Supplementary Figure 1 Cell migration and invasion of MCF-7 CON and PROX1 overexpressed were assessed by transwell assay. The number of migrated or invaded cells were presented as the mean \pm SD of three independent experiments.
Statistical significance was determined by two-tailed unpaired t-test.
Abbreviation: **, $p<0.01$.

Supplementary Figure 2 Scatter plots of the relationship between mRNA expression levels of PROX1 and EMT-related markers in TCGA database. " n " represents the number of included patients.
P values were calculated using Pearson correlation analysis.
Abbreviation: TCGA: the Cancer Genome Atlas.

Supplementary Figure 3 PROX1 promotes EMT through Wnt/ β-catenin signaling pathway. A-B. Rescue transwell migration assay of PROX1-knockdown and overexpressing cells which were pretreated with SKL2001 or XAV939 (either 30 4 M SKL2001 or $20 \mu \mathrm{M}$ XAV939 for 24h). The number of migrated cells were presented as the mean \pm SD of three independent experiments. C. The protein level of E-cadherin in PROX1-knockdown and -overexpressing cells (either $30 \mu \mathrm{M}$ SKL2001 or $20 \mu \mathrm{M}$ XAV939 for 24 h) were assessed by Western blotting.
All the experiments were repeated three times independently with similar results. Data represent mean \pm SD. P values in B were calculated using unpaired two-tailed Student's t tests.
Abbreviation: **, $p<0.01$.

Supplementary Figure 4 The mRNA expression of hnRNPK in PROX1-knockdown and -overexpressing cells were detected by RT-qPCR.
The experiments were repeated three times independently with similar results. Data represent mean \pm SD. P values were calculated using unpaired two-tailed Student's t tests.
Abbreviation: ns: no significance.

Supplementary Figure 5 The interaction between PROX1 and hnRNPK. A. Co-IP analysis of interaction between PROX1 and hnRNPK in MCF-7 PROX1 cells. B. Physical interaction evidence between PROX1 and hnRNPK provided by AI calculation.
$\Delta \mathrm{iG} \mathrm{P}$-value indicates the P -value of the observed solvation free energy gain. The P value measures the probability of getting a lower than observed $\Delta \mathrm{i} G$, when the interface atoms are picked randomly from the protein surface, such as to amount to the observed interface area. The P -value is a measure of interface specificity, showing how surprising, in energy terms, the interface is. $\Delta \mathrm{iG}$ indicates the solvation free energy gain upon formation of the interface, in $\mathrm{kcal} / \mathrm{M}$. The value is calculated as difference in total solvation energies of isolated and interfacing structures. Negative $\Delta \mathrm{iG}$ corresponds to hydrophobic interfaces, or positive protein affinity.

Supplementary Table 1. The antibodies list used in this study.

Name	Source	Catalog number
PROX1	Proteintech	$11067-2-A P$
GAPDH	Proteintech	HRP-60004
E-cadherin	Cell Signaling Technology	\#3195
N-cadherin	Cell Signaling Technology	\#13116
Vimentin	Cell Signaling Technology	\#5741
Slug	Cell Signaling Technology	\#9585
Twist2	Proteintech	$11752-1-A P$
ZEB1	Cell Signaling Technology	\#70512
β-catenin	Cell Signaling Technology	\#8480
p- β-catenin ${ }^{\text {Ser33/37/Thr41 }}$	Cell Signaling Technology	\#9561
GSK3ß	Cell Signaling Technology	\#12456
p-GSK3ß ${ }^{\text {Ser9 }}$	Cell Signaling Technology	\#9322
Lamin A/C	Proteintech	$10298-1-A P$
TCF4	Santa Cruz	sc-166699
LEF	Santa Cruz	sc-374412
Met	Cell Signaling Technology	\#8198
C-myc	Proteintech	$10828-1-A P$
hnRNPK	Abcam	ab52600
Ubiquitin	Santa Cruz	sc-8017

Supplementary Table 2. The sequences of shRNA, siRNA and primers for real-time PCR assays.

Gene	Sequence
shPROX1\#1	GAAGTTGCTCAGATCACATTA
shPROX1\#2	TTTCCAGGAGCAACCATAATT
sihnRNPK Sense	GCAUAAAGAUCAUCCUUGA
sihnRNPK Antisense	UCAAGGAUGAUCUUUAUGC
GAPDH-F	GGAGCGAGATCCCTCCAAAAT
GAPDH-R	GGCTGTTGTCATACTTCTCATGG
PROX1-F	AAAGTCAAATGTACTCCGCAAGC
PROX1-R	CTGGGAAATTATGGTTGCTCCT
hnRNPK-F	GCAGGAGGAATTATTGGGGTC
hnRNPK-R	TGCACTCTACAACCCTATCGG
VIM-F	AGTCCACTGAGTACCGGAGAC
VIM-R	CATTTCACGCATCTGGCGTTC
CDH1-F	CGAGAGCTACACGTTCACGG
CDH1-R	GGGTGTCGAGGGAAAAATAGG
CDH2-F	TGCGGTACAGTGTAACTGGG
CDH2-R	GAAACCGGGCTATCTGCTCG
SNAIL2-F	TGTGACAAGGAATATGTGAGCC
SNAIL2-R	TGAGCCCTCAGATTTGACCTG
TWIST2-F	CGCAAGTGGAATTGGGATGC
TWIST2-R	CGATGTCACTGCTGTCCCTT
ZEB1-F	TTCAAACCCATAGTGGTTGCT
ZEB1-R	TGGGAGATACCAAACCAACTG

