Supplementary Figure

Fig S1. Survival analysis of Gal-9 on tumor cells in subgroup

Fig S2. Validation of LGALS9 expression and survival analysis in pulmonary neuroendocrine tumor. (A) LGALS9 expression differs among CARCI, SCC and LCNEC. (B) Survival analysis of different neuroendocrine tumor on DFS. (C) Survival analysis of different neuroendocrine tumor on OS.

B) Overlapping genes in Gal-9-related pathways.

C) Relation between LGALS9 and 12 differentially expressed genes.

D) The LGALS9-associated network by STRING.

Fig S3. Analysis of top Gal-9-related pathways in LCNEC. (A) GSEA and KEGG analysis reveals top Gal-9 related immune pathway; (B) Overlapping genes in Gal-9related pathways; (C) Relation between LGALS9 and 12 differentially expressed genes; (D) The LGALS9-associated network by STRING.

GSEA GO analysis reveals top15 biological process related to LGALS9 in LCNE.

Fig S4. GSEA and GO analysis reveals top 15 biological process related to LGALS9 in LCNEC.

Fig S5. Clinical value of LGALS9 and immune risk score in GSE30219. (A) Relationship between LGALS9 and other factors, including CD274, CD3E, CD4 and PDCD1. (B) Survival analysis by LGALS9 RNA expression on OS; (C) Survival analysis by LGALS9 RNA expression on DFS; (D) Survival analysis by immune risk score on OS; (E) Survival analysis by immune risk score on DFS.

Fig S6. Immune cell infiltration score and abundance between low- and high- risk groups. (A) Immune cell infiltration score comparison between low- and high- risk groups. (B) Immune infiltration abundance related to the risk level.

Fig S7. Differential putative immunotherapeutic response. The low-risk group has a promising response to anti-PD1therapy (Bonferroni corrected $\mathrm{P}=0.001$).

Supplementary Table

Table S1 Relationship between galectin-9 (Gal-9) and clinical factors

Variables	Gal-9 expression on tumor cells			Gal-9 expression on TILs		
	Negative	Positive	P value	Negative	Positive	P value
Gender			0.743			0.662
Female	6 (60.0\%)	4 (40.0\%)		5 (50.0\%)	5 (50.0\%)	
Male	73 (65.2\%)	39 (34.8\%)		48 (42.9\%)	64 (57.1\%)	
Age			0.4			0.713
≤ 60 years old	26 (70.3\%)	11 (29.7\%)		17 (45.9\%)	20 (54.1\%)	
>60 years old	53 (62.4\%)	32 (37.6\%)		36 (42.4\%)	49 (57.6\%)	
Drinker			0.079			0.254
No	31 (56.4\%)	24 (43.6\%)		27 (49.1\%)	28 (50.9\%)	
Yes	48 (71.6\%)	19 (28.4\%)		26 (38.8\%)	41 (61.2\%)	
Smoker			0.624			0.896
No	7 (58.3\%)	5 (41.7\%)		5 (41.7\%)	7 (58.3\%)	
Yes	72 (65.5\%)	38 (34.5\%)		48 (43.6\%)	62 (56.4\%)	
pT stage			0.733			0.482
1	19 (67.9\%)	9 (32.1\%)		9 (32.1\%)	19 (67.9\%)	
2	36 (65.5\%)	19 (34.5\%)		24 (43.6\%)	31 (56.4\%)	
3	15 (68.2\%)	7 (31.8\%)		11 (50.0\%)	11 (50.0\%)	
4	9 (52.9\%)	8 (47.1\%)		9 (52.9\%)	8 (47.1\%)	
pN stage			0.51			0.614
0	59 (67.0\%)	29 (33.0\%)		41 (46.6\%)	47 (54.4\%)	
1	8 (57.1\%)	6 (42.9\%)		4 (28.6\%)	10 (71.4\%)	
2	10 (55.6\%)	8 (44.4\%)		7 (38.9\%)	11 (61.1\%)	
3	2 (100\%)	0 (0\%)		1 (50.0\%)	1 (50.0\%)	
TNM stage			0.31			0.671
1	33 (71.7\%)	13 (28.3\%)		21 (45.7\%)	25 (54.3\%)	
2	23 (65.7\%)	12 (34.3\%)		13 (37.1\%)	22 (62.9\%)	
3	23 (56.1\%)	18 (43.9\%)		19 (46.3\%)	22 (53.7\%)	
Pathology			0.974			0.823
LCC	59 (64.8\%)	32 (35.2\%)		39 (42.9\%)	52 (57.1\%)	
LCC with other type	20 (64.5\%)	11 (35.5\%)		14 (45.2\%)	17 (54.8\%)	
Differentiation			0.306			0.88
Poor	48 (68.6\%)	22 (31.4\%)		30 (42.9\%)	40 (57.1\%)	
Well	31 (59.6\%)	21 (40.4\%)		23 (44.2\%)	29 (55.8\%)	
Pleurae invasion			0.007			0.866
No	42 (77.8\%)	12 (22.2\%)		23 (42.6\%)	31 (57.4\%)	
Yes	37 (54.4\%)	31 (45.6\%)		30 (44.1\%)	38 (55.9\%)	
Vascular invasion			0.375			0.993
No	47 (68.1\%)	22 (31.9\%)		30 (43.5\%)	39 (56.5\%)	
Yes	32 (60.4\%)	21 (39.6\%)		23 (43.4\%)	30 (56.6\%)	
Neuron invasion			0.884			0.087
No	71 (64.5\%)	39 (35.5\%)		45 (40.9\%)	65 (59.1\%)	
Yes	8 (66.7\%)	4 (33.3\%)		8 (66.7\%)	4 (33.3\%)	
STAS			0.532			0.223

No	$45(62.5 \%)$	$27(37.5 \%)$		$28(38.9 \%)$	$44(61.1 \%)$	
Yes	$34(68.0 \%)$	$16(32.0 \%)$		$25(50.0 \%)$	$25(50.0 \%)$	
Lymph node metastases			0.367			0.301
No	$61(67.0 \%)$	$30(33.0 \%)$		$42(46.2 \%)$	$49(53.8 \%)$	
Yes	$18(58.1 \%)$	$13(41.9 \%)$		$11(35.5 \%)$	$20(64.5 \%)$	
Ki-67			0.496			0.11
$<60 \%$	$39(61.9 \%)$	$24(38.1 \%)$		$23(36.5 \%)$	$40(63.5 \%)$	
$>60 \%$	$40(67.8 \%)$	$19(32.2 \%)$		$30(50.8 \%)$	$29(49.2 \%)$	

Table S2 Relationship between galectin-9 (Gal-9) and other checkpoints

Variables	Gal-9 expression on tumor cells			Gal-9 expression on TILs		
	Negative	Positive	P value	Negative	Positive	P value
Gal-9 on tumor cells						≤ 0.001
Negative	1	1	1	48 (60.8\%)	31 (39.2\%)	
Positive				5 (11.6\%)	38 (88.4\%)	
CD4			0.03			$\underline{0.025}$
Negative	34 (77.3\%)	10 (22.7\%)		25 (56.8\%)	19 (43.2\%)	
Positive	45 (57.7\%)	33 (42.3\%)		28 (35.9\%)	50 (64.1\%)	
CD3			0.24			0.236
Negative	40 (70.2\%)	17 (29.8\%)		28 (49.1\%)	29 (50.9\%)	
Positive	39 (60.0\%)	26 (40.0\%)		25 (38.5\%)	40 (61.5\%)	
CD8			$\underline{0.03}$			≤ 0.001
Negative	36 (76.6\%)	11 (23.4\%)		29 (61.7\%)	18 (38.3\%)	
Positive	43 (57.3\%)	32 (42.7\%)		24 (32.0\%)	51 (68.0\%)	
FOXP3			0.076			$\underline{0.022}$
Negative	63 (69.2\%)	28 (30.8\%)		45 (49.5\%)	46 (50.5\%)	
Positive	16 (51.6\%)	15 (48.4\%)		8 (25.8\%)	23 (74.2\%)	
OX40L_TC			0.992			0.03
Negative	33 (64.7\%)	18 (35.3\%)		28 (54.9\%)	23 (45.1\%)	
Positive	46 (64.8\%)	25 (35.2\%)		25 (35.2\%)	46 (64.8\%)	
OX40L_TIL			0.098			≤ 0.001
Negative	30 (75.0\%)	10 (25.0\%)		27 (67.5\%)	13 (32.5\%)	
Positive	49 (59.8\%)	33 (40.2\%)		26 (31.7\%)	56 (68.3\%)	
PD 1			0.121			$\underline{0.002}$
Negative	25 (75.8\%)	8 (24.2\%)		22 (66.7\%)	11 (33.3\%)	
Positive	54 (60.7\%)	35 (39.3\%)		31 (34.8\%)	58 (65.2\%)	
PD L1_TC			0.099			$\underline{0.026}$
Negative	49 (71.0\%)	20 (29.0\%)		36 (52.2\%)	33 (47.8\%)	
Positive	30 (56.6\%)	23 (43.4\%)		17 (32.1\%)	36 (67.9\%)	
PD L1_TIL			0.245			0.425
Negative	49 (69.0\%)	22 (31.0\%)		33 (46.5\%)	38 (53.5\%)	
Positive	30 (58.8\%)	21 (41.2\%)		20 (39.2\%)	31 (60.8\%)	
PD L2_TC			$\underline{0.02}$			$\underline{0.048}$
Negative	31 (79.5\%)	8 (20.5\%)		22 (56.4\%)	17 (43.6\%)	
Positive	48 (57.8\%)	35 (42.2\%)		31 (37.3\%)	52 (62.7\%)	
PD L2_TIL			0.968			0.189
Negative	53 (64.6\%)	29 (35.4\%)		39 (47.6\%)	43 (52.4\%)	
Positive	26 (65.0\%)	14 (35.0\%)		14 (35.0\%)	26 (65.0\%)	

Table S4. The coefficient factors of five protein markers in optimal model.

Protein	coefficient	Gene Symbol
CD4	-0.849835	CD4
CD3	-0.109617	CD3E
Gal.9_TC	0.8515026	LGALS9
PD1	2.2025665	PDCD1
PD L1_TC	0.7099509	CD274

Table S5. Characteristics of different cells

convex_area (mean (SD))	$120.82(89.11)$	$140.24(93.21)$	<0.001	0.213
eccentricity (mean (SD))	$0.68(0.17)$	$0.67(0.16)$	<0.001	0.083
filled_area (mean (SD))	$115.88(84.42)$	$135.26(89.79)$	<0.001	0.222
major_axis_length (mean (SD))	$14.17(5.57)$	$15.15(5.53)$	<0.001	0.177
minor_axis_length (mean (SD))	$9.52(3.58)$	$10.48(3.77)$	<0.001	0.261
perimeter (mean (SD))	$37.19(15.15)$	$40.34(15.02)$	<0.001	0.208
solidity (mean (SD))	$0.96(0.03)$	$0.97(0.03)$	0.003	0.067
				Karyorrhexis
Tumor cell n	HIGH	LOW	p	test
area (mean (SD))	27	90		
convex_area (mean (SD))	$111.96(79.38)$	$131.66(89.44)$	0.306	0.233
eccentricity (mean (SD))	$117.15(83.17)$	$138.42(96.62)$	0.303	0.236
filled_area (mean (SD))	$0.70(0.18)$	$0.73(0.15)$	0.45	0.158
major_axis_length (mean (SD))	$111.96(79.38)$	$131.66(89.44)$	0.306	0.233
minor_axis_length (mean (SD))	$14.69(5.34)$	$15.86(6.34)$	0.386	0.2
perimeter (mean (SD))	$9.15(4.03)$	$9.87(3.75)$	0.391	0.185
solidity (mean (SD))	$37.76(14.28)$	$41.08(16.66)$	0.351	0.214

Table S6. Forward LR Multi-logistics analysis to investigate the relationship between cell imaging characteristics and risk level.

Cell type	Tumor cell	Stroma cell		Macroph age	Lymphocyte	
Image characteristics	solidity	$\begin{aligned} & \text { Minor } \\ & \text { _axis_ } \\ & \text { length } \end{aligned}$	solidity	minor axis_ length	minor axis length	solidity
P	0.002	$\underline{0.000}$	$\underline{0.005}$	$\underline{0.001}$	$\underline{0.000}$	0.002
OR	3.048	0.977	0.253	0.986	0.930	0.081
OR low	1.513	0.967	0.097	0.979	0.918	0.017
95\%CI high	6.138	0.986	0.665	0.994	0.942	0.392

