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Abstract 

The Coronavirus Disease 2019 (COVID-19) pandemic caused by the novel lineage B betacoroanvirus 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality, 
morbidity, and socioeconomic disruptions worldwide. Effective antivirals are urgently needed for 
COVID-19. The main protease (Mpro) of SARS-CoV-2 is an attractive antiviral target because of its 
essential role in the cleavage of the viral polypeptide. In this study, we performed an in silico 
structure-based screening of a large chemical library to identify potential SARS-CoV-2 Mpro inhibitors. 
Among 8,820 compounds in the library, our screening identified trichostatin A, a histone deacetylase 
inhibitor and an antifungal compound, as an inhibitor of SARS-CoV-2 Mpro activity and replication. The half 
maximal effective concentration of trichostatin A against SARS-CoV-2 replication was 1.5 to 2.7µM, 
which was markedly below its 50% effective cytotoxic concentration (75.7µM) and peak serum 
concentration (132µM). Further drug compound optimization to develop more stable analogues with 
longer half-lives should be performed. This structure-based drug discovery platform should facilitate the 
identification of additional enzyme inhibitors of SARS-CoV-2. 

 

Introduction 
Severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), the causative agent of the Coronavirus 
Disease 2019 (COVID-19) pandemic, is a novel lineage 
B betacoronavirus first discovered in Wuhan, China, 
in late 2019 [1]. SARS-CoV-2 is highly transmissible 
and rapidly disseminated worldwide to cause more 
than 102 million cases of COVID-19, including over 
2.2 million deaths as of 2nd February 2021 [2-4]. While 
the overall case-fatality rate of COVID-19 is about 2%, 
the infection is especially severe in the elderly and 
those with underlying diseases [4]. In the past year, a 

number of potential antiviral treatments for 
COVID-19 have been evaluated in clinical trials. 
Examples include monotherapy and/or combinatorial 
regimen of remdesivir, interferon-β1b, lopinavir- 
ritonavir, and hydroxychloroquine [5-8]. However, 
their effects on disease outcomes are restricted to 
selected groups of patients, and the interim results of 
the WHO Solidary Trial suggested that these 
treatments might have little or no effect on 
hospitalized COVID-19 patients in terms of the 
overall mortality, ventilation requirement, and 
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duration of hospital stay [9]. Therefore, discovery of 
additional effective antivirals for COVID-19 is 
urgently needed. 

De novo development of new antiviral agents for 
emerging viral infections usually takes years and 
inevitably lags behind the rapid evolvement of the 
epidemics [10]. To find immediately available 
treatment options for COVID-19, repurposing studies 
of existing drug compounds have been conducted 
[11]. The major limitation of cell-based screening of 
antivirals is that it is highly laborious. An alternative 
strategy is to exploit in silico structure-based screening 
of chemical libraries which has the advantages of 
being fast and providing mechanistic insights related 
to the target viral protein structure [12].  

Similar to other betacoronaviruses, including 
SARS-CoV and Middle East respiratory syndrome 
coronavirus (MERS-CoV), the genome of SARS-CoV-2 
is arranged in the order of 5’-replicase [open reading 
frame (ORF) 1a/b]-structural proteins [Spike 
(S)-Envelope (E)-Membrane (M)-Nucleocapsid (N)]-3’ 
[13, 14]. The ORF1a/b encodes a number of viral 
enzymes with important roles in the viral replication 
cycle, including the main (Mpro) or chymotrypsin-like 
cysteine (3CLpro) protease, papain-like cysteine 
protease (PLpro), RNA-dependent RNA polymerase 
(RdRp), and helicase, which are potentially druggable 
targets [10]. The SARS-CoV-2 Mpro plays an important 
role in viral replication by processing polyproteins 
that are translated from viral RNA [13]. The 
SARS-CoV-2 Mpro cleaves various non-structural 
proteins (nsp4 to nsp16), including the RdRp (nsp12) 
and helicase (nsp13). Because of its essential role in 
viral replication, the SARS-CoV-2 Mpro represents one 
of the most attractive antiviral drug targets [15, 16]. A 
number of crystal structures of the SARS-CoV-2 Mpro 

with or without bound inhibitors have been recently 
reported [17-19]. In this study, we established an in 
silico screening platform based on these crystal 
structures to identify potential SARS-CoV-2 Mpro 
inhibitors from a chemical library consisting >8,800 
compounds.  

Materials and Methods 
Molecular docking 

CovalentDock was used for covalent virtual 
screening of DrugBank compounds against 
SARS-CoV-2 Mpro [20, 21]. Compounds with 
covalently bondable chemical groups (Michael 
acceptor and β-lactam family) were recognized with 
the scripts provided in the program package. The 
relevant parts of the ligand structure were altered, i.e., 
open-up of β-lactam ring or active C=C bond. Then a 
“dummy” atom was artificially attached to 

temporarily occupy the empty valence for covalent 
linkage with the receptor. The altered ligand structure 
was optimized with Amber GAFF forcefield during a 
short minimization [22]. The crystal structure of Mpro 

(code: 6LU7) was retrieved from Protein Data Bank 
(PDB) [23]. The charge/protonation state of protease 
protein was assigned with H++ server [24]. Binding 
pockets on protein surface was defined according to 
the native ligand pose. The Sγ atom of the 
nucleophilic Cys145 in Mpro was assigned as the 
covalent linkage acceptor. Hbind was used to detect 
intermolecular hydrogen bonds and calculate SLIDE 
affinity score and direct hydrophobic contacts [25, 26]. 
3D intermolecular interaction plot was generated by 
Pymol. 

Main protease purification and enzymatic 
assay  

Genes encoding the SARS-CoV-2 Mpro (residues 
3264-3569) were cloned into the expression vector 
pETH. The recombinant proteins were expressed in 
Escherichia coli BL21(DE3) cells and purified using the 
Ni2+-loaded HiTrap Chelating System (GE 
Healthcare) according to the manufacturer’s 
instructions. The purity of each protein was assessed 
by 12% sodium dodecyl sulfate-polyacrylamide gels 
(SDS-PAGE). The concentration of each protein was 
determined by using the Bicinchoninic Acid Protein 
Assay Kit (Sigma-Aldrich). The Mpro enzyme 
inhibition assay experiments were performed in 
triplicate in Greiner bio-one 96-well black microplates 
using the peptide substrate Dabcyl-KTSAVLQ 
SGFRKM-E(Edans)-NH2 (GL Biochem) as previously 
described [27]. The assay was performed in buffer 
composed of 20mM Tris base, 100mM NaCl, 1mM 
EDTA, 1mM DTT, pH 7.3, 50μM fluorescence 
substrate and 10μM Mpro, with a final assay volume of 
100μl. The compound was incubated with Mpro for 
30min before addition of the substrate and 
fluorescence detection at emission 460nm and 
excitation 355nm. GC376 was included as a positive 
control inhibitor as previously reported [28]. 

Virus strain and titration 
A clinical isolate of SARS-CoV-2 HKU001a 

(GenBank accession number MT230904) obtained 
from a COVID-19 patient was used in this study [29]. 
The virus was amplified by three additional passages 
in VeroE6 cells (American Type Culture Collection, 
ATCC) in DMEM medium supplemented with 1% 
fetal bovine serum (FBS, GibcoTM, Life Technologies 
Corporation, Massachusetts, USA) and 100units/ml 
penicillin plus 100μg/ml streptomycin to make 
working stocks of the virus (2×105 50% tissue culture 
infectious dose (TCID50)/ml) as previously described 
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[29]. For virus titration, aliquots of SARS-CoV-2 were 
applied on confluent VeroE6 cells in 96-well plates for 
TCID50 assay as previously described [30]. Briefly, 
serial 10-fold dilutions of the virus were inoculated in 
a VeroE6 cell monolayer in quadruplicate and 
cultured in penicillin/streptomycin-supplemented 
DMEM and 1% FBS. The plates were observed for 
cytopathic effects for 4 days. Viral titer was calculated 
with the Reed and Münch endpoint method. One 
TCID50 was interpreted as the amount of virus that 
causes cytopathic effects in 50% of inoculated wells. 
All experiments with live SARS-CoV-2 was conducted 
in the Biosafety Level 3 facility of The University of 
Hong Kong [31-33]. 

Cell lines and drug compounds 
VeroE6 and Caco-2 cell lines were obtained from 

ATCC as we previously described [29, 34, 35]. 
Trichostatin A was purchased from MedChem-
Express (New Jersey, USA). 

Cytotoxicity assay  
The 50% effective cytotoxic concentration (CC50) 

of trichostatin A in Caco-2 cells were determined by 
CellTiter-Glo® luminescent cell viability assay 
(Promega) as we previously described with slight 
modifications [11, 36-38]. Briefly, Caco-2 cells (4×104 
cells/well) were incubated with different 
concentrations of trichostatin A for 48h, followed by 
the addition of 40µl/well of CellTiterGlo® substrate 
and detection of luminance after another 15 min. The 
CC50 was calculated using Sigma plot (SPSS) in an 
Excel add-in ED50V10. 

Viral load reduction assay 
Viral load reduction assay was performed for the 

evaluation of antiviral potency [39]. Briefly, 
SARS-CoV-2-infected (MOI = 0.01) Caco-2 cells were 
treated with different concentrations of drugs or 
dimethyl sulfoxide (DMSO) control. Then, cell culture 
supernatants were collected at 48hpi for viral RNA 
extraction and quantitative reverse transcription- 
polymerase chain reaction (qRT-PCR) as previously 
described with modifications [37, 40]. The primers 
and probe sequences were against the RNA-depen-
dent RNA polymerase/Helicase (RdRP/Hel) gene 
region of SARS-CoV-2: forward primer: 
5’-CGCATACAGTCTTRCAGGCT-3’; reverse primer: 
5’-GTGTGATGTTGAWATGACATGGTC-3’; specific 
probe: 5’-FAMTTAAGATGTGGTGCTTGCATACG 
TAGAC-IABkFQ-3’. The viral load reduction assay 
experiments were performed in triplicate and 
repeated twice for confirmation. 

Plaque reduction assay 
Plaque reduction assay was performed to plot 

the half maximal effective concentration (EC50) as we 
previously described with slight modifications [41, 
42]. Briefly, VeroE6 cells were seeded at 4×105 
cells/well in 12-well tissue culture plates on the day 
before the assay was performed. After 24h of 
incubation, 50 plaque-forming units (PFU) of 
SARS-CoV-2 were added to the cell monolayer with 
or without the addition of drug compounds. The 
plates were further incubated for 1h at 37°C in 5% CO2 
before removal of unbound viral particles by 
aspiration of the media and washing once with 
DMEM. Monolayers were then overlaid with media 
containing 1% low melting agarose (Cambrex 
Corporation, New Jersey, USA) in DMEM and 
appropriate concentrations of trichostatin A, inverted 
and incubated as above for another 72h. The wells 
were then fixed with 10% formaldehyde (BDH, 
Merck, Darmstadt, Germany) overnight. After 
removal of the agarose plugs, the monolayers were 
stained with 0.7% crystal violet (BDH, Merck) and the 
plaques counted. The percentage of plaque inhibition 
relative to the control (i.e. without the addition of 
compound) wells were determined for each drug 
compound concentration. EC50 was calculated using 
Sigma plot (SPSS) in an Excel add-in ED50V10. The 
plaque reduction assay experiments were performed 
in triplicate and repeated twice for confirmation. 

Immunofluorescence staining 
Antigen expression in SARS-CoV-2-infected cells 

was detected with an in-house rabbit antiserum 
against SARS-CoV-2 nucleocapsid (N) protein as we 
previously described [43-45]. Cell nuclei were labelled 
with the DAPI nucleic acid stain from Thermo Fisher 
Scientific (Waltham, MA, USA). The Alexa Fluor 
secondary antibody was obtained from Thermo Fisher 
Scientific. Mounting was performed with the 
Diamond Prolong Antifade mountant from Thermo 
Fisher Scientific. Imaging was taken and processed as 
we previously described [46].  

Time-of-drug-addition assay 
Time-of-drug-addition assay was performed for 

trichostatin A as previously described with slight 
modifications [47]. Briefly, VeroE6 cells were seeded 
in 24-well plates (2×105 cells/well). The cells were 
inoculated with SARS-CoV-2 (MOI = 0.1) and then 
incubated for 1h for virus internalization. The viral 
inoculum was then removed and the cells were 
washed twice with PBS. At 0hpi (i.e. after PBS wash) 
and 3hpi, 10µM trichostatin A was added to the 
infected cells, followed by incubation at 37°C in 5% 
CO2 until 9hpi. For the “pre-incubation” time-point, 
10µM trichostatin A was added to pre-treat cells at 2h 
before virus infection and then removed, followed by 
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drug-free medium incubation with the cells until 9hpi. 
For the “co-infection” time-point, 10µM of trichostatin 
A was added together with the virus inoculation, 
followed by drug removal after 1h and incubation of 
the cells until 9hpi. At 9hpi, the cell culture 
supernatant of each time-point experiment was 
collected for viral load measurement using qRT-PCR. 
Dimethyl sulfoxide (0.5%) was included as a negative 
control for each group. 

Results  
Covalent virtual screening of SARS-CoV-2 Mpro 
inhibitors 

To screen for potential covalent inhibitors of 
SARS-CoV-2 Mpro, DrugBank release version 5.1.6 
which contains 8820 compounds with 3D structures 
available for docking was used for covalent virtual 
screening. Compounds with electrophilic chemical 
groups were first automatically recognized and 
prepared with CovalentDock (Figure 1). As a result, 
177 compounds were selected for covalent docking 
screening. To eliminate pose scoring biases, SLIDE 
scoring function was also utilized for consensus 
scoring. A total of 75 drug compounds with 
CovalentDock score > -12 and SLIDE score > -7 were 
excluded, leaving 102 drug compounds for further 
analysis. After manual inspection and consideration 
of the hydrogen bond potential, shape 
complementarity of the binding pose, ligand 
efficiency, and hydrophobic contacts, 5 purchasable 
compounds, namely, canertinib, fexaramine, 

PD-168393, piperine, and trichostatin A, were selected 
as potential SARS-CoV-2 Mpro inhibitors for 
downstream experimental validation (Table S1).  

Trichostatin A inhibits SARS-CoV-2 Mpro 
activity in vitro 

To validate the SARS-CoV-2 Mpro inhibition of 
the selected drug compounds, we applied the 
EDANS-Dabcyl system for detection of Mpro cleavage 
activity and an anti-feline coronavirus drug 
compound GC376 with proven inhibitory activity 
against SARS-CoV-2 Mpro [28, 48]. As expected, GC376 
exhibited potent SARS-CoV-2 Mpro inhibition with an 
half maximal inhibitory concentration (IC50) of 
0.098±0.008µM (Figure 2A). Among the 5 selected 
drug compounds, only trichostatin A showed 
reduction of Mpro activity in a dose-dependent manner 
(IC50 = 37.97±3.68µM) (Figure 2B). Therefore, we 
further evaluated the cytotoxicity and antiviral 
activity of trichostatin A with additional antiviral 
assays.  

Trichostatin A inhibits SARS-CoV-2 
replication in vitro 

Trichostatin A is known as a histone deacetylase 
inhibitor and an antifungal antibiotic [49]. The 
cytotoxicity and antiviral activity of trichostatin A 
were evaluated in Caco-2 cells as previously 
described [50]. The CC50 of trichostatin A in Caco-2 
cells was 75.7±5.2μM after 48h of incubation (Figure 
3A). In the viral load reduction assay, trichostatin A 
(50μM) treatment reduced viral RNA load in Caco-2 

 

 
Figure 1. Overview of the structure-based covalent docking virtual screening workflow. (A) Small molecules in DrugBank database (8,820 compounds) were 
pre-filtered for covalent docking (Michael acceptor and β-lactam family). Potential binding pockets were predicted for SARS-CoV-2 Mpro. Then each compound (177 candidates) 
was docked against binding pocket with CovalentDock. Binding poses (102 compounds) were manually inspected for downstream experimental validation based on certain 
criteria including relative binding affinity, ligand efficiency, hydrogen bond and hydrophobic contacts etc. (B) Scatter plot showing the distribution of CovalentDock and SLIDE 
scores of 177 docked poses. Five selected compounds were highlighted in red. 
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cell culture supernatant by >1-log when compared 
with the DMSO control (EC50 = 2.7±0.8μM), resulting 
in a selectivity index (CC50/EC50) of 27.6. Similar 
inhibitory effect could be achieved in 
SARS-CoV-2-infected Caco-2 cells treated with 10µM 
of remdesivir (Figure 3B). Intracellularly, 
dose-dependent reduction of SARS-CoV-2 N protein 
production was detected in the cell lysate of 
trichostatin A-treated groups (Figure 3C). Moreover, 
immunofluorescence staining demonstrated marked 
suppression of SARS-CoV-2 N protein expression 
upon trichostatin A treatment (Figure 3D). To fully 
document the antiviral potency of trichostatin A, we 
further validated its anti-SARS-CoV-2 activity using 
plaque reduction assay. As shown in Figure 3D, 5μM 
and 10μM of trichostatin A completely inhibited 
plaque formation of SARS-CoV-2, resulting in an EC50 
of 1.5±0.3μM (Figure 3E). Overall, we demonstrated 
that trichostatin A potently inhibited viral RNA load, 
antigen expression, and infectious particle formation 
of SARS-CoV-2 in vitro at non-cytotoxic 
concentrations. 

Trichostatin A interrupts the post-entry 
events of the SARS-CoV-2 replication cycle 

To investigate the phase of the SARS-CoV-2 
replication cycle interrupted by trichostatin A, we 
performed a time-of-drug-addition assay by exposing 
the virus-infected cells to the drug at different 
time-points during the viral replication cycle, 
followed by measurement of virus titers at 9 hours 
post-inoculation (hpi). VeroE6 cells were infected by 
0.1 MOI of SARS-CoV-2 (Figure 3F). No significant 
inhibitory activity was observed when trichostatin A 
was added at the virus adsorption stage (0~1 hpi, 

termed “co-infection”). SARS-CoV-2 attachment was 
not affected when VeroE6 cells were pre-incubated 
with trichostatin A (−2 to 0hpi). Apparently, about 
60% drop of progeny virions were detected when the 
drug was added after virus absorption (0 hpi), 
whereas the inhibitory effect became marginal when 
trichostatin A was added at 3 hpi. As progeny virus 
could be detected as early as 9 hpi, indicating 
completion of a single virus life cycle [51]. Our 
time-of-drug-addition result suggested that 
trichostatin A interfered with the post-entry events of 
the SARS-CoV-2 replication cycle, which was 
compatible with the hypothesized role of trichostatin 
A as a SARS-CoV-2 Mpro inhibitor. The result also 
indicated that the proteolytic process executed by 
SARS-CoV-2 Mpro might occur with 3h after virus 
internalization. 

Potential binding mode of trichostatin A to the 
catalytic site of the SARS-CoV-2 Mpro 

Trichostatin A was predicted to bind to the 
catalytic site of the SARS-CoV-2 Mpro with good shape 
complementarity (Figure 4A). When inspecting the 
hydrogen bonding potential, it was found that 
trichostatin A forms hydrogen bonds with LEU-141 
backbone and HIS-163 sidechain to further stabilize 
the binding pose and improve the specificity (Figure 
4B). Meanwhile, the ene-carbon of trichostatin A 
forms a covalent S-C linkage with the CYS-145 thiol 
(Figures 4B and 4C), which is a typical thiol Michael 
addition reaction (also known as thia-Michael 
addition). Thus, we reasoned that the complementary 
non-covalent interaction and the much stronger 
covalent linkage enabled trichostatin A to act as a 
potent SARS-CoV-2 Mpro inhibitor. 

 
 

 
Figure 2. Inhibition of the cleavage activity of SARS-CoV-2 Mpro by trichostatin A. Titration of the protease activity of SARS-CoV-2 Mpro by (A) GC376 (positive 
control) and (B) trichostatin A at various concentrations as indicated by a fluorescence resonance energy transfer-based assay. The data were expressed as a percentage of the 
control reaction in the absence of inhibitors. Dose-response curves for half maximal inhibitory concentration (IC50) values were determined by nonlinear regression. The mean 
value of three replicates was shown and error bars indicated ±SD of n=3 independent replicates. All the experiments were repeated twice for confirmation. 
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Figure 3. Antiviral activity of trichostatin A against SARS-CoV-2. (A) Cytotoxicity of trichostatin A in Caco-2 cells as determined by measuring the cellular ATP activity 
(CellTiter-Glo assay, 48h post drug treatment). (B) Multi-cycle virus growth assay in the presence or absence of trichostatin A. Caco-2 cells were infected with SARS-CoV-2 
(MOI=0.01). Viral titers in cell culture supernatants were quantified by quantitative RT-PCR assay at 48hpi. Groups were analysed by One-way ANOVA when compared with the 
non-treated group (0µM). Remdesivir was included as a positive control. (C) Western blot showed reduced SARS-CoV-2 nucleocapsid protein production after trichostatin A 
treatment. Caco-2 cells with different treatments as indicated were infected with SARS-CoV-2 (MOI=0.1) and lysed at 24hpi. (D) Immunofluorescence staining of the 
SARS-CoV-2 nucleoprotein protein (green) and cell nucleus (blue). Fixation and staining were performed after trichostatin A (10µM) was used to treat SARS-CoV-2-infected 
(MOI=0.1) VeroE6 cells for 24h. (E) Plaque reduction assay showing the dose-dependent live SARS-CoV-2 reduction after trichostatin A treatment on VeroE6 cells. (F) 
Time-of-drug-addition assay. The upper panel depicts the scheme of experimental design; lower panel shows the viral titer collected in the cell culture supernatant and 
normalized by DMSO as a control. The experiments were performed in triplicate and replicated twice. The results are shown as mean± SD. * indicated P<0.05 and ** indicated 
P<0.01 (Student’s t-test). 

 

Discussion 
Protease inhibitors have been successfully used 

to treat viral infections clinically, including human 
immunodeficiency virus (HIV) and hepatitis C virus 
infections. We have also previously shown that 
novobiocin and bromocriptine might be repurposed 
as Zika virus NS2B-NS3 protease inhibitors [12, 51]. 
For SARS, MERS, and COVID-19, we and others have 
demonstrated that the HIV protease inhibitor 
lopinavir was effective in vitro and/or in vivo [7, 10, 40, 
52-55]. In this study, we utilized in silico 
structure-based screening to identify potential 
SARS-CoV-2 Mpro inhibitors from a large chemical 
library consisting nearly 9,000 compounds. Among 
the primary hit compounds, we further validated 

trichostatin A’s inhibitory effect of SARS-CoV-2 Mpro 
activity using an enzyme inhibition assay. The 
antiviral activity of trichostatin A against SARS-CoV-2 
was evident in the drug’s ability to significantly 
reduce the viral RNA load, viral antigen expression, 
and infectious virus particle formation. Corroborating 
with the expected role of Mpro, our 
time-of-drug-addition assay showed that trichostatin 
A interrupted the post-entry events of the 
SARS-CoV-2 replication cycle. Molecular docking 
analysis predicted that trichostatin A was able to bind 
to the SARS-CoV-2 Mpro the catalytic site of with good 
shape complementarity. 

Trichostatin A was originally reported as a 
fungistatic antibiotic obtained from a culture broth of 
Streptomyces platensis [56]. Subsequently, its potent 
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inhibitory effect on histone deacetylase (HDAC) 
activity was identified [56]. Trichostatin A chelates 
zinc ions in the active site of HDAC which prevents 
histone unpacking and makes DNA less available for 
transcription. Trichostatin A selectively inhibits class I 
and II mammalian histone HDAC families of 
enzymes, but not class III HDACs [57]. It is rapidly 
and extensively metabolized in mice following 
intraperitoneal administration, which is evidenced by 
its maximal serum concentration (Cmax) of 40 µg/ml 
(equivalent to 132µM) being achievable within 5 min 
of drug administration [58]. Despite this rapid 
metabolism, the major metabolite of trichostatin A, 
N-Monomethyl trichostatin A amide, still exhibits 
HDAC inhibitory activity. The EC50 of trichostatin A 
against SARS-CoV-2 as determined by plaque 
reduction assay is around 1.5μM which is below the 
Cmax. Nevertheless, given the very short plasma 
half-life of trichostatin A (<10 minutes at 80mg/kg) 
[59], further drug compound optimization to develop 
more stable analogues with longer half-lives should 

be performed. Alternatively, synergistic effect 
between trichostatin A and other anti-SARS-CoV-2 
drug compounds such as remdesivir, interferons, 
lopinavir, and ribavirin should be evaluated to 
identify potential combinatorial regimens in which 
trichostatin A may be used to enhance the effects of 
these clinically approved antivirals with longer 
half-lives.  

Other drug compounds that have been reported 
to exhibit both inhibitory activity against the 
SARS-CoV-2 Mpro and reduced virus-induced 
cytopathic effects include the α-ketoamide boceprevir 
(antiviral EC50 = 1.31μM), the peptide-aldehyde 
calpain inhibitor II (antiviral EC50 = 2.07μM), and the 
sulfonate-featured peptide GC-376 (antiviral EC50 = 
3.37μM) [60]. Additionally, other drug compounds 
such as manidipine (anti-Mpro IC50 = 4.8μM), 
lercanidipine (anti-Mpro IC50 = 16.2μM), and 
bedaquiline (anti-Mpro IC50 = 18.7μM) have also 
demonstrated inhibitory activity against the 
SARS-CoV-2 Mpro, but their effects against 

 

 
Figure 4. Trichostatin A binds to the surface groove of SARS-CoV-2 Mpro with high stability. (A) Trichostatin A is predicted to be embedded in the Mpro catalytic 
groove with good shape complementarity. (B) The cartoon and stick representation of binding mode of trichostatin A: the hydrogen bonds between trichostatin A and LEU-141 
or HIS-163 were marked by yellow dashed lines. The C-S bond between trichostatin A and CYS-145 was also indicated (arrow). (C) Illustration of the covalent reaction between 
trichostatin A and CYS-145 thiol. 
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SARS-CoV-2 replication remain to be examined [61]. 
Notably, boceprevir is an FDA-approved treatment 
for hepatitis C virus infection. Boceprevir (oral 800 mg 
three times daily) achieves a Cmax of 1,723 ng/mL 
(equivalent to 3.3 µM), which is above its in vitro 
anti-SARS-CoV-2 IC50 (1.31μM) [62]. GC-376 is an 
investigational drug with in vivo efficacy for treating 
cats with feline infectious peritonitis caused by feline 
coronavirus. GC-376 has a favourable Cmax that is 
>100-fold of the in vitro EC50 against feline 
coronavirus and an elimination half-life (T1/2) of 3-5 
hours [63]. The in vivo efficacy of GC376 against mice 
infected with murine hepatitis virus or murine 
norovirus has also been reported [64]. 

 The identification and validation of trichostatin 
A as a potent anti-SARS-CoV-2 drug compound has 
demonstrated the capability of our structure-based 
screening platform and in vitro enzyme inhibition and 
antiviral assays to discover SARS-CoV-2 Mpro 
inhibitors from a large chemical library. A similar 
approach could be adopted to screen additional 
libraries to find potential inhibitors of other key viral 
enzymes of SARS-CoV-2, including RdRp, helicase, 
and papain-like protease, to expand the treatment 
options for COVID-19. 
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