1 SUPPLEMENTAL FIGURES :

2 FIGURE S1. A. Promoter methylation of ZDHHC22 in 64 breast cancer tissue samples. B. Validation of ZDHHC22 and ZDHHC22-(C111A) mRNA and protein expression by qPCR and 3 4 western blot analyses. C-D. Cell vitality was detected with CCK-8 assay and colony formation 5 assay after transfection with Vector, ZDHHC22 and ZDHHC22-(C111A) plasmids in YCC-B1 cells. 6 E-F. Cell cycle and cell apoptosis in YCC-B1 cells at 48 hours post-transfection of Vector, 7 ZDHHC22 and ZDHHC22-(C111A) plasmids was examined by flow cytometry analysis of PI staining and Annexin V-APC/PI staining, respectively. G Immunofluorescence assays were used to 8 9 detect the protein expression of PHLPP2 after transfected with ZDHHC22 plasmids. Values 10 represent mean \pm SD. from three independent experiments, **p < 0.01. ***p < 0.001. ZDC22: ZDHHC22, ZDC22-mut: ZDHHC22-(C11A) mutation. 11

FIGURE S2. A. Immunofluorescence assays were used to detect the protein expression and co-localization of mTOR at the indicated time in BT-549 and SK-BR-3 cells transfected with ZDHHC22-(C11A) plasmids. B. The ZDHHC22 mainly co-localized with the endoplasmic reticulum. C. BT-549 and SK-BR-3 cells were transfected with Vector and ZDHHC22-mut plasmids for 48 hours, followed by 200µg/ml cyclohexmide (CHX) treatment for the indicated times. mTOR protein expression levels were detected with western blot and quantified with Image J software. ZDC22:ZDHHC22, ZDC22-mut: ZDHHC22-(C11A) mutation.

PCR	Primer	Sequence (5'-3')	Product size	PCR Cycles
RT-PCR	ZDHHC22F	GTGACCTTCGTGCTGCAGCT	167bp	35
	ZDHHC22R	AGGTCGTCTGGGGGAGTTCTG		35
	GAPDHF	GGAGTCAACGGATTTGGT	206bp	23
	GAPDHR	GTGATGGGATTTCCATTGAT		23
qRT-PCR	mTORF	TGTGGGCAGCATCACTCTT	80bp	
	mTORR	GGCGAACAAATTGGGTCAG		
	GAPDHF	CCAGCAAGAGCACAAGAGGAA	114bp	
	GAPDHR	CAAGGGGTCTACATGGCAACT		

TABLE S1. List of expression primers used in this study.

Note: RT-PCR: Semiquantitative reverse transcription PCR;

qRT-PCR: quantitative real-time PCR.

1

TABLE S2. List of MSP primers used in this study.

MSP	Primer	Sequence (5'-3')				
ZDHHC22m1	ATAAGAGGAGTTTCGGACGTC	101bp				
ZDHHC22m2	CCAATTCCCGAAACGAAACG					
ZDHHC22u1	GATAAGAGGAGTTTTGGATGTT	104bp				
ZDHHC22u2	ACCCAATTCCCAAAACAAAACA					
Note: MSP: methylation-specific PCR						

Duotoin	N-terminal sequence or	Predicted N-terminus of the	Likelihaad (%)	
TTOLEIII	entry code	mature protein	Likeimoou (76)	
mTOR	NP_004949.1	*M (1)	100	
Deptor-X1	NP_073620.2	Ac-M (1)	100	
Deptor-X2	NP_001269941.1	Ac-M (1)	100	
Protor1-X1	NP_851850.1	M (1)	89	
Protor1-X2	NP_001017528.1	AC-S (2)	85	
Protor1-X3	NP_00107529.1	V (2)	100	
Protor1-X4	NP_001185650.1	V (2)	100	
Sin1-X1	NP_001006618.1	Ac-A (2)	83	
Sin1-X2	NP_007022.1	Ac-A (2)	83	
Sin1-X3	NP_001006620.1	Ac-A (2)	83	
Sin1-X4	NP_001006621.1	Ac-T (2)	77	
Sin1-X5	NP_001006619.1	Ac-A (2)	83	
mLST8-Xa	NP_001186102.1	Ac-M (1)	67	
mLST8-Xb	NP_001186104.1	Ac-M (1)	67	
mLST8-Xc	NP_001338986.1	Ac-M (1)	67	
mLST8-Xd	NP_001338988.1	M (1)	89	
Rictor-X1	NP_689969.2	Ac-A (2)	83	
Rictor-X2	NP_001272368.1	Ac-A (2)	83	
Rictor-X3	NP_001272369.1	My-G (2)	45	
AKT-X1	NP_001014431.1	AC-S (2)	85	
AKT-X2	NP_001014432.1	AC-S (2)	85	
AKT-X3	NP_005154.2	AC-S (2)	85	

TABLE S3. Prediction of mTORC2 complex and AKT palmitoylation