treating patients with recurrent Head and Neck 
Cancer 

NCT02432963 Vaccine Therapy and Pembrolizumab in treating patients with 
Solid Tumors that have failed prior therapy 

NCT00017173 S0011, Gene Therapy & Surgery Followed by Chemo & RT in 
Newly Diagnosed Cancer of the Mouth or Throat 

NCT00404339 Vaccine Therapy in treating patients with Head and Neck Cancer 
NCT00041613 Study to compare the Overall Survival of patients receiving INGN 

201 (Study Drug) with patients receiving Methotrexate 
NCT00041626 Effectiveness and Safety of INGN 201 in combination with 

Chemotherapy versus Chemotherapy Alone 
NCT02567422 M6620, Cisplatin and Radiation Therapy in treating patients with 

locally advanced Head and Neck Squamous Cell Carcinoma 
NCT04576091 Testing the Addition of an Anti-cancer Drug, BAY1895344, with 

Radiation Therapy to the usual Pembrolizumab Treatment for 
Recurrent Head and Neck Cancer 

NCT03022409 A Study to Investigate Biomarker effects of pre-surgical treatment 
with DNA Damage Repair (DDR) agents in patients with Head 
and Neck Squamous Cell Carcinoma (HNSCC) 

NCT01275183 Pilot Study of Raltegravir and Cisplatin in Squamous Cell 
Carcinoma of Head and Neck 

NCT01115790 A Phase 1 study in participants with Advanced Cancer 
NCT02797964 A Phase 1/2 trial of SRA737 in subjects with Advanced Cancer 
NCT02508246 WEE1 Inhibitor MK-1775, Docetaxel, and Cisplatin before surgery 

in treating patients with Borderline Resectable Stage III-IVB 
Squamous Cell Carcinoma of the Head and Neck 

NCT02585973 Dose-escalating AZD1775 + Concurrent Radiation + Cisplatin for 
Intermediate/High Risk HNSCC 

NCT03028766 WEE1 inhibitor with Cisplatin and Radiotherapy: A trial in Head 
and Neck Cancer 

NCT02196168 Cisplatin with or without WEE1 inhibitor MK-1775 in treating 
patients with Recurrent or Metastatic Head and Neck Cancer 

 
 
When DNA damage occurred in P53 wild type 

cells, the cell cycle checkpoints of G1 and G2/M are 
activated and prevents the accumulation of DNA 
damage. In P53 mutated cells, due to the dysfunction 
of the G/1 checkpoint, the G2/M cell cycle checkpoint 
is crucial when DNA is damaged [115, 116]. In 
mutated p53 cells, DNA damage repair is 
predominantly regulated by Wee1. It can mediate the 
activation of the G2/M cell cycle checkpoint, inhibit 
the phosphorylation of cyclin-dependent kinase 1 
(Cyclin-dependent kinase 1, CDK1), and block the 
progression of the tumor cell cycle. Thus, the Wee1 
kinase inhibitory may sensitize p53 mutant cancer 
cells to DNA-damaging therapy [139, 140]. Many 
articles have proved that AZD1775, a selective and 
potent wee1 inhibitor, abrogated the G2 checkpoint 
and selectively sensitized p53 mutant cancer cells to 
DNA-damaging inducers, such as gemcitabine [141], 
cisplatin [142], and X-ray [143]. Considering these 
findings, AZD1775 has been tested in a phase I/II 
clinical trial in patients with advanced solid tumors 
and showed well-tolerance and promising therapeutic 
effects [144, 145]. Osman et al. used AZD1775 in 

HPV-negative HNSCC cells and reversed the cisplatin 
resistance [138]. Intriguingly, Tanaka et al. reported 
that AZD1775 monotherapy potentiates the cisplatin 
response of HPV-positive HNSCC cells. Unlike HPV- 
negative OSCC cells, AZD1775 induces apoptosis 
triggered by selective cleavage of the antiapoptotic 
proteins MCl-1 and XIAP [146]. Busch et al. revealed 
that the wee1 and chk1 blockade enhanced the 
radiation sensitivity in HPV-positive cells, and 
FOXMI could be a catalyst between AZD1775 and 
X-ray HPV-positive cells [147, 148]. However, most 
present evidence based on basic research requires 
further clinical trials to investigate the safety and 
effect of AZD1775 further. Table 3 listed all the clinical 
trials targeting P53 and DNA damage responder 
inhibitors in HNSCC. 

HPV-associated disease trend to obtain 
more benefit from immunotherapy 
Landscape of microenvironment of different 
HPV-status HNSCC 

Tumor-infiltrating lymphocytes are associated 
with improved prognosis. HNSCC arises from 
squamous epithelium associated with the tongue's 
tonsils and base and is deemed to have more immune 
cells infiltrated within the tumor microenvironment. 
HPV infection alters immune cell, which infiltrates in 
HNSCC to encompass diverse and heterogeneous 
landscapes [36]. 

HPV viral factors, E5, E6, and E7, play a crucial 
role in generating an immunosuppressive 
microenvironment that promotes tumor progression. 
Oncoprotein E5 blocks HLA-C and HLA-E from 
tumor stroma to interact with MHC I on the cancer 
cell, impairing T cell and NK cells' activity. [149]. 
Moreover, E5 attenuates MHC class II's expression 
and stability by blocking peptide loading and 
transportation. By interfering with MHC, E5 may 
severely impair antigen processing and T cell 
activation [150]. In the past 20 years, scholars get 
extensive knowledge about E6 and E7. The 
mechanism of E6 and E7 to regulate the tumor 
microenvironment is not linear. Briefly, in 2012, 
Vandermark et al. reported that E6 and E7 proteins 
alter the NF-kB pathway in tumor cells, impair the 
innate immunosystem, and evade supervision [151]. 
E6 and E7 can interact with keratinocytes and inhibit 
macrophage infiltration by decreasing the secretion of 
MIP-3α [152]. IL-10 is a double-edged sword, and it 
can exert both pro-tumor and anti-tumor effects, 
including hiding the MHC, repression of DCs, and 
activation of NK and T cells. Poved et al. reported, 
HPV E6 and E7 can bind to the promoter of IL10 and 
enhance the expression of IL10. What is more, IL10 
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can promote the expression of E6 and E7 that create 
positive feedback for an immunosuppressive 
environment [153, 154]. Toll-like receptor 9 (TLR9) 
expresses on the surface of dendritic cells, 
macrophages, natural killer cells, and initiates the 
signals that cytokines’ production is needed for innate 
and acquired immunity. HPV E7 induces a 
transcriptional repressor complex on the TLR9 
promotor and abolishes its expression and function. 
HPV E6 also blocks TLR9 by NFκB pathway [155-157]. 
Transforming growth factor beta (TGF-β) is a 
multifunctional cytokine, which can regulate the 
inflammation process of tumor, polarize the 
macrophagy and stimulate the myeloid-derived 
suppressor cell (MDSC) [158]. E6 and E7 enable to 
activate the TGF-β promoter throughout the Sp1 
recognition sequence [159]. E5 and E7 play different 
role in PD1/PDL1 axis. Briefly, E5 mediates resistance 
to PD-L1 Blockade by hiding the MHC [160]. Chaoqi 
Liu exogenously expressed E7 on PC3 cells and led to 
a PDL1 increase [161]. Furthermore, HPV E7 also can 
regulate IDO [162], CXCL14 [163], and c-GAS-STING 
[164] to generate an immunosuppressive 
microenviroment. 

Mandal et al. reported in an analysis of TCGA 
found that HPV-positive HNSCCs had more 
significant immune infiltration and had higher T cell 
levels with granzyme and perforin [165]. Tregs and 

NK cells were also frequently infiltrated in HPV 
positive tissues and associated with a favorable 
prognosis [166, 167]. Wood et al. identified increased 
expression of genes encoding PD1, CTLA-4, and 
TIM-3 in HPV-positive HNSCC [168], which suggests 
patients with HPV-positive status may obtain more 
benefit from immune checkpoints blockade (Figure 3). 
Promising but not sure, HPV-positive HNSCC 
could obtain more benefit from 
immunotherapy 

Promising clinical trial results led to 
pembrolizumab’s FDA approval for treating 
refractory or metastatic HNSCC in 2016. Keynote 012 
study was the first clinical trial to evaluate the 
relationship between HPV status and immune 
checkpoints blockade response. 60 patients with 
PD-L1+ (> 1%) were treated with pembrolizumab. 
ORR was 24% (95% CI, 13-40%) in those patients with 
HPV positive, and 16% in HPV negative patients (95% 
CI, 10-23%, P > 0.05) [169]. 

In the phase III Checkmate 141 study, nivolumab 
obtained a better OS than standard treatment (median 
OS: 7.5 months vs 5.1 months, HR: 0.70; 97.73% CI, 
0.51-0.96; P=0.01), with an approximately 19% 
increase for 1-year survival. In the Checkmate 141 
subgroup analysis, patients with p16 positive tumors 
tend to obtain more benefit from nivolumab than the 

standard treatment group (median 
OS: 9.1 months vs. 4.4 months HR: 
0.56; 95% CI: 0.32 to 0.99). On the 
other hand, in patients with p16 
negative disease, the median OS 
was 7.5 months in the nivolumab 
monotherapy group and 5.8 
months in the standard treatment 
group (HR: 0.73; 95% CI: 0.42 to 
1.25) [170]. 

However, the advantage of 
HPV status in nivolumab treatment 
failed to exhibit in pembrolizumab. 
In phase II KEYNOTE-055 trial, 
ORR was similar regardless of HPV 
status, with rates of 16% in 
HPV-associated disease and 15% in 
HPV-negative disease. However, 
medium PFS and OS did not differ 
based on HPV status [171]. The 
KEYNOTE-040 trial design is the 
same model as checkmate 141. The 
median OS in the pembrolizumab 
group was 8.4 months, compared 
with 6.9 months in the standard 
treatment group. Although the trial 
failed to reach the final endpoint, 

 

 
Figure 3. HPV infection alters immune cell infiltrates in HNSCC. HPV E5, ER6, E7 module HNSCC 
microenvironment. Briefly, E5 interacts with HLA and MHCII on tumor cells to inhibit the DC and T cell activation; 
E6, E7 impair the NFκB pathway and regulates the immune cell infiltrate; IL-10 creates a loop with E6 and E7; E7 also 
regulates CXCL14 and c-GAS/STING pathway to modulate the immune cell infiltration. 
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the data is still promising. Patients with p16-negative 
disease in the pembrolizumab group had more 
prolonged overall survival than the standard 
treatment group (HR: 0.77; 95%CI: 0.61–0.97), whereas 
this survival benefit did not present among patients 
with the p16-positive disease (HR: 0.97; 95%CI: 
0.63-1.49) [172-174]. KEYNOTE-048 trial followed up 
to KEYNOTE-040; the data showed that the treatment 
with pembrolizumab significantly improved OS 
compared with the EXTREME regimen in patients 
with PD-L1 expression (CPS ≥ 1 and CPS ≥ 20 arms). 
From the date, PD-L1 expression is the only reliable 
biomarker for HNSCC to receive pembrolizumab. 
While approximately 21% of patients in this study 
were p16-positive, they were not analyzed separately 
as the HPV status may not tell any difference [175]. 

Atezolizumab is an anti-PD-L1 mAb. In a phase I 
trial, 32 patients with R/M HNSCC were enrolled. 
The data were in line with anti-PD1 mAb. 
Atezolizumab monotherapy had a 22% ORR rate, 
mPFS of 2.6 months, and mOS of 6 months. However, 
this early trial’s primary date displayed the effect of 
Atezolizumab, regardless of HPV status or PD-L1 
expression level [176]. Durvalumab is another 
anti-PDL1 and rises a Pacific storm in NSCLC. The 
Phase III EAGLE trial data shows the HPV-positive 
did not affect durvalumab [177], and patients with 
negative were associated with worse OS. Avelumab is 
a fully human anti-PD-L1. The IgG1 construction can 
competitively block with PD-1; however, the trial on 
HNSCC prematurely terminated as recommended 
because the boundary for futility has been crossed 
(NCT02952586). 

Although many retrospective or bio-informative 
studies indicated a higher degree of T cells in curium 
titration in HPV-associated HNSCC, the only 
nivolumab showed HPV+HNSCC could obtain more 
benefit from ICI therapy. The present clinical data 
indicate that HPV status does not support strategic 
treatment with checkpoint inhibitors. 

Epidrugs have a long way to go in 
NHSCC 

The imbalance, mutation, and aberrant 
expression of epigenetic regulatory factors boost 
carcinogenesis and maintain the growth and 
metastasis of HNSCC. Also, the levels of these 
epigenetic regulators varied with the type of HNSCC. 
From 2004, the US FDA approved only 6 epidrugs in 
the clinic: 2 DNMT inhibitors of azacitidine and 
decitabine; 4 HDAC inhibitors of Vorinostat, 
Romidepsin, Farydak, and Panobinostat. Many other 
agents are in the pipeline. 

Although scientists have done much work on the 
epigenetic regulation of HNSCC, rare epidrugs are in 

clinical trials. Many studies report that HPV−HNSCC 
has relatively low DNA methylation levels and 
promotes genomic instability. Meanwhile, HPV+ 
HNSCC harbors distinctly hypermethylated genomes. 
The diversity of molecular and epigenetic between 
HPV+ and HPV- tumors provides a therapeutic 
strategy that forces the demethylation of genomes of 
HPV associated NHSCC. 

DNMT inhibitors/DNA methylation agents 
present the cytotoxicity on HPV status bias. Asel 
Biktasova et al. reported that HPV+ HNSCC cells are 
sensitive to azacitidine partially due to stabilization of 
p53 and attenuation of the expression of HPV genes. 
Moreover, azacytidine is sufficient for suppressing 
cell invasion and sensitizing the cell to interferons. 
[178]. However, in 2019, Ricard Mesia posted that 
azacitidine had an insufficient activity to further 
study in advanced NPC [179]. 

CUDC-101 is a small molecule that 
simultaneously blocks the EGFR, human growth 
factor receptor 2 (HER2), and histone deacetylase 
(HDAC) with promising activity in HNSCC. Thomas 
Galloway et al. reveals that CUDC-101 is tolerable in a 
phase I trial; however, a high discontinuation rate 
suggests CUDC-10 needs to alternate the schedules or 
routes of administration [180, 181]. NCT02178072 is an 
ongoing clinical trial to evaluate CUDC-10 with 
Azacitidine. Asel Biktasova et al. reports that 
single-agent epidrug rarely presents therapeutic 
effects in NHSCC; most drugs cease the clinical trial 
before phase II [182]. Oncologists move their efforts to 
combine epidrugs with radiotherapy or 
chemotherapy. Panobinostat, an HDAC inhibitor, has 
been identified as a tolerable drug and exerts the 
effectiveness of erlotinib in HNSCC [183]. Valproic 
acid, a drug for epilepsy, has a potent effect on 
blocking histone deacetylase activity. A phase II 
clinical study showed that Valproic acid plus cisplatin 
and cetuximab exhibits a less toxic and more effective 
than standard first-line regimen in advanced HNSCC 
[184]. Other HADC inhibitors, including Vorinostat, 
Belinostat, Panobinostat, present the therapeutic effect 
in HNSCC without HPV bias. HNSCC Oncologist is 
looking for an optimal combination with epidrugs, 
and we believe more results about epidrugs in 
HNSCC will be posted in the next few years; however, 
our point of view does not support epidrug could 
exert the effects on HPV bias. 

To sum up, we review the conditional therapy, 
including chemotherapy and radiotherapy, and 
indicate that HPV-positive patients may obtain more 
benefit from traditional treatment. More clinical trials 
need to be investigated for the optimal dosage for 
HPV-positive patients. PI3K is a promising target in 
HPV-positive HNSCC; however, the toxicity of 
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combination therapy with PI3K inhibitor should not 
be ignored. Preclinical data present a suspected result 
of directly targeting P53, and synthetic lethality with 
DNA damage responder inhibitors remains too much 
to be explored. Immunotherapy is effective for 
HNSCC regardless of HPV status. At the present 
stage, as the same before 5 years, the HPV status can 
predict the prognosis more but cannot change the 
clinical decision-making. More prospective clinical 
trials are ongoing, which may answer critical 
questions over the next three to five years. 
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