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Abstract 

Exosomes are nanoscale membrane vesicles, which carry biologically active substances of their cell of origin and 
play an important role in signal transduction and intercellular communication. At present, exosomes have been 
identified as a promising non-invasive liquid biopsy biomarker in the tissues and circulating blood of 
nasopharyngeal carcinoma (NPC) and found to participate in regulating pathophysiological process of the 
tumor. We here review recent insights gained into the molecular mechanisms of exosome-induced cell growth, 
angiogenesis, metastasis, immunosuppression, radiation resistance and chemotherapy resistance in the 
development and progression of NPC, as well as the clinical application of exosomes as diagnostic biomarkers 
and therapeutic agents. We also discuss the limitations and challenges in exosome application. We hope this 
review may provide some references for the use of exosomes in clinical intervention. 
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Introduction 
NPC is a squamous cell carcinoma arising from 

the epithelial cells of the nasopharyngeal mucosa. 
Epstein-Barr virus (EBV) infection is one of the 
essential factors leading to NPC [1,2]. The geographic 
distribution of NPC is very skewed, mostly in 
southern China and southeast Asia, where NPC is still 
a major threat to people’s life [3], despite the 
substantial improvements in large-scale screening and 
therapeutic strategies cut down the morbidity and 
mortality of the tumor [4]. NPC is not usually 
detected at the early stage and patients with advanced 
NPC are frequently accompanied by lymph node 
infiltration and distant metastasis. Some patients even 
develop resistance during radiotherapy or 
chemotherapy, which may lead to a very bad outcome 
[5,6]. 

Exosomes are cell vesicles with a diameter of 
40-100 nm, secreted by various types of cells outside 
the cell by fusing with the plasma membrane. The 
plasma membrane buds inward to form early 
endosomes, which then mature into late endosomes 

and multivesicular bodies (MVBs) with intraluminal 
vesicles. When late MVBs fuse with the plasma 
membrane, exosomes are released [7,8]. The content 
of exosomes consists of a variety of substances 
including lipids, nucleic acids and proteins 
specifically associated with the plasma membrane 
and cytoplasm. Exosomes involved in lipid 
metabolism have been found in plasma, urine, semen, 
saliva, etc. [9-11]. Exosomes can act as messengers to 
mediate cell communication and deliver the 
constituents to the recipient cells to perform crucial 
roles [12-14]. The uptake of exosomes is not random, 
but dependent upon the interaction between the 
protein on the surface of the exosomes and the 
recipient cells. Currently, exosomes are basically 
isolated by using ultra-high-speed centrifugation; 
other methods include size-based separation, polymer 
precipitation, immunoaffinity capture and the recent 
emergence of microphallus derivative technology 
[15]. Corresponding kits for exosome extraction have 
also been developed in recent years. Ultra-high-speed 
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centrifugation technology has been known as the 
‘gold standard’ for exosome isolation. The isolated 
exosomes are usually observed by transmission 
electron microscopy. Nano-tracking analysis is 
adopted to measure their size and western blotting is 
performed to trace the marker proteins such as CD9, 
CD63 or CD81 [16]. 

The poor prognosis of NPC is mainly attributed 
to insufficient consciousness of the prominent 
symptoms of the disease, the limited detections and 
therapeutic options [17]. In order to improve the 
prognosis of the patients, it is necessary to better 
understand the pathogenesis of NPC and to develop 
new therapeutic targets and effective strategies. 
Exosomes are of great significance in the occurrence 
and progression of NPC, which can be classified into 
EBV-related exosomes, exosomes derived from NPC 
cells or mesenchymal stem cells, and other types of 
exosomes [18]. The exosomal components enter the 
recipient cell through the membrane fusion with the 
target cell, and participate in many important 
physiological and pathological processes [19-23]. 
Originating from extracellular vesicles, exosomes 
have a unique source of cargo, capable of reproducing 
the molecular characteristics of parent cells in the 
nucleus [24]. There is growing evidence that different 
types of exosomes target their respective receptors to 
exert a variety of biological effects on NPC cell 
proliferation and function, resulting in promoting or 
suppressing the tumor growth [18,25-27]. In addition 
to serve as intercellular carriers for material transfer, 
exosomes can be utilized as biomarkers for disease 
diagnosis [28,29]. Exploring the role of exosomal 
molecules in the progression of NPC will facilitate to 
develop new biomarkers for the early diagnosis of 
NPC, as well as to provide novel treatment ideas to 
improve the therapeutic efficacy. 

Exosomes affect various processes of NPC 
Exosomes related to NPC have definite 

significance for the occurrence and progression of 
NPC. Exosomes carry cancer-aggravating or 
oppressing molecules that act on NPC or other 
stromal cells, which exert influence on different stages 
of NPC development and progression. 

NPC-related exosomes promote cell growth 
The onset of NPC is etiologically associated with 

EBV infection. The establishment of EBV latent 
infection in pre-invasive nasopharyngeal epithelium 
is considered to be an early stage of NPC 
pathogenesis. A mass of viral products are expressed 
during the latent phase of infection, including EB 
virus nuclear antigen (EBNA) 1, EB virus-encoded 
latent membrane proteins (LMP) 1 and 2, EB 

virus-encoded RNA (EBER), BamH Ⅰ A rightward 
transcripts (BART), and some incubation period 
mRNA, with which EBV-related exosomes coexist 
[30,31]. LMP1 is predominantly produced in EBV 
infection, closely linked to the occurrence and growth 
of NPC. It has been shown to have multiple functions 
in vitro, covering promoting cell growth, protecting 
cells from apoptosis and enhancing cell motility [32]. 
LMP1 packaged by exosomes can activate normal 
fibroblasts and turn them into cancer-related 
fibroblasts through the key signaling pathway of 
nuclear factor (NF)-ƙB p65 [33]. Studies have revealed 
that LMP1 in NPC exosomes upregulates syndecan-2 
(SDC2) and synaptotagmin-like-4 (SYTL4) via NF-κB 
signaling to stimulate the secretion of extracellular 
vesicles (EVs), promotes cell proliferation and tumor 
growth by activating ERK and AKT signal pathways 
and inducing vascular endothelial growth factor 
(VEGF) receptor expression [34,35]. BART1 miRNAs 
are thought to negatively regulate LMP1 expression, 
which may be in favor of NPC pathogenesis [32]. 
LMP2 can integrate into exosomes and then be 
released into the recipient cells [26]. In NPC patients, 
the expression of miR-24-3p, miR-891a, miR-106a-5p, 
miR-20a-5p and miR-1908 in sera and exosomes is 
significantly different from that in the healthy 
controls. These miRNAs have impacts on NPC cell 
proliferation and differentiation via downregulating 
MARK1 signal pathway [36]. Exosomes secreted by 
tumor cells and stromal cells are the key mediators of 
cell-to-cell communication in the tumor micro-
environment, which facilitate tumor evolution and 
benefit other aspects of NPC aggravation [37]. 

NPC-related exosomes mediate angiogenesis 
Angiogenesis is the process by which new blood 

vessels form. The formation of tumor blood vessels 
can enhance tumor growth, invasiveness and 
metastasis, leading to poor prognosis [38]. Tumor 
angiogenesis actually starts with tumor cells releasing 
molecules that send signals to promote blood vessel 
growth, causing local imbalances between factors that 
stimulate and inhibit angiogenesis [39]. The major 
contributors to tumor angiogenesis include the 
angiopoietin (Ang)/Tie-2(Tek) pathway, the VEGF 
family and its receptors. Mechanistically, 
angiogenesis is a critical event in NPC metastasis. 
Growing evidence suggests that exosomes derived 
from NPC can fine-tune endothelial cell 
characteristics to facilitate angiogenesis, especially 
under hypoxic conditions [40] (Figure 1). Quantitative 
proteomic analysis have demonstrated that the 
expression of angiogenic proteins, ICAM-1 and 
CD44v5, is up-regulated in the exosomes of NPC, 
while the expression of angiostatin TSP-1 is 
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down-regulated [41]. As expected, these exosomes 
significantly contribute to the NPC angiogenesis. 
Some proteins for angiogenesis regulation are 
available in NPC tissues and exosomes. The glycolysis 
regulators of enzyme PFKFB3 and HS1-related 
protein X-1 (HAX1) can activate the ERK/AKT 
pathway and affect proliferation, migration, apoptosis 
and angiogenesis of the NPC cells [42,43]. Similarly, a 
large number of miRNAs from NPC-derived 
exosomes have been proven to participate in tumor 
angiogenesis. MiR-23a targets and inhibits testis- 
specific gene antigen (TSGA10, an anti-angiogenic 
factor), resulting in angiogenesis in NPC [44]. Highly 
expressed exosomal miR-17-5p encourages 
angiogenesis in NPC by targeting BAMB1 and 
regulating AKT/VEGF-A signaling [45]. Long non- 
coding RNA (lncRNA) CCAT2 from NPC-derived 
exosomes can promote angiogenesis [46]. EBV-related 
products in the exosomes of NPC can also affect 
tumor progression, such as the EBV-encoding RNAs 
(EBERs). For instance, EBERs regulate the expression 
of vascular cell adhesion molecule 1 (VCAM-1) 
through TLR3/RIG-I to induce angiogenesis [47]; 
EBV-miR-BART10-5p and miR-18a strongly promote 
angiogenesis and tumor growth of NPC by mediating 
the expression of VEGF and HIF1-α in a 
Spry3-dependent manner [48]. More important, the 
exosomal molecules not only have the ability to 
accelerate angiogenesis but also hold inhibitory 
functions. Juan Lu, et al. have pointed out that 
overexpressed exosomal miR-9 inhibits angiogenesis 
and metastasis of NPC via targeting a pro-angiogenic 
protein of MDK and regulating PDK/AKT signal 
routing [49]. 

NPC-related exosomes promote epithelial- 
mesenchymal transition (EMT) and metastasis 

NPC frequently metastasizes beyond the 

nasopharynx through additional blood vessels and 
lymph nodes, which is the most common reason for 
poor prognosis. EMT is a process by which the 
epithelial cells are transformed into 
quasi-mesenchymal cells. During this process, the 
interaction and interference between the cells and the 
extracellular matrix are reshaped with increased 
invasive and metastatic properties, resulting in 
separation of epithelial cells from each other and the 
basement membrane. Recent studies have revealed 
that EMT can enhance the mobility and invasiveness 
of the cell to gain greater metastatic potential, which 
prompts tumor metastasis and progression [50,51]. 
Matrix metalloproteinase 13 (MMP-13) in NPC- 
related exosomes upregulates vimentin and reduces 
cadherin to facilitate tumor invasion, metastasis and 
angiogenesis; on the other hand, MMP13 expression is 
trans-activated by hypoxia-inducible factor α (HIF1α) 
[6,52]. Exosomes can mediate continuous interference 
between cancer cells and stromal cells and the effect 
becomes stronger under hypoxic conditions [53]. 
HIF1α is able to activate MMP13 and participate in 
cell metastasis itself, causing mutual change of 
EMT-related E/N cadherin expression [54]. The level 
of endogenous HIF1α can be enhanced by LMP1 
while exosomal HIF1α is supportive for the 
pro-invasive potential of LMP1-positive exosomes 
associated with NPC [54,55]. The level of LMP1 is 
positively correlated with the expression of EMT 
markers and it functions to activate MMPs and 
miR-10b, inhibit miR-204, and consequently benefits 
the invasion and metastasis of NPC, whereas the 
invasion and metastasis process can be inhibited by 
miR-203. Moreover, LMP1 has been demonstrated to 
be able to stimulate the expression of miR-10b, which 
promotes cell migration and invasion via silencing 
HOXD10 and activating Twist [56]. Analogous to 
LMP1, LMP2 can also induce EMT-like changes in 

 

 
Figure 1. Exosomal molecules and their pathways involved in angiogenesis of NPC. ‘a’ to ‘i’ represents nine different molecular pathways. Multi-factors and pathways 
affect NPC angiogenesis, including some miRNAs, virus-related RNAs and proteins. The solid line indicates that the molecule can encourage the downstream signaling and the 
dotted line indicates inhibition. 
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NPC cells [57]. The ERK1/2 pathway participates in 
raising the production of transcription factor Fra-1 
and the level of MMP9; on the other hand, LMP2 and 
LMP1 phosphorylate 4EBP1 through the 
PI3K/Akt/mTOR signaling to elevate the expression 
of metastatic tumor antigen 1 (MTA1), thereby, 
expediting the invasiveness and metastatic ability of 
the NPC cells [2,58,59]. Fibroblast growth factor (FGF) 
19 in the exosomes of NPC mesenchymal stem cells 
can encourage occurrence, proliferation and 
metastasis of the tumor and the mechanism involves 
activating the FGF19-FGFR4-dependent ERK signal 
cascade and regulating EMT to stimulate the growth 
of NPC [60]. PFKFB3 and HAX-1 can also strengthen 
the invasion and metastasis of NPC [42,43]. 

NPC-related exosomes function in immune 
response 

The salient feature of NPC is the infiltration of a 
large number of non-malignant white blood cells in 
the primary tumor, mainly consisting of T 
lymphocytes and a small number of B cells, 
macrophages and dendritic cells, etc. However, this 
leukocyte infiltration has been found to disappear in 
the process of metastasis, replaced by rapidly and 
massively proliferated malignant cells with obvious 
anti-tumor immune feature [61]. Exosome-derived 
cytokines and substances, such as galectin-9 and 
CCL20, can induce local accumulation of regulatory T 
cells (Tregs) and promote NPC aggressiveness [62]. 
The immunomodulatory protein galactin-9 in 
EBV-infected NPC exosomes binds to ligand Tim-3, 
triggering apoptosis of mature CD4+ lymphocytes 
[63]. LMP1 can provoke galectin-9 expression, 
resulting in the release of exosomes containing LMP1 
and galectin-9, and the recombinant of LMP1 with 
galectin-9 can induce strong inhibition on T cell 

proliferation in contrast to galectin 9 without LMP1 
synergy [64]. Hypoxia is able to raise the level of 
miR-24-3p in NPC cells, sera and exosomes and 
enhance the inhibitory effects on T cell proliferation, 
Th1 and Th17 differentiation, as well as generate 
Tregs suppression via repressing FGF11 [65]. In 
addition, NPC exosomes have been observed to have 
the similar T cell inhibitory effect as the TW03 
exosomes (EBV cell-negative or positive) do, by 
imposing on the pro-inflammatory cytokines [36]. 
IL-6 is a growth factor for a great deal of tumors. In 
NPC, exosomes have been demonstrated to enable to 
improve the production of IL-6 from macrophages to 
promote tumorigenesis [66]. As the core molecules 
that mediate immune suppression, Tregs can play 
tumor immune escape. It has been reported that 
exosomal chemokine CCL20 can recruit Tregs to 
tumor tissues, induce T cells to transform into 
inhibitory Tregs, and enhance Treg suppression [67]. 
In addition, gamma herpesvirus infection can change 
exosome protein contents in B cells [68]. Taking 
together, exosomal molecules can affect T cell activity, 
maintain continuous EBV infection and induce 
immunosuppression (Figure 2). 

NPC-related exosomes induce radiation 
resistance 

Radiotherapy is the major treatment for NPC, 
but radiation resistance seems inevitable in this 
process in some patients. Treatment failure of local 
radiotherapy accompanied with local recurrence or 
distant metastasis continues to be a severe challenge 
for NPC management [69,70]. Exosomes can arouse 
radioresistance by enhancing intercellular 
communication and cytotoxic damage in NPC cells 
[71]. Some molecules originated from NPC-related 
exosomes have been confirmed to be radiosensitive. It 

 

 
Figure 2. Exosomal molecules and their pathways involved in immunosuppression in NPC. Exosomal molecules can affect T cell activity, maintain continuous EBV 
infection and induce immunosuppression. The solid line indicates that the molecule can promote the downstream signaling and the dotted line represents inhibition. 
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has been found that CircMYC, a newly discovered 
circular RNA (circRNA) in the circulating exosomes of 
NPC patients, is radioresistant and supportive for cell 
proliferation, and high level of circMYC is correlated 
with NPC recurrence [25]. Similarly, LMP1, as a vital 
cancer-promoting factor, exerts its carcinogenic effect 
by activating the P38 MARK signal of receptor cells to 
stimulate radiation resistance [72]. Studies have 
shown that different cell lines of NPC have different 
radiation sensitivity, of them, CNE2 being the 
strongest. Distinct from other cell lines, the secretory 
proteins expressed in CNE2 cells are mainly 
transported through non-classical pathways and 
exosomes [73]. In general, exosomes play a prominent 
role in transmitting radioresistance in NPC. 

NPC-related exosomes induce chemotherapy 
resistance 

In lung cancer exosomes, abnormal expression of 
some miRNAs and mRNAs regarding to cisplatin 
(DDP) sensitivity has been discovered in vitro, 
accompanied by decreased sensitivity of the tumor 
cells to cisplatin, and exosomes can transfer this DDP 
resistance to untreated cells to induce resistance [74]. 
NPC patients also develop resistance to drugs, where 
exosomes may be the transmitter. Doxorubicin- 
resistant endothelial cells have been demonstrated to 
facilitate aggression, metastasis, EMT and 
chemoresistance in NPC via exosomes [75]. 
Overexpressed DDX53 has been detected in a variety 
of cancers and proven to be able to cause 
Taxol-resistance in cervix cancer cells in vitro through 
upregulating MDR1 [76]. Likewise, a latest study has 
reported that exosomes derived from Taxol-resistant 
NPC cells can transfer DDX53 resistance to the 

parental cells, while inhibiting the secretion of 
exosomes can block this process, thus revealing a new 
mechanism of drug resistance in NPC [77]. 

NPC-related exosomes in clinical 
application 

Some exosomal molecules have multiple 
functions in the progression of NPC, such as LMP1 
(Figure 3), and have been widely used, especially in 
clinical application for NPC diagnosis and treatment. 

Exosomes applied in NPC diagnosis 
Although the incidence of NPC has declined to a 

certain extent, its early detection is still a challenge 
due to its atypical symptoms and hidden location. 
Many NPC patients are already at an advanced stage 
at the time of diagnosis, worsening the outcome of the 
disease. Early diagnosis and interference are very 
important for NPC prognosis. Given that EBV is an 
influential issue for NPC, various EBV assays aiming 
at EBV-DNA and the relative antibody detection have 
been developed, but their sensitivity and specificity 
cannot satisfy the needs of the clinic [78,79]. Hence, 
exploring novel biomarkers and methods for early 
NPC diagnosis becomes exigent. As a non-invasive 
test, liquid biopsy, capable of detecting tumor cells, 
tumor-derived nucleic acids and exosomes in the 
circulating body fluid of patients, is believed to be 
more practical than the traditional tumor biopsy. 
Currently, the application of exosomes in cancer 
diagnosis and surveillance has aroused extensive 
attention [80,81]. The unique biogenesis of exosomes 
build up the ability to circulate freely in body fluids as 
various molecule carriers [82]. Many contemporary 
studies emphasize that biomolecules in NPC 

 

 
Figure 3. The molecular mechanisms of exosomal LMP1 in NPC pathogenesis. LMP1 promotes the progression of NPC through multiple channels, including 
stimulating EVs secretion, improving cell growth, prompting invasion, metastasis, and immunosuppression. The solid line indicates that the molecule can enhance the activity of 
its target and the dotted line indicates inhibition. 
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exosomes can serve as novel diagnostic tumor 
biomarkers with the advanced technology platform 
focusing on nanoparticle identification. For example, 
Cytoflex, a new generation of flow cytometer 
equipped with 405 nm laser, has the ability to identify 
serum exosomes and microparticles [83,84]. 
NanoSight is an updated instrument, which can 
directly detect as small as 10 nm 
nanoparticles/exosomes and give a size-distribution 
graph [49]. EBV infection in NPC can induce 
differential expression of intracellular lncRNA in 
infected cells, exosomes and tumors, suggesting the 
potential clinical application of lncRNA as a 
biomarker [85]. Plasma and exosomal BART miRNAs 
produced by EBV-infected NPC cells have been 
identified as new indicators of NPC [86]. Exosomal 
circMYC has been proven to be correlative to 
radiation tolerance, and ROC analysis show that it has 
the potential to distinguish radiation tolerant NPC 
patients from the sensitive ones [25]. Exosomal 
molecules can be tested coupled with the existing EBV 
detection. Detection of cyclophilin A (CYPA) in sera 
and exosomes combined with EBV-VCA-IgA and 
LMP1 has been employed to diagnose NPC, where 
CYPA in exosomes exhibits a much higher level than 
that in whole sera [87]. In addition to be taken as 
biomarkers, exosomes have also been exploited to 
develop a type of exosomal nanovesicles in vivo as a 
contrast agent for H2O2-responsive catalytic 
photoacoustic imaging (PAI) in NPC, which achieves 
excellent lysosomal escape ability, strong stability and 
high sensitivity, better than the traditional 
non-biological materials for NPC detection [88]. 
Notably, the molecules on exosome surface such as 
CD9, CD63 and CD81 have been used to label the 
exosome to detect its secretion for tumor monitoring 
[89]. 

Exosomes applied in NPC treatment 
Exosomes can provide protection for their 

contents against proteolytic digestion or drug action, 
which may be one of the causes for the failure of drug 
effect on NPC treatment, as exosomal cancer- 
promoting molecules move from the cancerous cells 
to the recipient cells. Increasingly, exosomes are being 
recognized as alternative therapeutics for NPC for 
their ability to induce potent cellular responses. For 
instance, targeting exosomal EBV-LMP1 transfer and 
miR-203 expression have positive significance for 
EBV-targeted therapy by aspirin in invasive NPC [90]. 
The commonly used targets for tumor control include 
PD-1/PD-L1, VEGF and EGFR. Substances used for 
immune escape therapy such as PD-1 and CTLA-4 can 
activate cytotoxic T cells but that action is frequently 
blocked, compromising the therapeutic effect [91]. 

Exosomes may offer solution to this issue because 
they have distinct advantages that uniquely position 
them as vehicles for the delivery of cancer drug when 
the molecules are included or linked to them with a 
ligand capable of accurately binding to their targets 
[92]. In NPC, a number of key regulatory molecules 
involved in the tumor pathological process have been 
identified and a few of them have been used for novel 
cancer immunotherapy in vitro or in vivo. A research 
team has worked to incorporate antagomiR targeting 
BART10-5p and miR-18a (which are intended to 
promote angiogenesis) into iRGD-tagged exosomes, 
resulting in preferentially suppressed angiogenesis 
and growth of NPC [48]. Delivering miR-34c (a tumor 
suppressor of NPC) to the cancerous cells through 
mesenchymal stem cell exosomes can impede β-chain 
protein and slow down the invasion, metastasis, 
proliferation and EMT of NPC cells, ultimately 
inhibiting tumor deterioration and radiation 
resistance [5]. 

Limitations and challenges of exosomes in 
clinical applications 

Although researches on NPC exosomes have 
achieved certain accomplishments, there are also 
challenges and limitations in the application process. 

The first lies in the means of detection. Despite 
the fact that tumor exosomes are attractive biomarkers 
for tumor diagnosis, their early detection for clinical 
use is still challenging. Some researchers have 
established a creative exosome detection method with 
high sensitivity and specificity, which refers to 
recombinase polymerase amplification triggered by 
adjacent ligation and transcription-mediated 
amplification (PAL-RPA-TMA) [93]; however, this 
approach requires innovative construction of 
DNA-labeled antibodies for specific detection targets 
(such as the proven biomarker LMP1). Based on 
hybrid chain reaction (HCR) and CRISPR-Cas12a 
double amplification technology, apta-HCR-CRISPR 
has been developed to directly examine extracellular 
vesicle proteins, which has attained high sensitivity 
[94]. An immunosorbent analysis adopting micro 
fluidic drop technology has been exploited to 
quantitatively identify exosomes [95]. Nonetheless, 
these detection methods are complicated, time 
consuming and costly, and more effective and feasible 
platform for exosome detection needs to be fulfilled. 

The second involves the selective exosomal 
cargo loading mechanism driving biomolecules 
sorting into exosomes. Despite the entry of exosomes 
into recipient cells is non-specific, the exosome uptake 
mechanism depends on the recipient cells [96]. 
Studies have shown that seven miRNAs (let-7b-5p, 
miR-140-3p, miR-144-3p, miR-17-5p, miR-20a-5p, 
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miR-20b-5p and miR-205-5p) are consistently 
upregulated in the plasma of patients with NPC; 
however, the plasma-derived exosomes yield the 
opposite outcome, indicating that miRNAs in 
plasma-derived exosomes have different expression 
mechanism from those in plasma [97,98]. The same 
phenomenon exists in the expression of viral 
miR-BART17 of EBV in NPC patients, where its 
concentration in plasma differs from that in 
plasma-derived exosomes [99]. It has been revealed 
that one of the key mechanisms for LMP1 to enter 
exosomes correlates to the C-terminal farnesylation of 
UCH-L1; inhibition of UCH-L1 deubiquitination 
activity exerts an anti-invasive effect on metastatic 
cancer cells [100,101]. CD63 has been found to be a 
specific protein on the surface of exosomes, which can 
bind to LMP1 and regulate LMP1 exosomal packaging 
[102,103]. Understanding the specific exosomal 
loading mechanism of how the NPC-related 
molecules selectively enter the recipient cells and how 
exosomes make cargo selection may benefit 
developing alternative policy to improve NPC 
diagnosis and treatment. 

A study comparing the effect of conventional 
doxorubicin chemotherapy with the replacement 
therapy of Ag-TiO2-catalyzed reactive oxygen species 
generation in the treatment of 5-8F NPC cells has 
pointed out that beyond the classic chemotherapeutic 
agent, Ag-TiO2 in the photo-catalytic process also 
exhibits cytostatic activity; tumor cell damage 
induced by cytostatic treatment enormously changes 
the number of released exosomes and leads to the 
predominance of tumor inhibitors in the exosomal 
miRNA profile [104]. Different treatment option has 
different impact on NPC progression and the 
involved mechanisms may be varied. The current 
strategies for NPC include radiotherapy, adjuvant 
chemotherapy, concurrent chemoradiotherapy and 
induction chemotherapy. Radiotherapy is classified 
into intensity-modulated radiation therapy (IMRT), 
intensity-modulated proton therapy (IMPT) and 
intensity-modulated carbon therapy (IMCT). The 
commonly used agents for chemotherapy are cisplatin 
and fluorouracil [3]. Probing the mechanisms of 
different therapeutic strategies and their effects on 
NPC-related exosomes will help break some new 
ground in dealing with NPC. 

There are also limitations in exosome 
application. Due to the characteristics of stability, 
permeability, biocompatibility and extremely small 
size, exosomes can deliver drugs and nucleic acids as 
carriers [105,106], however, most of them stay in the 
theoretical stage, far from practical applications [107]. 
The disadvantage of low drug loading rates and 
clinical production levels raise barriers for exosomes 

to target recipient cells with effectiveness and 
sufficiency. In addition, the non-tumor type 
specificity of exosomes in the body [108], and the 
protective effect of exosomes on their contents also 
restrain them to serve the clinic for precise tumor 
treatment. 

Conclusions 
With the improvement of diagnostic methods 

and treatment strategies, the incidence and prognosis 
of NPC have been improved, however, the 
mechanism of the tumor’s development and 
progression is unclear, and problems emerge in 
practical treatment. The exosomes secreted from 
different types of NPC cells contain a variety of 
biomolecules, which participate in the circulation of 
body fluids, and affect the growth, angiogenesis, 
metastasis, immune response, radiation and 
chemotherapy sensitivity of NPC. As a promising 
non-invasive liquid biopsy biomarker, exosomes are 
highlighted in developing new diagnostic and 
treatment methods of NPC, but there are challenges in 
their clinical application. Conclusively, this article 
reviews the molecular mechanisms of NPC-related 
exosome-induced tumor progression in NPC and the 
potential clinical application of exosomes, which we 
hope may provide some references for the use of 
exosomes in clinical intervention. 
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3; Tim-3: T cell immunoglobulin and mucin domain- 
containing protein 3; Tregs: regulatory T cells; 
TSGA10: testis-specific gene antigen 10; TSP-1: 
thrombospondin-1; UCH-L1: ubiquitin carboxyl- 
terminal hydrolase isozyme L1; VCAM-1: vascular 
cell adhesion molecule 1; VEGF: vascular endothelial 
growth factor. 
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