

Figure S1. TNBC cells show distinct responses to TOP1 and TOP2 inhibitors.

(A) Microscopy of TNBC cell lines HCC1806, Hs578T, HCC1937, and 4T1 (mouse). Cells were treated with DMSO or 1 μ M topotecan.

(B) Viability of BT549 and MDA-MB-231 cells treated with DMSO or topotecan at the indicated concentrations. (C) TOP1 protein levels were measured by western blotting. Cells were treated with DMSO or topotecan at the indicated concentrations.

(D) Microscopy of BT549 and MDA-MB-231 cells treated with DMSO or 1 µM camptothecin.

(E) Viability of BT549 and MDA-MB-231 cells treated with DMSO or 1 μ M camptothecin (n = 3).

(F) Microscopy of primary human ovarian cancer cells (PDX6 p8, PDX4 p7, and PDX5 p6). Cells were treated with DMSO or 1 µM topotecan.

(G) Microscopy and western blotting of BT549 and MDA-MB-231 cells treated with DMSO, 1 μ M etoposide, or 1 μ M ICRF-193.

(H) Microscopy of BT549 and MDA-MB-231 cells treated with DMSO, 10 μ M etoposide, or 10 μ M ICRF-193. (I) Microscopy of BT549 and MDA-MB-231 cells treated with DMSO or 30 μ M hydroxyurea.

Data are presented as mean \pm SD. Significance was calculated using two-tailed, unpaired Student's t test. *p < 0.05. Scale bars, 100 μ m. Percentages in the microscopic images represent relative cell number changes versus the 0-h time point.

Figure S2. ATR activation and RAD17 correlate with cell sensitivity to TOP1 inhibition.

(A) Western blotting and qRT-PCR (n = 3) of RAD17. BT549 and MDA-MB-231 cells treated with 1 μ M topotecan for 2 and 12 hours.

(B) BT549 cells were transfected with pCMV6-entry or pCMV6-RAD17. RAD17 Overexpression and c-PARP levels were examined by western blotting (left) and cell death was measured by cell viability assays (right) after 48-h transfection and 24-h treatment with 1 μ M topotecan.

(C) MDA-MB-231 cells were transfected with scrambled siRNA (siControl) or *RAD17* siRNA (si*RAD17*). Knockdown was validated by western blotting and cell death was measured by cell viability assays after 48-h transfection and 24-h treatment with 1 μ M topotecan.

(D) DNA damage was evaluated by p- γ -H2AX immunofluorescent staining. BT549 and MDA-MB-231 cells were treated with DMSO, 1 μ M camptothecin, 1 μ M topotecan, 1 μ M etoposide, or 1 μ M ICRF-193 for 4 hours. Cell nuclei were stained by DAPI.

(E) Microscopy of BT549 and MDA-MB-231 cells treated with DMSO, 1 μ M VE-821, 1 μ M etoposide, 1 μ M etoposide combined with 1 μ M VE-821, 1 μ M ICRF-193, or 1 μ M ICRF-193 combined with VE-821 for 48 hours.

(F) Western blotting of RAD17. BT549-res cells were grown in the presence of 1 μ M topotecan treatment. BT549 cells treated with 1 μ M topotecan for 2 and 12 hours. This blot membrane was used in Fig.S2A, which does not show the result of BT549-res cells.

(G) qRT-PCR analysis of RAD17 expression in BT549 and BT549-res cells (n = 3).

Data are presented as mean \pm SD. Significance was calculated using two-tailed, unpaired Student's t test. *p < 0.05. Red Scale bars, 25 μ m. White Scale bars, 100 μ m. Percentages in the microscopic images represent relative cell number changes versus the 0-h time point.

Ε.

D. ovarian cancer cell lines primary ovarian cancer cells Caov3 Kuramochi PDX6 p8 PDX4 p7 PDX5 p6 MYC -25.3 . Actin

Η.

APTO

Figure S3. MYC induction is associated with breast cancer cell sensitivity to TOP1 inhibition.

(A) MYC protein levels in BT549 and MDA-MB-231 cells were measured by immunoblotting. Cells were treated with 1 μ M camptothecin for 0, 2, 6, 12, 16, and 20 hours.

(B) MYC protein levels in HCC1806, HCC1937, Hs578T, and 4T1 cells were measured by immunoblotting. Cells were treated with 1 μ M topotecan for the indicated hours.

(C) Immunoblotting of MYC in BT549-res cells cultured in the presence of 1 μ M topotecan and parental BT549 cells treated with 1 μ M topotecan for 0, 2, and 12 hours.

(D) MYC protein levels in Caov3, Kuramochi, PDX6 (p8), PDX4 (p7), and PDX5 (p6) ovarian cancer cells were measured by immunoblotting. Cells were treated with 1 μ M topotecan for 0, 2, and 12 hours.

(E) MYC protein levels in BT549 and MDA-MB-231 cells were measured by immunoblotting. Cells were treated with 1 μ M or 10 μ M doxorubicin for 0, 2, and 12 hours.

(F) MYC expression was measured by qRT-PCR. BT549 cells were treated with the 0.5 μ M MYC inhibitor APTO-253 (n = 3).

(G) BT549 cells were pretreated with DMSO or 0.5 μ M APTO-253 for one hour followed by 1 μ M topotecan treatment for 24 hours. Cell death was measured by viability assays (n = 3).

(H) c-PARP and PAPR expression was measured by immunoblotting. BT549 cells were treated with DMSO, topotecan, APTO-253, or topotecan combined with APTO-253.

Data are presented as mean \pm SD. Significance was calculated using two-tailed, unpaired Student's t test. *p < 0.05.

Figure S4. Reporter assays for the activities of transcriptional factors involved in MYC regulation. (A) NF-kB, (B) Beta-catenin, and (C) Gli responsive luciferase reporter assays of BT549 and MDA-MB231 cells treated with topotecan for 2 and 12 hours. BT549 cells were transfected with plasmids overexpressing p65, beta-catenin, or FOXC1 as positive controls for inducing luciferase reporter activity (n = 3). Data are presented as mean \pm SD. Significance was calculated using two-tailed, unpaired Student's t test. *p < 0.05.

MDA-MB-231

12

2

Α.

BT549

Figure S5. JNK mediates the induction of MYC in response to topotecan treatment.

(A) Immunoblotting of p-P38 in BT549 and MDA-MB-231 cells treated with 1 μ M topotecan for 2 and 12 hours. This is the same blot membrane used in supplementary figure 2A for examining RAD17 levels. Thus, the actin signal images are the same.

(B) qRT-PCR analysis of *MYC* and (C) immunoblotting of p-JNK and total JNK in MDA-MB-231 cells treated with 5 μ M anisomycin for 2 and 12 hours (n = 3).

(D) qRT-PCR analysis of *MYC* in MDA-MB-231 cells treated with the indicated agents for 4 hours (n = 3).

(E) Immunoblotting of c-PARP, total PARP, p-Chk1, p-JNK, and total JNK. BT549 cells were pretreated with DMSO or 5μ M JNK-IN-8 for 1 hour, followed by DMSO or 1μ M topotecan treatment for 12 hours.

(F) qRT-PCR analysis of *RAD17* expression. BT549 cells were treated with DMSO, topotecan, or JNK-IN-8 combined with topotecan for 6 hours (n = 3).

(G) Immunoblotting of p-JNK, total JNK, p-Chk1, and total Chk1. MDA-MB-231 cells were treated with DMSO, 1 μ M topotecan, or 1 μ M topotecan combined with 1 μ M VE-821 for 2 and 12 hours.

Data are presented as mean \pm SD. Significance was calculated using two-tailed, unpaired Student's t test. *p < 0.05.

Table S1						
	BT549 Fold change vs DMSO control		MDA-MB-231 Fold change vs DMSO control			
Gene Name	2 hr Topotecan	12 hr Topotecan	2 hr Topotecan	12 hr Topotecan		
МҮС	2.755547	2.580747	2.235605	0.57208		
RAD17	0.77797	0.58709	0.86197	1.07529		
RB1	0.838	0.4477	0.6692	0.5385		
SLFN11	1.0047	1.5825	1.5833	0.8333		
ATR	0.57112	0.633809	0.576332	0.574526		
RPA1	0.792714	0.943856	0.870374	1.120331		
ATRIP	0.614184	1.331915	0.747134	1.335032		
RAD9	1	1.45285	1.170816	1.363636		
HUS1	0.7492	1.275112	1.150814	1.002571		
RAD1	0.855467	1.644742	0.93768	1.427804		
TOPBP1	0.69881	1.018824	0.794288	1.05218		
ATM	0.809367	0.523007	0.510072	0.492252		
RAD50	0.788154	0.605656	0.58827	0.548578		
MDC1	1.023588	1.182273	0.903834	0.842238		
MRE11	0.826438	0.895388	0.773994	0.689241		
RNF168	0.894596	1.103264	0.969619	1.329024		
RNF8	0.7628	1.290143	0.929852	1.522416		
BRCA1	0.642515	0.724864	0.705663	1.06375		
53BP1	0.873838	0.811531	0.926033	1.043708		

Table S1. Fold changes of selected ATR, ATM, and DNA repair-associated genes from RNA-seq analysis. ATR pathway genes: *ATR, RPA1, ATRIP, RAD9, HUS1, RAD1, TOPBP1*; ATM pathway genes: *ATM, RAD50, MDC1, MRE11, RNF168, RNF8, BRCA1, 53BP1*.

Table S2. Drug information.

Drug compound	Company	Catalog #
DMSO	Sigma	D2650
Camptothecin	Sigma	C9911
Topotecan	Cayman Chemical	14129
Etoposide	Cayman Chemical	12092
ICRF-193	Sigma	I4659
VE-821	Selleckchem	\$8007
KU-60019	ApexBio Technology	A8336
JNK-IN-8	Selleckchem	S4901
SP600125	Cayman Chemical	10010466
DRB	Cayman Chemical	10010302
Hydroxyurea	Sigma	H8627
(+)-JQ1	ApexBio Technology	A1910
Anisomycin	Cayman Chemical	11308
Doxorubicin	MedKoo	100280
АРТО-253	MedChemExpress	HY-16291

	-	-
Antibody	Company	Catalog #
Cleaved Caspase 3	Cell Signaling Technology	9664S
Cleaved PARP1	Cell Signaling Technology	9546S
PARP1	Cell Signaling Technology	9532
Phospho-Bcl2 (Ser70)	Cell Signaling Technology	2827T
Beta-Actin	Santa Cruz Biotechnology	sc-69879
RAD17	Santa Cruz Biotechnology	sc-17761
Topoisomerase I	Santa Cruz Biotechnology	sc-32736
Topoisomerase II beta	Santa Cruz Biotechnology	Sc-365071
TDP1	Santa Cruz Biotechnology	sc-365674
PNKP	Santa Cruz Biotechnology	sc-271505
XRCC1	Santa Cruz Biotechnology	sc-56254
DNA Ligase III	Santa Cruz Biotechnology	sc-135883
Phospho-Chk1 (Ser345)	Cell Signaling Technology	2348T
Chk1	Santa Cruz Biotechnology	sc-8408
Phospho-Chk2 (Thr68)	Cell Signaling Technology	2197T
Phospho-p53 (Ser15)	Cell Signaling Technology	9286T
BRCA1	Santa Cruz Biotechnology	sc-6954
GAPDH	Santa Cruz Biotechnology	sc-47724
МҮС	Santa Cruz Biotechnology	sc-373712
	Abcam	ab32072
TWIST	Abcam	ab49254
SNAIL	Cell Signaling Technology	3895S
Phospho-ERK (Tyr204)	Santa Cruz Biotechnology	sc-7383
Phospho-Akt (Ser473)	Cell Signaling Technology	4060
Phospho-JNK (Thr183/Tyr185)	Cell Signaling Technology	9255S
	Santa Cruz Biotechnology	sc-6254
JNK	Cell Signaling Technology	9252
Phoshpo-P38(Thr180/Tyr182)	Cell Signaling Technology	4511
Phospho-CTD Ser5	Bethyl Laboratories	A304-408A-T
Phospho-CTD Ser2	Abcam	ab5095
RNA Polymerase II	Bethyl Laboratories	A300-653A-T
Phospho-Histone H2A.X (Ser139)	Millipore Sigma	05-636