Supplemental Information

Figure S1: In vivo detection of DiD-red fluorescently labeled pericyte (PC)-derived extracellular vesicle-mimetic nanovesicles (PC-NVs) in the penis of normal mice. The penis tissue was harvested 0, 1, 3, 12, 24, and 72 hours after intracavernous injection of DiD-red labeled PC-NVs into the normal mice. Representative immunohistochemical staining with PECAM-1 (green) in cavernous tissue from normal mice. Nuclei were labeled with the DNA dye DAPI. Scale bar = 200 μ m. DAPI = 4,6-diamidino-2-phenylindole.

Figure S2: PC-NVs induce cavernous eNOS phosphorylation (p-eNOS) in diabetic mice. (A) PECAM-1 (red) and phosphor-eNOS (green) staining of cavernous tissue from age-matched control (C) and diabetic mice obtained 2 weeks after intracavernous injection of HBS (H) or PC-NVs (5 μ g/20 μ l) on days –3 and 0. Scale bar = 100 μ m. (B) Representative western blots for phosphor-eNOS and eNOS in age-matched control (c) and diabetic mice obtained 2 weeks after intracavernous injection of HBS (H) or PC-NVs (5 μ g/20 μ l) on days –3 and 0.

(C) Quantification of the phosphor-eNOS immunopositive area in cavernous tissue by Image J (n = 8). (D) Band intensity values of indicated proteins was quantified by assessing the density of the corresponding protein bands using Image J (n = 4). Results are presented as means \pm SEM (**P* < 0.05; #*P* < 0.001). The relative ratio in the control group was set to 1. DM, diabetes mellitus; HBS, HEPES-buffered saline.

Figure S3: PC-NVs preserve endothelial cell-cell junctions and decrease the extravasation of oxidized-LDL under diabetic conditions. (A-C) Triple-immunostaining for Claudin-5 (red), Occludin (green), and PECAM-1 (blue) in age-matched control (C) and diabetic mice obtained 2

weeks after intracavernous injection of HBS (H) or PC-NVs (5 μ g/20 μ l) on days –3 and 0. Scale bar = 100 μ m. Quantification of claudin-5- and occluding-immunopositive area in the cavernosum using Image J (n = 10). Results are presented as means ± SEM (**P* < 0.05; **P* < 0.001). (D and E) PECAM-1 (green) and oxidized-LDL (red) staining of cavernous tissue from age-matched control (C) and diabetic mice obtained 2 weeks after intracavernous injection of HBS (H) or PC-NVs (5 μ g/20 μ l) on days –3 and 0. Scale bar = 100 μ m. Quantification of oxidized-LDL-immunopositive area in the cavernosum using Image J (n = 7). Results are presented as means ± SEM (**P* < 0.001). DM, diabetes mellitus; HBS, HEPES-buffered saline.

Figure S4: PC-NVs induce neurovascular regeneration with Lcn2-dependent manner under diabetic conditions. (A) Representative Western blots for Lcn2 in mouse cavernous pericyte infected with shCon or shLcn2 lentivirus at three doses (5×10^3 TU, 1×10^4 TU, and 5×10^4 TU/ml culture medium) for at least 3 days. (B) Triple-immunostaining for NG2 (red), α -SMA (green), and PECAM-1 (blue) in age-matched control (C) and diabetic mice obtained 2 weeks after intracavernous injection of HBS (H), PC-NVs (shCon) ($5 \mu g/20 \mu l$), or PC-NVs (Lcn2-KD) ($5 \mu g/20 \mu l$) on days -3 and 0. Scale bar = 100 μ m. (C) nNOS (red) and neurofilament (NF, green) staining of cavernous tissue in age-matched control (C) and diabetic mice obtained 2 weeks after intracavernous injection of HBS (H), PC-NVs (shCon) ($5 \mu g/20 \mu l$), or PC-NVs (Lcn2-KD) ($5 \mu g/20 \mu l$) on days -3 and 0. Scale bar = 25 μ m. (D- H) Intensity quantification of each protein-immunopositive area in the cavernosum using Image J (n = 5). Results are presented as means \pm SEM (*P < 0.05; #P < 0.001). DM, diabetes mellitus; HBS, HEPESbuffered saline.

Figure S5: Schematic depiction of the proposed mechanism for Lcn2-dependent restoration of diabetic ED by PC-NVs. PC-NVs, Pericyte-derived extracellular vesicle-mimetic nanovesicles; Lcn2, lipocalin 2; PI3K, phosphoinositide 3; Akt, protein kinase B; eNOS, endothelial nitric oxide synthase; MAPK, mitogen-activated protein kinase; NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor; NT-3, neurotrophin-3; P53, tumor protein 53.

Comparator	Cell or materials	Preparation strategy	Particle Characterization	Comparison to natural exosome	Potential application
EV-mimetic NVs	Mouse Cavernous Pericytes	serial extrusion (10 μm, 5 μm, 1 μm) + OptiPrep DGUC	Size by TEM and Zeta potential: 134.5±16.92 nm	Similar cup like morphology, size distribution, protein markers	siRNA delivery, cell proliferation enhancement, pro-angio-neurogenesis, nanocarrier alternative to exosome,

Table S1. The summary of Pericyte derived PC-NVs characteristics

DGUC; density gradient ultra-centrifugation, TEM; transmission electron microscopy.

Table S2. Physiologic and metabolic parameters: 2 weeks after treatment with different doses of PC-NVs

		STZ-induced diabetic mice			
	Control	HBS	PC-NVs 0.5 µg	PC-NVs 1.0 µg	PC-NVs 5.0 µg
Body weight (g)	29.1 ± 0.3	$22.8\pm1.1^{\#}$	$23.0\pm0.8^{\#}$	$22.6\pm0.4^{\#}$	$22.4\pm0.2^{\#}$
Postprandial glucose (mg/dL)	148.3 ± 7.2	$577.4\pm9^{\#}$	$575.3 \pm 12.6^{\#}$	$572.7\pm9^{\#}$	$571.3 \pm 13.5^{\#}$
Fasting glucose (mg/dL)	113.9 ± 5.7	$416.4\pm8.8^{\#}$	$411.0\pm8.5^{\#}$	$408\pm19.5^{\#}$	$393.4\pm19.7^{\#}$
MSBP (cm H2O)	83 ± 3.1	89.9 ± 1.1	87.8 ± 5.1	71.33 ± 0.7	73.89 ± 1.6

Values are the mean \pm SEM for n = 5 animals per group. [#]*P*< 0.001 vs. control group. MSBP, mean systolic blood pressure; STZ, streptozotocin.

Table S3. Physiologic and metabolic parameters: 2 weeks after treatment with PC-NVs (shCon) and PC-NVs (Lcn2-KD) under diabetic conditions.

		STZ-induced diabetic mice			
	Control	HBS	PC-NVs (shCon)	PC-NVs (Lcn2-KD)	
Body weight (g)	28.5 ± 0.6	$24.9\pm1.4^{\#}$	$24.3 \pm 1.6^{\#}$	$22.2 \pm 1.2^{\#}$	
Postprandial glucose (mg/dL)	123.6 ± 2.6	$550.0 \pm 21.7^{\#}$	$489.4 \pm 19.5^{\#}$	$517.4 \pm 22.15^{\#}$	
Fasting glucose (mg/dL)	100 ± 3.8	$376.1 \pm 22.3^{\#}$	$347.6 \pm 18.4^{\#}$	$422.0\pm23.9^{\#}$	
MSBP (cm H2O)	90.1 ± 1.1	94.3 ± 2.2	98.9 ± 4.1	104.4 ± 2.1	

Values are the mean \pm SEM for n = 5 animals per group. [#]*P*< 0.001 vs. control group. MSBP, mean systolic blood pressure; STZ, streptozotocin.