Supplementary Material

Supplementary Figure S1 The mRNA levels of HDAC family members in mice normal skin and HS tissues. (A) The mRNA levels of HDAC1-4 and HDAC6-11 in mice normal skin and HS tissues. (B) The mRNA levels of SIRT 1-7 in mice normal skin and HS tissues. Data are presented as the means with SEs (n = 3 independent experiments). ***P < 0.001, NS = not significant.

Supplementary Figure S2 Generation of HDAC5 KO mice. (A) Schematic illustration of the targeting strategy for generating HDAC5 KO mice. (B) Representative photographs of 8-week-old WT and HDAC5 KO mice. (C) Genotyping of heterozygous (*Hdac5+/-*), homozygous (*Hdac5-/-*), and WT mice. (D) HDAC5 protein levels in different tissues, including the skin, heart, liver, spleen, lung and kidney, from WT and HDAC5 KO mice.

Supplementary Figure S3 HDAC5 KO inhibits TGF-β1-induced MEF activation.

(A) EdU (green) proliferation assay for cultured MEFs after incubation with TGF- β 1

for 24 h. (Scale bar = 100 µm). (B) Images and quantification of immunofluorescence staining for α -SMA in different groups. α -SMA is labeled in green. (Scale bar = 50 µm). (C) Images and quantification of wound healing assays in different groups 12 h after TGF- β 1 addition. (D) Images and quantification of collagen gel contraction assays in different groups on Day 3 after TGF- β 1 addition. Dashed lines indicate the areas of collagen gel. (E) The protein levels of collagen I and III in MEFs pretreated with TGF- β 1 for 24 h. Data are presented as the means with SEs (n = 3 independent experiments). **P* < 0.05, ***P* < 0.01, ****P* < 0.001.

Supplementary Figure S4 HDAC5-mediated Smad7 silencing is critical for TGFβ1-induced MEF activation. (A-C) Western blot assay of phosphorylated and total Smad2 and Smad3 and total Smad4, Gremlin 1, Smad6, Smad7, TGFβRI and TGFβRII in different groups. Samples were collected 12 h after the addition of TGF-β1. (D) Identification of shSmad7 efficiency in HDAC5 KO MEFs. (E) The protein levels of phosphorylated and total Smad2 and Smad3 in MEFs pretreated with TGF-β1 for 12 h. (F) EdU (green) proliferation assay for cultured MEFs after incubation with TGF-β1

for 24 h. (Scale bar = 100 µm). (G) Images and quantification of immunofluorescence staining for α -SMA in different groups. α -SMA is labeled in green. (Scale bar = 50 µm). (H) Images and quantification of wound healing assays in different groups 12 h after TGF- β 1 addition. (I) Images and quantification of collagen gel contraction assays in different groups on Day 3 after TGF- β 1 addition. Dashed lines indicate the areas of collagen gel. Data are presented as the means with SEs (n = 3 independent experiments). **P* < 0.05, ***P* < 0.01, ****P* < 0.001, NS = not significant.

Supplementary Figure S5 HDAC5 interacts with MEF2A and diminishes its transcriptional activity on the Smad7 promoter region. (A) Validation of AAV5mediated KD efficiency of Smad7 in HDAC5 KO mice using Western blot assay. (B) Co-IP assay between HDAC5 and MEF2A in MEFs. (C) ChIP assay confirmation of the binding of MEF2A to the Smad7 promoter region in WT MEFs and HDAC5 KO MEFs. DNA immunoprecipitated by MEF2A antibody or IgG was amplified by RT– qPCR using Smad7 primers. (D) Activation of the Smad7 promoter luciferase reporter by MEF2 and attenuation by HDAC5 in MEFs. Data are presented as the means with SEs (n = 3 independent experiments). ***P < 0.001.

Supplementary Figure S6 HDAC5 has no interaction with NF- κ B. (A, B) Co-IP assay between HDAC5 and NF- κ B p65 in HSFs and MEFs. (C, D) ChIP assay test of the binding of NF- κ B p65 to the Smad7 promoter region in HSFs and MEFs. DNA immunoprecipitated by NF- κ B p65 antibody or IgG was amplified by RT–qPCR using Smad7 primers. Data are presented as the means with SEs (n = 3 independent experiments). NS = not significant.

Supplementary Figure S7 HDAC5 does not affect Smad7 acetylation. (A) Co-IP assay between HDAC5 and Smad7 in HSFs with or without TGF- β 1 treatment. (B) Smad7 acetylation levels in HSFs from different groups. HSFs were transfected with shCtrl/shHDAC5 and treated with or without TGF- β 1. (C) Co-IP assay between HDAC5 and Smad7 in MEFs with or without TGF- β 1 treatment. (D) Smad7 acetylation levels in WT and HDAC5 KO MEFs treated with or without TGF- β 1. (n = 3 independent experiments).

Volunteer	Sex	Age (years)	Localization	Time after trauma or burn (months)
1	М	37	Chest	8
2	F	25	Shoulder	12
3	F	32	Chest	10
4	М	18	Forehead	6
5	М	24	Shoulder	10
6	F	40	Trunk	12
7	F	27	Back	7
8	F	22	Ear	10
9	М	25	Back	11
10	М	33	Chest	6
11	М	36	Cheek	7
12	F	24	Trunk	9
13	F	31	Nose	6
14	М	29	Shoulder	12
15	F	36	Cheek	10
16	М	42	Trunk	10
17	М	30	Back	11
18	F	28	Shoulder	9
19	М	19	Forehead	7
20	F	26	Chest	12

Supplementary Table S1. Volunteers' information

Primers	Forward 5'-3'	Reverse 5'-3'
Mus musculus	AGGTCGGTGTGAACGGATTTG	TGTAGACCATGTAGTTGAGGTCA
Gapdh		
Mus musculus	AGTCTGTTACTACTACGACGGG	TGAGCAGCAAATTGTGAGTCAT
Hdac1		
Mus musculus	GGAGGAGGCTACACAATCCG	TCTGGAGTGTTCTGGTTTGTCA
Hdac2		
Mus musculus	GCCAAGACCGTGGCGTATT	GTCCAGCTCCATAGTGGAAGT
Hdac3		
Mus musculus	CTGCAAGTGGCCCCTACAG	CTGCTCATGTTGACGCTGGA
Hdac4		
Mus musculus	TGCAGCACGTTTTGCTCCT	GACAGCTCCCCAGTTTTGGT
Hdac5		
Mus musculus	TCCACCGGCCAAGATTCTTC	CAGCACACTTCTTTCCACCAC
Hdac6		
Mus musculus	GGCAGGCTTACACCAGCAA	TGGGCAGGCTGTAGGGAATA
Hdac7		
Mus musculus	ACTATTGCCGGAGATCCAATGT	CCTCCTAAAATCAGAGTTGCCAG
Hdac8		
Mus musculus	GCGGTCCAGGTTAAAACAGAA	GCCACCTCAAACACTCGCTT
Hdac9		
Mus musculus	CCAGGGCATCCAGTATATCTTCA	CAACTCAGGATCAAACTCGAAGG
Hdac10		
Mus musculus	GTGTACTCACCACGTTACAACA	GCTCGTTGAGATAGCGCCTC
Hdac11		
Mus musculus	GCTGACGACTTCGACGACG	TCGGTCAACAGGAGGTTGTCT
Sirt1		
Mus musculus	GCCTGGGTTCCCAAAAGGAG	GAGCGGAAGTCAGGGATACC
Sirt2		
Mus musculus	ATCCCGGACTTCAGATCCCC	CAACATGAAAAAGGGCTTGGG
Sirt3		
Mus musculus	GTGGAAGAATAAGAATGAGCGG	GGCACAAATAACCCCGAGG
Sirt4	А	
Mus musculus	CTCCGGGCCGATTCATTTCC	GCGTTCGCAAAACACTTCCG
Sirt5		
Mus musculus	ATGTCGGTGAATTATGCAGCA	GCTGGAGGACTGCCACATTA
Sirt6		
Mus musculus	CAGGTGTCACGCATCCTGAG	GCCCGTGTAGACAACCAAGT
Sirt7		
Homo sapiens	GGAGCGAGATCCCTCCAAAAT	GGCTGTTGTCATACTTCTCATGG
GAPDH		

Supplementary Table S2. PCR primers used in this study

Homo sapien	GGTGTGGTCTACGACACGTTC	GATCCGCTCGCACTTGCTAA
HDAC5		