Supplementary Materials

Jwa participates the maintenance of intestinal epithelial homeostasis via ERK/FBXW7mediated NOTCH1/PPARy/STAT5 axis and acts as a novel putative aging related gene Xiong Li ${ }^{1,2,3}$, Jingwen Liu ${ }^{1,2,3}$, Yan Zhou ${ }^{1,2,3}$, Luman Wang ${ }^{1,2,3}$, Yifan Wen ${ }^{1,2,3}$, Kun Ding ${ }^{1,2,3}$, Lu Zou ${ }^{1,2,3}$, Xia Liu ${ }^{1,2,3}$, Aiping Li ${ }^{11,2,3}$, Yun Wang ${ }^{4}$, Heling Fu ${ }^{4}$, Min Huang ${ }^{5}$, Guoxian Ding ${ }^{5}$ and Jianwei Zhou ${ }^{1,2,3, *}$
${ }^{1}$ Department of Molecular Cell Biology \& Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
${ }^{2}$ Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
${ }^{3}$ Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China.
${ }^{4}$ Animal Core Facility of Nanjing Medical University, Jiangsu Animal Experimental Center of Medical and Pharmaceutical Research, Nanjing 211166, China.
${ }^{5}$ Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.

[^0]
Supplementary Method

Genotyping of intestinal epithelial Jwa deletion mice

Genomic DNA was isolated from mouse tail and the PCR procedure was performed using the Quick Genotyping Assay Kit for Mouse Tail (Beyotime). The primers used for genotyping were as followed: flox (Forward: 5'-CCACTGTTTCCTCTGTTG-3'; Reverse: 5'-GTGAAAACCACTGAGAACC3'); Vil1-cre (Common Forward: 5'-GCCTTCTCCTCTAGGCTCGT-3', Wild type Reverse : 5'-TATAGGGCAGAGCTGGAGGA-3', Mutant Reverse : 5’-AGGCAAATTTTGGTGTACGG-3'), the products were separated by agarose gel electrophoresis and the images were obtained on the Gel Doc XR Gel Imaging System (Bio-Rad, Hercules, CA, USA). When genotyping for flox, image showed two bands in 341 and 437 bp indicating Jwa ${ }^{\text {fl/ }}$ (Supplementary Fig. S3B, lane 1), one band in 437 bp indicating Jwa ${ }^{\text {f/fl }}$ (Supplementary Fig. S3B, lane 2), one band in 341 bp indicating $\mathrm{Jwa}^{+/+}$ (Supplementary Fig. S3B, lane 3). When genotyping for Vil1-cre, image showed one band in 182 bp indicating wild type, two bands in 150 and 180 bp indicating Vil1-cre. The genotypes of mice were identified combining with the results of genotyping for flox and Vil1-cre. When the results of genotyping for flox and Vil1-cre were Jwa ${ }^{f / / f /}$ and Vil1-cre respectively, the genotype of mouse was Jwa ${ }^{f / / f /}$ Vil1-cre, i.e., the intestinal epithelial Jwa deletion mouse, we abbreviated it as JwalEC ${ }^{+/+}$. When the results of genotyping for flox and Vil1-cre were $J w a^{f / f / f}$ and wild type respectively, the genotype of mouse was Jwa ${ }^{\text {fl/fll}}$, i.e., the littermate wild type mouse, we abbreviated it as Jwa ${ }^{\text {IEC -- }}$ (Supplementary Fig. S3A).

Supplementary Figures

Supplementary Figure S1. No significant morphological difference is observed in the main organs of $\mathrm{Jwa}^{+/+}$and $\mathrm{Jwa}^{-/-}$mice. (A-G) H\&E staining of the main organs or tissues such as myocardium (A), liver (B), lung (C), kidney (D), stomach (E), spleen (F), and thymus (G) of Jwa ${ }^{+/+}$and Jwa ${ }^{--}$mice at 16-month-old.

Supplementary Figure S2. The expression profile of JWA in tissues and organs. (A) Jwa mRNA

 levels in multiple tissues or organs, data was from the human protein atlas database (THPA database: https://www.proteinatlas.org); (B) JWA protein levels in multiple tissues or organs, data was from THPA database. (C) Immunochemistry images of JWA in the intestinal sections from THPA database. (D, E) Immunoblotting of JWA (D) and relatively JWA expression (E) in the duodenum, jejunum and ileum crypts of wild-type mice. ${ }^{* *} P<0.01$ and ${ }^{* * *} P<0.001$.

Supplementary Figure S3. Construction and genotyping of intestinal epithelial Jwa deletion mice. (A) Schematic diagram of mouse reproduction. (B) Image of genotyping for flox alleles. (C) Image of genotyping for Vil1-cre alleles. (D) Immunofluorescence of JWA in intestinal sections of 2-month-old JwalEC +/+ and JwalEC -l- mice.

Supplementary Figure S4. Intestinal epithelial Jwa deletion reduces intestinal stem cells and skews the distributions of intestinal epithelial cells lineage. (A) Immunofluorescence staining of KI67 in the intestinal sections of 2-month-old JwalEC +/+ and Jwa ${ }^{\text {IEC -/- }}$ mice. (B) Immunofluorescence staining of OLFM4 in the intestinal sections of 2-month-old Jwa ${ }^{\mathrm{IEC}}+\mathrm{H}^{1+}$ and Jwa ${ }^{\mathrm{IEC}}-1-$ mice. (C, D) Immunoblotting of OLFM4 (C) and relative OLFM4 levels in crypts (D) of 2-month-old Jwal ${ }^{1 E C+/+}$ and $J w a^{\text {IEC }}-1-$ mice, $n=3$ for each genotype. (E, F) Alcian blue staining for the goblet cells (E) and $A B$ positive cell counts in villus (F) of 2-month-old Jwalec +/+ and Jwa ${ }^{\mathrm{IEC}-1-}$ mice, $\mathrm{n}=3$ for each genotype.
(G) Immunofluorescence co-staining of LYZ and MUC2 in the intestinal sections of 2-month-old Jwa ${ }^{\text {IEC }}$
 in villi, Paneth cell marker Mmp7 (I) in crypts, goblet cell marker Spink4 and Tff3 (J), enteroendocrine cell marker Reg4 and $\operatorname{Ngn3}(\mathbf{K})$, and tuft cell marker Hck in villi (L) of 2-month-old Jwa ${ }^{\mathrm{IEC}+/+}$ and Jwa ${ }^{\mathrm{IEC}}$ ${ }^{-/}$mice, $\mathrm{n}=3$ for each genotype. ${ }^{\text {ns }}$ No significance, ${ }^{*} P<0.05$ and ${ }^{* * *} P<0.001$.

Supplementary Figure S5. Intestinal epithelial Jwa deletion disturbs PPARy/STAT5 axis through inhibiting Notch signal pathway. (A, B) Relative STAT5A (A) and STAT5B (B) levels in the jejunum of 2-month-old $\mathrm{Jwa}^{+/+}$and $\mathrm{Jwa}^{-/-}$mice, $\mathrm{n}=3$ for each genotype. (C-E) Relative STAT5A (C), STAT5B (D) levels and relative STAT5 phosphorylation level (E) in crypts of 2-month-old Jwa ${ }^{1 \mathrm{EC}}+1+$ and JwalEC -/- mice, $\mathrm{n}=3$ for each genotype. (\mathbf{F}, \mathbf{G}) Immunoblotting of JAK2, p-JAK2 (\mathbf{F}) and relative JAK2 phosphorylation level (G) in crypt of 2-month-old Jwal ${ }^{\text {EC }+/+}$ and Jwa ${ }^{1 E C-/-}$ mice, $\mathrm{n}=3$ for each genotype. (H-L) Relative levels of PPARy (H), NOTCH1 (I), NICD (J), HES1 (K) and full length NOTCH1 (L) in crypts of 2-month-old Jwa ${ }^{\mathrm{IEC}+/+}$ and Jwa ${ }^{\mathrm{IEC}-1-}$ mice, $\mathrm{n}=3$ for each genotype. ${ }^{\text {ns }}$ No significance, ${ }^{*} P<0.05,{ }^{* *} P<0.01$ and ${ }^{* * *} P<0.001$.

A A	Top 5 predicted E3-ubiquitin-protein ligase from the Ubibrowser database		
Rank Symbol Score Confidence level 1 MIB1 0.899 HIGH 2 MIB2 0.878 HIGH 3 MDM2 0.87 HIGH 4 STUB1 0.83 HIGH 5 NEDD4L 0.823 HIGH *http://ubibrowser.ncpsb.org.cn/ubibrowser/			

K

Supplementary Figure S6. Jwa deficiency promotes degradation of Notch1 through

ERK/Fbxw7 axis. (A) The predicted top five E3 ubiquitin ligases target Notch1. (B-G) Immunoblotting of the predicted top five E3 ubiquitin ligases (B), and relative MIB1 (C), MIB2 (D), MDM2 (E), STUB1 (F) and NEDD4L (G) levels in crypts of 2-month-old Jwalec +/+ and JwalEC --- mice, $\mathrm{n}=3$ for each genotype. (H) Immunoblotting of the predicted top five E3 ubiquitin ligases in IEC-6 cells transfected with shJwa plasmid, 3 independent replicates were carried out. (I, J) Relative ERK1/2 phosphorylation level (I) and FBXW7 level (J) in crypts of 2-month-old Jwa ${ }^{\mathrm{IEC}+/+}$ and Jwa ${ }^{\mathrm{IEC}-/-}$ mice, $\mathrm{n}=3$ for each
genotype. (K) Immunoblotting of FBXW7, ERK1/2 and p-ERK1/2 in IEC-6 cells transfected with shJwa plasmid, 3 independent replicates were carried out. (L) Immunoblotting of JWA, NICD, HES1, PPARY and STAT5A in IEC-6 cells transfected with shJwa plasmid followed by Pamoic acid ($10 \mu \mathrm{M}$) treatment, 3 independent replicates were carried out. (M) Immunoblotting of JWA, NICD, HES1, PPARy and STAT5A in IEC-6 cells co-transfected with shJwa and siFbxw7, 3 independent replicates were carried out. ${ }^{\text {ns }}$ No significance and ${ }^{* * *} P<0.001$.

Supplementary Figure S7. Restoration of the ERK/FBXW7 and NOTCH1/PPARy/STAT5 axes reverses Jwa deficiency-induced cellular phenotypic changes in vitro. (A-E) Immunoblotting of PCNA in IEC-cells co-tranfected with shJwa and Stat5a OE plasmids (A), co-tranfected with shJwa and Hes1 OE plasmids (B), transfected with shJwa plasmid followed by GW9662 (10 $\mu \mathrm{M})$ treatment (C), transfected with shJwa plasmid followed by Pamoic acid (10 $\mu \mathrm{M})$ treatment (D) or co-tranfected with shJwa and siFbxw7 (E), 3 independent replicates were carried out. (F-J) QRT-PCR detection of ISC marker Olfm4, absorptive enterocyte marker Lct, Paneth cell marker Mmp7, goblet cell marker

Tff3, enteroendocrine cell marker Ngn3 and tuft cell marker Hck in IEC-6 cell co-tranfected with shJwa and Stat5a OE plasmids (F), co-tranfected with shJwa and Hes1 OE plasmids (G), transfected with shJwa plasmid followed by GW9662 $(10 \mu \mathrm{M})$ treatment (H), transfected with shJwa plasmid followed by Pamoic acid ($10 \mu \mathrm{M}$) treatment (I) or co-tranfected with shJwa and siFbxw7 (J), 3 independent replicates were carried out. ${ }^{*} P<0.05,{ }^{* *} P<0.01$ and ${ }^{* * *} P<0.001$.

Supplementary Tables

Supplementary Table S1. Antibodies used in this study

Antibodies	Dilution	Manufacture	Catalog No.
anti-JWA mouse mAb	IB 1:100	Our laboratory	-
		Sigma Aldrich	
anti-JWA rabbit pAb	IF 1:50	(St. Louis, MO, USA)	SAB1306837
		Servicebio	
anti-KI67 rabbit pAb	IHC 1:500		GB111499
		(Wuhan, China)	
		Proteintech	
anti-BrdU mAb	IF 1:50		66241-1-lg
		(Wuhan, China)	
	IB 1:1000	Cell Signaling Technology	
anti-OLFM4 rabbit mAb			\#39141
	IHC/IF 1:200	(Boston, MA, USA)	
	IF 1:200	Abcam	
anti-LYZ rabbit mAb			ab108508
	IHC 1:1000	(Cambridge, UK)	
		Servicebio	
anti-MUC2 rabbit pAb	IF 1:500		GB11344
		(Wuhan, China)	
anti-Cleaved CASPASE-3		Servicebio	
	IF 1:500		GB11532
rabbit pAb		(Wuhan, China)	
		Affinity	
anti-STAT5A rabbit pAb	IB 1:2000		AF6303
		(Changzhou, China)	
		Affinity	
anti-STAT5B rabbit pAb	IB 1:2000		AF6340
		(Changzhou, China)	

Antibodies	Dilution	Manufacture	Catalog No.
anti-pY-STAT5 rabbit pAb	IB 1:1000	Bioworlde (Nanjing, China)	BS4185
		Proteintech	
anti-NOTCH1 rabbit pAb	IB 1:1000	(Wuhan, China)	20687-1-AP
	IB 1:2000	Abclonal	
anti-NOTCH1 rabbit mAb			A19090
	IP 1:200	(Wuhan, China)	
anti-Cleaved NOTCH1			
		Cell Signaling Technology	
(Val1744) [NICD] rabbit	IB 1:1000		\#4147
		(Boston, MA, USA)	
pAb			
		Affinity	
anti-HES1 rabbit pAb	IB 1:2000		AF7575
		(Changzhou, China)	
		Proteintech	
anti-PPARy rabbit pAb	IB 1:5000		16643-1-AP
		(Wuhan, China)	
		Wanleibio	
anti-JAK2 rabbit pAb	IB 1:500		WL02188
		(Shenyang, China)	
		Wanleibio	
anti-p-JAK2 rabbit pAb	IB 1:500		WL02997
		(Shenyang, China)	
		Affinity	
anti-ERK1/2 mouse mAb	IB 1:2000		BF8004
		(Changzhou, China)	
		Affinity	
anti-p-ERK1/2 rabbit pAb	IB 1:2000		AF1015
		(Changzhou, China)	

Antibodies
Alexa Fluor 555-

	Abcam	ab150078
conjugated Goat Anti- 1:500	(Cambridge, UK)	
Rabbit IgG H\&L		

Supplementary Table S2. Target sequence of shRNAs and siRNA used in this study

Name	Specie	Target sequence
shJwa \#1	Rat	5'-GACTTCGAAACCTCAAGAACA-3'
shJwa \#2	Rat	5'-CCAGCTACTTCCTCATATCC-3'
shJwa \#3	Rat	5'-TTGTTGATGTTCATCCATGC-3'
siFbxw7	Rat	5'-ACAGGACAGTGTTTACAGA-3'

Supplementary Table S3. Primers used in QRT-PCR

Primer Name	Specie	Sequence
Jwa	Mouse	Forward: 5'-GGCAGCGCACAATAAAGACAT-3'
		Reverse: 5'-ACACCCCCGAACATGGATATG-3'
Lgr5	Mouse	Forward: 5'-TAAAGACGACGGCAACAGTG-3'
		Reverse: 5'-GCCTTCAGGTCTTCCTCAAA-3'
Lgr5	Rat	Forward: 5'-CGTAGGCAACCCTTCTCTTATC-3'
		Reverse: 5'-GTAATTTGCGAGGCACCATTC-3'
Olfm4	Mouse	Forward: 5'-TGAAGGAGATGCAAAAACTGG-3'
		Reverse: 5'-CTCCAGCTTCTCTACCAAGAGG-3'
Olfm4	Rat	Forward: 5'-TGAGCTCTACACATTCCCTGG-3'
		Reverse: 5'-GTACCACCTTCTGTCCACGAC-3'
Smoc2	Mouse	Forward: 5'-GGAGCAGGGAAAGCAGATGAT-3'
		Reverse: 5'-AACTTGCTCGGTCCAGAGTG-3'
Ascl2	Mouse	Forward: 5'-CCTCTCTCGGACCCTCTCTCAG-3'
		Reverse: 5'-CAGTCAAGGTGTGCTTCCATGC-3'
Msi1	Mouse	Forward: 5'-CTCTCACCCCTGGACGATGG -3'
		Reverse: $5^{\prime \prime}$-TGGTACCCATTGGTGAAGGC -3'
Sis	Mouse	Forward: 5'-CGTTTCCGGTTCAAGCTCACA-3'
		Reverse: 5'-CCTGATGACTTTGATGCTGAACG-3'
Sis	Rat	Forward: 5'-GACCCTGCCATCTCCATAAAT-3'
		Reverse: 5'-CTGGCCATACCTCTCCAATAAG-3'

Primer Name	Specie	Sequence
Lct		Forward: 5'-CTGTCATGGGCACAACTTCTC-3'
	Mouse	
		Reverse: 5'-TGTGGCATAATCAGCAAAGAGG-3'
Lct		Forward: 5'-CCAGGGAATGGTGTGAAAGA-3'
	Rat	
		Reverse: 5'-TCAGGGTTCGAAGGATGTTTAG-3'
Dpp4		Forward: 5'-CACCTCTGATGGAAGCAGCTTC-3'
	Mouse	
		Reverse: 5'-GATAATCGCTGGTCAGAGCTTCG-3'
Lyz1		Forward: 5'-GGAATGGATGGCTACCGTGG-3'
	Mouse	
		Reverse: 5'-CATGCCACCCATGCTCGAAT-3'
Lyz		Forward: 5'-AGCTCAGCATGAGAGCAATTA-3'
	Rat	
		Reverse: 5'-TGCCGTCATTACACCAGTATC-3'
Mmp7		Forward: 5'-AGGAAGCTGGAGATGTGAGC-3'
	Mouse	
		Reverse: 5'-TCTGCATTTCCTTGAGGTTG-3'
Mmp7		Forward: 5'-CAGTGGACAAACTGAGGGAAA-3'
	Rat	
		Reverse: 5'-CACCTGGGCTTCTGCATTAT-3'
Muc2		Forward: 5'-GAAGCCAGATCCCGAAACCA-3'
	Mouse	
		Reverse: 5'-GAATCGGTAGACATCGCCGT-3'
Muc2		Forward: 5'-CGTCATCCCCTGGAACAACA-3'
	Rat	
		Reverse: 5'-TTGGCCCTGTTGTGGTCTTT-3'
Spink4		Forward: 5'-TGCAGTCACATAGCTCACAAG-3'
	Mouse	
		Reverse: 5'-CCATGCCAAGGAGGGGAA-3'

Primer Name	Specie	Sequence
Tff3		Forward: 5'-TTGCTGGGTCCTCTGGGATAG-3'
	Mouse	
		Reverse: 5'-TACACTGCTCCGATGTGACAG-3'
Tff3		Forward: 5'-CCAGGAATTTGTTGGCCTATCT-3'
	Rat	
		Reverse: 5'-GGTTGTTACACTGCTCTGATGT-3'
Gcg		Forward: 5'-CTTCCCAGAAGAAGTCGCCA-3'
	Mouse	
		Reverse: 5'-GTGACTGGCACGAGATGTTG-3'
Gcg		Forward: 5'-AGAACCACTTGAAGACCCTAATC-3'
	Rat	
		Reverse: 5'-GGAGTCCAGGTATTTGCTGTAG-3'
Ngn3		Forward: 5'-TCTCAAGCATCTCGCCTCTTC-3'
	Mouse	
		Reverse: 5'-ACAGCAAGGGTACCGATGAGA-3'
Ngn3		Forward: 5'-CGGATGACGCCAAACTTACA-3'
	Rat	
		Reverse: 5'-TAGAAGCTGTGGTCCGCTAT-3'
Reg4		Forward: 5'-CTGAGCTGGAGTGTCAGTCAT-3'
	Mouse	
		Reverse: 5'-GTCCACTGCCATAATTGCTTCT-3'
Dclk1		Forward: 5'-GGGTGAGAACCATCTACACCATC-3'
	Mouse	
		Reverse: 5'-CCAGCTTCTTAAAGGGCTCGAT-3'
Dclk1		Forward: 5'-CTCCTCCACTTCACTTTCATCC-3'
	Rat	
		Reverse: 5'-TCTCCCGACTTTGTATCTCTCT-3'
Hck		Forward: 5'-TCCTCCGAGATGGAAGCG-3'
	Mouse	
		Reverse: 5'-ACAGTGCGACCACAATGGTAT-3'

Primer Name	Specie	Sequence
Hck	Rat	Forward: 5'-CGTATGCCTCGACCAGATAAC-3'
		Reverse: 5'-AGCACGCTCTGGATGTATTC-3'
Cpt1a	Mouse	Forward: 5'-GGCATAAACGCAGAGCATTCCTG-3'
		Reverse: 5'-CAGTGTCCATCCTCTGAGTAGC-3'
Cpt2	Mouse	Forward: 5'-GATGGCTGAGTGCTCCAAATACC-3'
		Reverse: 5'-GCTGCCAGATACCGTAGAGCAA-3'
Cd36	Mouse	Forward: 5'-GGACATTGAGATTCTTTTCCTCTG-3'
		Reverse: 5'-GCAAAGGCATTGGCTGGAAGAAC-3'
Stat5a	Mouse	Forward: 5'-CCGAAACCTCTGGAATCTGA-3'
		Reverse: 5'-ACGAACTCAGGGACCACTTG-3'
Stat5b	Mouse	Forward: 5'-GTGAAGCCACAGATCAAGCA-3'
		Reverse: 5'-TCGGTATCAAGGACGGAGTC-3'
PPARY	Mouse	Forward: 5'-ATTGAGTGCCGAGTCTGTGG-3'
		Reverse: 5'-GGCATTGTGAGACATCCCCA-3'
Notch1	Mouse	Forward: 5'-GCTGCCTCTTTGATGGCTTCGA-3'
		Reverse: 5'-CACATTCGGCACTGTTACAGCC-3'
Hes1	Mouse	Forward: 5'-CCAGCCAGTGTCAACACGA-3'
		Reverse: 5'-AATGCCGGGAGCTATCTTTCT-3'
Hes2	Mouse	Forward: 5'-CTGAAGGGTCTCGTATTGCCG-3'
		Reverse: 5'-CGCAGGTGCTCTAGTAGGC-3'

Primer Name	Specie	Sequence
Hes5	Mouse	Forward: 5'-AGTCCCAAGGAGAAAAACCGA-3'
Hes6	Reverse: 5'-GCTGTGTTTCAGGTAGCTGAC-3'	
	Mouse	Forward: 5'-ACCACCTGCTAGAATCCATGC-3'
Hes7	Reverse: 5'-GCACCCGGTTTAGTTCAGC-3'	
		Forward: 5'-CGGGAGCGAGCTGAGAATAG-3'
Actb	Rouse	Forward: 5'-AGATGTGGATCAGCAAGCA-3'
		Reverse: 5'-GCGCAAGTTAGGTTTTGTCA-3'
		Forward: 5'-CCGCGAGTACAACCTTCTTGC-3'
Actb		Reverse: 5'-TCGTCATCCATGGCGAACTGG-3'

Supplementary Table S4. Down-regulated proteins in jejunum tissues induced by Jwa

deletion (Fold Change: Jwa ${ }^{-1}$ vs $\mathrm{Jwa}^{+/+}$)			
Protein Name	Fold Chage	Regulation	Rank
FLNA	0.0013	Down	1
STAT5A	0.0013	Down	2
RHBDL2	0.0018	Down	3
PLEKHH2	0.0018	Down	4
MARCKS	0.0020	Down	5
MRE11A	0.0020	Down	6
PLA2G12B	0.0022	Down	7
MGST1	0.0022	Down	8
ENO2	0.0024	Down	9
SRP19	0.0027	Down	10
TBC1D2	0.0031	Down	11
HAUS3	0.0032	Down	12
MRPS34	0.0033	Down	13
NAA10	0.0036	Down	14
JTB	0.0042	Down	15
NUPR1	0.0042	Down	16
PKIG	0.0049	Down	17
GNG12	0.0189	Down	18
METTL7B	0.0287	Down	19

Protein Name	Fold Chage	Regulation	Rank
MYADM	0.0288	Down	20
TRMT61A	0.0329	Down	21
ELF1	0.0373	Down	22
GNAO1	0.0470	Down	23
STAT5B	0.0596	Down	24
CHIA1	0.0619	Down	25
NT5C	0.0648	Down	26
KLHL9	0.0663	Down	27
BMI1	0.0690	Down	28
CYP1A2	0.0698	Down	29
CD93	0.0728	Down	30
ANKIB1	0.0871	0.5104	Down

Supplementary Table S5. Predicted transcript factors bind to the Pparg promotor

			Relative	Score	Start	End	Strand
Matrix ID	Name	Score	Predicted sequence				
MA1099.2	HES1	14.4264	0.999430951	704	713	+	GGCACGTGCC
MA1099.2	HES1	14.4264	0.999430951	704	713	-	GGCACGTGCC
MA0616.2	HES2	16.1882	1.000000009	704	713	+	GGCACGTGCC
MA0616.2	HES2	16.1882	1.000000009	704	713	-	GGCACGTGCC
MA0821.1	HES5	18.7952	0.978104532	703	714	-	TGGCACGTGCCT
MA0821.1	HES5	18.719	0.977138462	703	714	+	AGGCACGTGCCA
MA1493.1	HES6	12.8217	0.920264948	704	713	+	GGCACGTGCC
MA1493.1	HES6	12.8217	0.920264948	704	713	-	GGCACGTGCC
MA0822.1	HES7	19.0547	0.97173189	703	714	+	AGGCACGTGCCA

[^0]: * Corresponding Author. E-mail: jwzhou@njmu.edu.cn (Jianwei Zhou)

