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Abstract 

MVI has significant clinical value for treatment selection and prognosis evaluation in hepatocellular 
carcinoma (HCC). We aimed to construct a model based on MVI-Related Genes (MVIRGs) for risk 
assessment and prognosis prediction in patients with HCC. This study utilized various statistical analysis 
methods for prognostic model construction and validation in the Cancer Genome Atlas (TCGA) and 
International Cancer Genome Consortium (ICGC) cohorts, respectively. In addition, immunohisto-
chemistry and qRT-PCR were used to analyze and identify the value of the model in our cohort. After the 
analyses, 153 differentially expressed MVIRGs were identified, and three key genes were selected to 
construct a prognostic model. The high-risk group showed significantly lower overall survival (OS), and 
this trend was observed in all subgroups: different age groups, genders, stages, and grades. Risk score was 
a risk factor independent of age, gender, stage, and grade. Moreover, the ICGC cohort validated the 
prognostic value of the model corresponding to the TCGA. In our cohort, qRT-PCR and immuno-
histochemistry showed that all three genes had higher expression levels in HCC samples than in normal 
controls. High expression levels of genes and high-risk scores showed significantly lower recurrence-free 
survival (RFS) and OS, especially in MVI-positive HCC samples. Therefore, the prognostic model 
constructed by three MVIRGs can reliably predict the RFS and OS of patients with HCC and is valuable 
for guiding clinical treatment selection and prognostic assessment of HCC. 
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Introduction 
HCC is one of the most common malignancies of 

the digestive system worldwide. It has an insidious 
onset, easy recurrence and metastasis, and often has a 
poor prognosis due to the lack of effective prediction 
and treatment strategies. Thus, it is listed as the third 
leading cause of cancer death [1-4]. A variety of 
methods have been adopted to prevent and treat 
HCC, such as the use of hepatitis vaccines, application 
of targeted immune drugs, neoadjuvant therapy, 
surgical resection, and liver transplantation [5-9]. 

These methods and the application of some 
biomarkers have improved the therapeutic effect of 
HCC to a certain extent, but their prognosis remains 
poor [10]. Even after curative treatment, many 
patients with HCC still experience tumor recurrence 
within 5 years [11]. Although the incidence of the 
disease has decreased, the specific mortality rate of 
the disease remains high [12]. Therefore, there is an 
urgent need to develop new prognostic evaluation 
methods to predict the clinical prognosis of patients 
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with HCC. Constructing a prognostic model for 
predicting survival and stratifying patient predictions 
is still of great significance. 

Microvascular invasion (MVI) refers to tumor 
cell clusters which are seen in the vascular cavity lined 
by endothelial cells under a microscope [13]. Tumor 
cells can exist in the hepatic portal vein or hepatic vein 
as a potential factor for intrahepatic or distant 
metastasis, and can prompt postoperative recurrence 
[14]. Studies have shown that MVI is an independent 
histopathologic prognostic factor related to the 
survival of patients with HCC at all stages [15]. 
Moreover, MVI is a key factor and an important 
indicator for predicting early recurrence and survival 
after HCC surgery [16, 17]. Accurate prediction of 
MVI before surgery can help clinicians make more 
reasonable treatment decisions to truly achieve 
individualized treatment based on tumor biological 
behavior. In recent years, although the clinical value 
of MVI in HCC treatment selection and prognosis 
assessment has received increasing attention [18-22], 
since the diagnosis of MVI is mainly based on 
postoperative pathological examination and there are 
still no recommended MVI-related molecular markers 
to predict the prognosis of HCC, it limits the 
application of MVI to guide the diagnosis and 
treatment of liver cancer. 

In this study, we explored new MVI-related 
biomarkers and established a risk scoring model for 
predicting the prognosis of HCC, with the aim of 
providing suitable treatments for patients with HCC. 

Materials and Methods 
Tissue samples 

This study was approved by the Clinical 
Research Ethics Committee of the Third Affiliated 
Hospital of Sun Yat-sen University, and informed 
consent was obtained from all participants. This study 
used HCC tissues and matched paracancerous tissue 
samples that were surgically resected at the Third 
Affiliated Hospital of Sun Yat-sen University between 
December 2012 and September 2018. The follow-up 
date was until July 2021. All postoperative pathology 
reports of tissue samples confirmed the presence of 
HCC. The samples were then suspended in liquid 
nitrogen. A part of the tissue sample was fixed in 10% 
formalin solution and then embedded in paraffin for 
long-term preservation. They were made into 4 μm 
thick tissue sections for immunohistochemical 
staining. 

Data Acquisition and Preprocessing 
Two sets of HCC RNA-seq data were collected 

for this study. Genome-wide mRNA expression and 
clinicopathological information of HCC were 

downloaded as training cohort from UCSC Xena the 
Cancer Genome Atlas liver hepatocellular carcinoma 
cohort (TCGA LIHC). A total of 95 cancer tissues with 
MVI, 210 cancer tissues without MVI, and 58 normal 
tissues, which matched with clinical data, were 
collected. Liver Cancer - RIKEN, JP Project from 
International Cancer Genome Consortium (ICGC 
LIRI-JP) transcriptomic expression data were 
downloaded as a validation cohort. A total of 232 
cancer tissues with follow-up data were collected. For 
normalization, gene expression quantified with 
fragment per kilobase million (FPKM) was 
transformed into transcripts per million (TPM) values 
and processed by log2(value+1) for all samples before 
further analysis. 

Identification of differential expressed 
MVI-related genes in TCGA cohort 

Cancer tissues with or without MVI were used 
for the difference analysis with normal tissues, 
respectively. The Wilcox test was used to identify 
differentially expressed genes (DEGs) according to 
the criteria of |log 2 (fold change) |> 1 and false 
discovery rate (FDR) < 0.01. We took the difference 
genes that are in DEGs (cancer tissues with MVI vs. 
normal tissues) but not in DEGs (cancer tissues 
without MVI vs. normal tissues) as MVI-related 
differentially expressed genes. 

Go and KEGG analysis 
To further understand the potential biological 

mechanisms of, we applied 153 MVI-related genes to 
Gene ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analyses by WebGestalt (http://www.webgestalt. 
org/). 

Prognostic signature development and 
evaluation for HCC 

A prognostic signature was constructed based on 
the training set, followed by validation of its 
predictive performance in the validation set. 
Univariate Cox proportional hazard regression 
analysis was first conducted to evaluate the 
correlation between MVI-related genes and OS in the 
training set. With a cutoff value of p < 0.01, 
prognosis-related genes were identified. The Least 
Absolute Shrinkage and Selection Operator (LASSO) 
penalized Cox proportional hazards regression (with 
R packages “glmnet”) were utilized to reduce the 
genes of the model and limit the complexity of solving 
the problem of overfitting. Stepwise Cox regression 
analysis based on the Akaike information criterion 
(AIC) was used to identify the optimal genes that 
were used to construct the risk model to predict the 
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prognosis of patients with HCC. The risk score of each 
patient with HCC was calculated using the following 
formula: risk score = expression level of gene a * 
coefficient a + expression level of gene b * coefficient b 
+ expression level of gene c * coefficient c + …… + 
expression level of gene n * coefficient n. 

To evaluate the predictive performance of the 
model, setting the median risk score as the cutoff 
value, the patients were classified into a high-risk 
group and a low-risk group. Kaplan–Meier survival 
curves were applied for survival comparison between 
low- and high-risk groups, and log-rank P value < 
0.05 was regarded as statistically significant (with R 
packages “survival” and “survminer”). Additionally, 
time-dependent receiver operating characteristic 
curves (including 1-, 3-, and 5-year survival) were 
established (with R package “survival ROC”) to 
reflect the sensitivity and specificity of the signature. 

Clinical characteristics of the signature 
To determine the association of risk scores with 

clinical features (age, gender, stage, grade, and 
differentiated grade), we applied the Wilcoxon test for 
evaluation. The prognostic value of each MVIRG was 
determined using the same method to calculate the 
risk score for each case. In addition, we applied the 
signature to subgroups of patients with different 
clinical characteristics using the same method to 
distinguish low- and high-risk cases. Kaplan–Meier 
survival curves and log-rank tests were also 
performed. 

Identification of the independent prognostic 
role of the constructed signature 

To further explore the independent prognostic 
role of the prognostic gene signature, multivariate 
analysis using the Cox regression model method 
(with R package “survival”) was performed. We 
incorporated other clinical factors such as gender, age, 
cancer grade, AFP level, albumin level, and cancer 
stage. Statistical significance was set at p < 0.05. 
Moreover, sub-analysis for survival in patients with 
different clinical characteristics (including younger 
age, older age, male, female, early stage, and 
advanced stage) was conducted to further assess the 
prognostic performance of the signature. To facilitate 
the evaluation of individual prognostic risk, we 
further enrolled independent factors to build a 
nomogram, which was assessed using the C-index 
and calibration curves. 

External validation of the genes in the 
prognostic gene signature 

The ICGC LIRI-JP dataset was used to validate 
gene signatures. Each patient’s risk score was 

calculated using the above method. A Kaplan–Meier 
curve was constructed to test the predictive value of 
the gene signature. Similarly, the independent 
prognostic role of the gene signature in ICGC LIRI-JP 
was evaluated using multivariate Cox analysis. 

Immunohistochemistry (IHC) 
Tissue paraffin sections were baked at 60 °C for 2 

hours, and then placed in xylene for 15 minutes while 
they were hot for dewaxing. Different concentrations 
of alcohol (anhydrous alcohol, 95%, 80%, 75%) were 
used for hydration treatment, and EDTA antigen 
retrieval solution (pH=8, ZSGB-BIO, China) was used 
in the pressure cooker for 25 minutes. After cooling in 
running water, these sections were treated with 3% 
hydrogen peroxide for 10 minutes to remove 
endogenous catalase and then soaked with freshly 
prepared PBS three times for 5 minutes each time. The 
primary antibody (1:200) was added and incubated 
overnight at 4 °C in a humidified box. The next day, 
the primary antibody was washed away with PBS, the 
secondary antibody was added, and these sections 
were incubated at 37 °C for 40 minutes. After washing 
off the secondary antibody with PBS, it was 
developed with DAB (Dako REAL™), and the nucleus 
was stained with hematoxylin. 

Quantitative real-time PCR (qRT-PCR) 
After tissue grinding, RNA was extracted with 

RNAiso Plus (Invitrogen, USA) according to the 
manufacturer’s instructions. cDNA was obtained by 
reverse transcription using a HisScript III RT 
SuperMix for qPCR (+gDNA wiper) kit (Vazyme, 
China). The qPCR experiment was carried out 
according to the instructions of the ChamQ Universal 
SYBR qPCR Master Mix kit (Vazyme, China). The 
operating instrument used was a Roche Light-
Cycler480. GAPDH was used as an endogenous 
control, and only one peak of the melting curve of 
each reaction could be regarded as a valid result. The 
experiment was repeated three times. Primer 
sequences used in this study are shown in 
Supplementary File 1. 

Statistical analysis 
In this study, GraphPad Prism 8.0 and R 

software v4.0.1 were used for the statistical analysis of 
the experimental data. All experimental data were 
expressed as mean ± standard deviation. For 
comparison between the two samples, data with 
normal distribution and uniform variance were 
analyzed using Student’s t-test; data with uneven 
variances were analyzed using the Wilcox test. 
Statistical significance was set at p < 0.05. 
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Results 
Differentially expressed genes in MVI-positive 
and MVI-negative HCC tissues 

A total of 93 cancer tissue samples with MVI 
data, 206 cancer tissue samples without MVI data, and 
30 normal tissue samples, all of which matched with 
clinical data, were identified in the TCGA database. 
Genes with low-expressed (median value <1) were 
excluded (Supplementary File 2). MVI-positive cancer 
tissue (MVI (+)) and MVI-negative cancer tissue (MVI 
(-)) were separately compared with non-cancerous 
tissue samples to obtain their differentially expressed 
genes. The results of the difference analysis showed 
that HCC samples can be clearly distinguished from 
normal tissues (Figure 1A left, Figure 1B left). The 
volcano map showed that there are 66 down- 
regulated DEGs and 771 up-regulated DEGs in MVI- 
positive cancer tissues (Figure 1A right, 
Supplementary File 3), and 35 down-regulated DEGs 
and 668 up-regulated DEGs in MVI-negative cancer 
tissues (Figure 1B right, Supplementary File 4). 
Compared with non-cancerous tissues, we recorded 
the up-regulated DEGs in HCC tissues with MVI as 
the ‘MVI (+) up’ group and recorded the up-regulated 
MVIRGs in HCC tissues without MVI as the ‘MVI (-) 

up’ group. Upon comparing the ‘MVI (+) up’ group 
and ‘MVI (-) up’ group, we obtained 120 DEGs. Using 
the same method, compared with non-cancerous 
tissues, we recorded the down-regulated DEGs in 
HCC tissues with MVI as the ‘MVI (+) down’ group, 
and recorded the down-regulated DEGs in HCC 
tissues without MVI as the ‘MVI (-) down’ group. 
Upon comparing the ‘MVI (+) down’ group and ‘MVI 
(-) down’ group, we obtained 33 DEGs. These 153 
(120+33) DEGs were identified as differentially 
expressed MVIRGs for subsequent modeling (Figure 
1C, Supplementary File 5). 

Functional analysis of differentially expressed 
MVIRGs 

To further study the biological functions of 
differentially expressed MVIRGs, we performed GO 
enrichment analysis and KEGG analysis on the 153 
MVIRGs. In terms of biological processes (BP), the 
MVIRGs were mainly involved in the growth of the 
vascular endothelium and microtubule aggregation 
(Figure 1D). In terms of the pathways of action, these 
genes were mainly involved in metabolism-related 
pathways, tumor transcription disorders, and DNA 
replication pathways (Figure 1E). 

 
 

 
Figure 1. The DEGs and functional analysis. A: The hierarchical clustering and the volcano plot of DEGs between HCC tissues with MVI (MVI(+)) and normal tissues. B: 
The hierarchical clustering and the volcano plot of DEGs between HCC tissues without MVI (MVI(-)) and normal tissues. C: The venn diagram of 153 identified MVIRGs. D: Gene 
Ontology (GO) enrichment analysis. E: Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The length of each column represents the count of genes; the shade of color 
represents the p value. 
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Figure 2. Stepwise identification of key MVIRGs of the model and prognostic analysis in TCGA cohort. A: 10 MVIRGs significantly associated with the overall 
survival (OS) of patients with HCC. B: The result of LASSO regression for 10 MVIRGs. C: The risk score of each patient with HCC. D: The patient survival based on the risk 
score. E: The heat map of the three MVIRGs in the high-risk group and the low-risk group. F: Kaplan-Meier plot of patients in a low- or high-risk group (P = 0.00052), and the 
number of patients in different risk groups. G: Receiver operating characteristic (ROC) curve analysis for the prognostic value of the prognostic model for different years. Data 
from TCGA (median risk score as the cut-off value). AUC: area under the curve. 

 

Construction and identification of prognostic 
models 

Univariate Cox regression analysis was used to 
determine the MVIRGs associated with the patients’ 
clinical outcomes. A total of 10 MVIRGs were 
screened to be significantly associated with the OS of 
patients with HCC (Figure 2A, Supplementary File 6). 
Based on the 10 genes associated with prognosis, 
LOSSO regression and stepwise Cox regression 
analysis were performed to construct a prognostic 
model based on MVI. Finally, three key MVIRGs 
(DBF4, ARG2, and SLC16A3) were selected to 
construct the model (Figure 2B, Table 1, Table 2). The 
risk score formula of the model was as follows: 
risk score = (0.400506 × DBF4 expression) + (0.188240 
× ARG2 expression) + (0.204192 × SLC16A3 
expression). 

 

Table 1. Seven MVIRGs were selected after LASSO regression 

Lasso Genes Coefficient 
TPX2 0.06571544 
SPA17 0.14942750 
TMEM237 0.05985658 
DBF4 0.18662863 
ZNF836 0.01705960 
ARG2 0.15234324 
SLC16A3 0.12122064 

 

Table 2. Three key MVIRGs (DBF4, ARG2 and SLC16A3) were 
selected after Stepwise Cox regression analysis 

MVIRGs Coefficient 
DBF4 0.400506 
ARG2 0.188240 
SLC16A3 0.204192 

 
 
The results showed the risk score of each patient 

with HCC in the TCGA database (Figure 2C), patient 
survival based on the risk score (Figure 2D), and the 
heat map of the three MVIRGs in the high-risk group 
and the low-risk group (Figure 2E). These indicated 
that as the risk score increased, the expression of three 
key MVIRGs increased, survival time decreased, and 
mortality increased. The Kaplan-Meier curve showed 
that the survival rate of the high-risk group (n = 136) 
was significantly lower than that of the low-risk 
group (n = 137) (Figure 2F). Additionally, the ROC 
curve showed that the AUC values were 0.740 (1 
year), 0.664 (2 years), and 0.693 (3 years), indicating 
that the model performed well in predicting the 
survival rate of patients with HCC (Figure 2G). 

To further validate the model, we analyzed the 
correlation between the expression of the three 
MVIRGs and clinical parameters in patients with 
HCC. First, we analyzed the correlation between the 
respective expression levels of the three MVIRGs and 
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the survival rate of patients with HCC. The 
Kaplan-Meier curves showed that the high expression 
of DBF4 and SLC16A3 genes was significantly 
associated with low OS in patients with HCC (Figure 
3A-3B), and high expression of ARG2 may indicate a 
poor prognosis in patients with HCC, but this was not 
statistically significant (Figure 3C). Second, we 
analyzed the correlation between the respective 
expression levels of the three MVIRGs and clinical 
data. The results of the Wilcox test revealed that there 
was a significant correlation between the high 
expression of DBF4 (p<0.001), high expression of 
SLC16A3 (p<0.05), and tumor grade in HCC (Figure 
3D-3F). Similarly, we analyzed the correlation 
between the risk score calculated by the model and 

clinical data. The analysis showed that the high-risk 
score was significantly related to cancer grade, stage, 
and T stage (Figure 4A). At the same time, we 
conducted a subgroup analysis of the clinical data of 
the high-risk and low-risk groups to verify the 
predictive ability of the prognostic model for patients 
with different clinical characteristics, which showed 
that there were significant differences in the prognosis 
according to different age groups (≤60 and >60) 
(Figure 4B), different gender groups (female and 
male) (Figure 4C), different grade groups (G1+G2 and 
G3+G4) (Figure 4D), different stage groups (I+II and 
III+IV) (Figure 4E). This meant that the prognostic 
model had good predictive and discriminative 
abilities. 

 

 
Figure 3. The correlation between the respective expression levels of the three MVIRGs and the OS and the clinical data in patients with HCC. A: The 
Kaplan-Meier plot between the expression level of DBF4 and OS in patients with HCC (P = 0.0034), and the number of patients in different groups. B: The Kaplan-Meier plot 
between the expression level of SLC16A3 and OS in patients with HCC (P = 0.00046), and the number of patients in different groups. C: The Kaplan-Meier plot between the 
expression level of ARG2 and OS in patients with HCC (P = 0.099), and the number of patients in different groups.Date from TCGA (median risk score as the cut-off value). D: 
The correlation between the expression level of DBF4 and the clinical data. E: The correlation between the expression level of SLC16A3 and the clinical data. F: The correlation 
between the expression level of ARG2 and the clinical data. Data from TCGA. Clinical data: age (≤60 vs. >60), gender (female vs. male), grade (G1+G2 vs. G3+G4), stage (I+II 
vs. III+IV), stage T (T1 +T2 vs. T3+T4). NS: not significant; *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 4. The correlation between the risk score and the clinical data, and the subgroup analysis, Multivariate Cox regression analyses and ROC curve of 
OS of the clinical data. A: The correlation between the risk score and the clinical data. B: The Kaplan-Meier analysis of different age groups (≤60 and >60). C: The 
Kaplan-Meier analysis of different gender groups (female and male). D: The Kaplan-Meier analysis of different grade groups (G1+G2 and G3+G4). E: The Kaplan-Meier analysis 
of different stage groups (I+II and III+IV). F: Multivariate Cox regression analysis. The risk score and stage were independent risk factors for OS. G: The ROC curve of the 
independent risk factors (the risk score and stage) for OS in HCC. Data from TCGA (median risk score as the cut-off value). Clinical data: age (≤60 vs. >60), gender (female vs. 
male), grade (G1+G2 vs. G3+G4), stage (I+II vs. III+IV), stage T (T1 +T2 vs. T3+T4). Earlier stage: stage I+II, Later stage: stage III+IV. Risk Score (high-risk score vs. low-risk 
score). NS: not significant; *P < 0.05, **P < 0.01, ***P < 0.001. 

 
In addition, we determined whether the risk 

score or conventional clinical parameters of patients 
with HCC were independent risk factors for OS. The 
results of multivariate Cox regression analysis 
showed that the risk score and stage were 
independent risk factors for OS (Figure 4F). We used 
the ROC curve to compare the predicted value of the 
risk score with other clinical parameters. The results 
showed that stage had the highest predictive value 
among the conventional clinical parameters. 

However, the predicted value of the risk score was 
better than that of the stage (Figure 4G). 

Confirmation of the prognostic model using an 
additional data cohort (ICGC) 

To further confirm the predictive value of the 
prognostic model, we adopted the same method to 
divide patients with HCC into low-risk or high-risk 
groups in the ICGC cohort. The results showed the 
risk score of each patient with HCC in the ICGC 
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database (Figure 5A), patient survival based on the 
risk score (Figure 5B), and the heat map of the three 
MVIRGs in the high-risk group and the low-risk 
group (Figure 5C). These results were consistent with 
the trend of the results in the TCGA cohort. 
Kaplan-Meier analysis showed a significant difference 
between the two groups (p = 0.011) (Figure 5D), 
consistent with the trend observed in the TCGA 
cohort. In addition, the multivariate Cox regression 
analyses of ICGC data also showed that the risk score 
and stage were independent risk factors for OS in 
patients with HCC (Figure 5E). The ROC curve 
showed that the AUC values were 0.655 (1 year), 0.581 
(2 years), and 0.643 (3 years), verifying that the 
predictive model had good predictive value (Figure 
5F). 

Verification of clinical tissue samples 
The immunohistochemistry results of 34 pairs of 

tissue sections of HCC tissues and paired adjacent 

tissues showed that the characteristic proteins 
corresponding to the three MVIRGs (DBF4, ARG2, 
and SLC16A3) were more strongly stained and more 
positive areas in cancer tissues than in adjacent tissues 
(Figure 6A-6C). 

The qRT-PCR results of 156 pairs of samples 
showed that the expression levels of the three 
MVIRGs (DBF4, ARG2, and SLC16A3) in HCC 
samples were higher than those in the paired adjacent 
tissues (Figure 6D). At the same time, the follow-up 
data were analyzed (excluding the data of some 
patients who were lost to follow-up) and it was found 
that the RFS and OS rates of high expression levels 
were lower than those of low expression levels 
(Figure 6E). Moreover, we found that the expression 
levels of these three MVIRGs in MVI-positive (MVI 
group) HCC samples were higher than those in 
MVI-negative (non-MVI group) HCC samples (Figure 
6F). To verify the correctness of the model in the 
sample qRT-PCR data, we standardized the risk score 

 

 
Figure 5. Further validation of the model in ICGC cohort. A: The risk score of each patient with HCC. B: The patient survival based on the risk score. C: The heat map 
of the three MVIRGs in the high-risk group and the low-risk group. D: The Kaplan-Meier plot of patients in a low- or high-risk group (P = 0.011), and the number of patients in 
different risk groups. E: Multivariate Cox regression analysis. The risk score and stage were independent risk factors for OS. F: ROC curve analysis for the prognostic value of 
the prognostic model for different years. Data from ICGC (median risk score as the cut-off value). AUC: area under the curve. *P < 0.05, **P < 0.01, ***P < 0.001. 
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formula of the model using the following scaled 
formula: risk score = (0.269449 × DBF4 expression) + 
(0.240198 × ARG2 expression) + (0.244787 × SLC16A3 
expression). We calculated the risk score of these 
patients, and used the median risk score as a cut-off 
value to classify them into high-risk group or low-risk 
group. The results showed that the RFS and OS rates 

of the high-risk group were worse (Figure 6G). We 
further conducted a forest plot analysis of the results 
and found that the high expression of these three 
MVIRGs and the higher risk scores were more likely 
to lead to the occurrence of MVI. The risk score had 
the greatest impact among them (Figure 6H). 

 

 
Figure 6. The expression of three MVIRGs in tissue samples. A: Immunohistochemical staining of DBF4 in HCC tissues (right) and paired adjacent tissues (left). B: 
Immunohistochemical staining of SLC16A3 in HCC tissues (right) and paired adjacent tissues (left). C: Immunohistochemical staining of ARG2 in HCC tissues (right) and paired 
adjacent tissues (left). D: The expression of these three MVIRGs in tissue samples. E: The RFS (upper) and OS (under) of these three MVIRGs in tissue samples. F: The expression 
of these three MVIRGs in tissue samples with or without MVI. G: The RFS (left) and OS (right) of the risk score in tissue samples. H: The forest plot analysis of these three 
MVIRGs and the risk score. Median value as the cut-off value. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Construction and identification of nomogram 
model for individualized evaluation 

To further make specific predictions of 
individual prognosis, we introduced conventional 
clinical parameters into the model and constructed a 
nomogram model, with a c-index of 0.697 (95% CI 
(0.632, 0.762)) (Figure 7A). Moreover, the calibration 
curve verified that the model had a good predictive 
value (Figure 7B). 

Discussion 
HCC is a common malignant tumor of the 

digestive system and is one of the leading causes of 
cancer-related deaths worldwide [23]. In terms of the 
pathophysiologic process, HCC has extremely 
malignant characteristics, which are mainly 

manifested in the rapid development of cancer, poor 
conventional treatment effects, poor sensitivity to 
radiotherapy and chemotherapy, easy metastasis, and 
high recurrence rate. In addition to the insidious 
characteristics of this disease, patients with HCC have 
usually entered the middle and advanced stages of 
the disease upon diagnosis, thus the prognosis is poor 
[24, 25]. In recent years, the treatment of HCC has 
substantially improved, and systemic treatment has 
made great progress; however, the management of 
this disease is becoming increasingly complicated 
[23]. Despite the decrease in incidence, the specific 
mortality rate of the disease remains high [26]. 
Therefore, there is an urgent need to develop new 
evaluation methods to predict the clinical prognosis of 
patients with HCC. 

 

 
Figure 7. Construction and identification of nomogram model. A: Nomogram model, with c-index=0.697, 95% CI (0.632, 0.762). B: The calibration curve of the 
nomogram model. Data from TCGA. 
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MVI is an important predictor of survival in 
patients with HCC [27]. In recent years, an increasing 
number of studies have found that MVI plays an 
important role in guiding the treatment of HCC 
[28-33]. Some scholars even pointed out that MVI can 
better predict tumor recurrence and OS than the 
Milan criteria [34]. Although the predictive effect of 
MVI on the prognosis of HCC is obvious, there are 
still no recommended MVI-related molecular markers 
to reliably predict the prognosis of HCC. Based on 
this, we combined MVI-related genes with 
conventional clinical parameters to construct a 
prognostic model that may have a better predictive 
value for patients with HCC. 

In this study, we first used high-throughput 
sequencing data from TCGA to construct a prognostic 
model and verified it. By comparing the sequencing 
data of HCC tissues with or without MVI, we 
identified 153 differentially expressed MVIRGs. GO 
and KEGG analyses showed that these MVIRGs were 
mainly enriched in the growth of vascular 
endothelium and microtubule accumulation, and 
mainly affected the prognosis of HCC through 
metabolic pathways, tumor transcription disorder 
pathways, and DNA replication pathways. These 
results were consistent with the results of previous 
studies. For example, MVI means that tumor cell 
clusters are seen in the vascular cavity lined by 
endothelial cells, which indicates that it is related to 
the growth of vascular endothelium and the 
accumulation of microtubules [13, 14]. Furthermore, 
MVI is closely related to epithelial-mesenchymal 
transition (EMT), which involves a variety of 
mechanisms, including metabolic changes, 
transcriptional regulation, and epigenetic 
abnormalities, indicating that MVI is also related to 
these pathways [35-42]. 

Univariate Cox regression analysis identified 10 
MVIRGs that were significantly associated with the 
OS of patients with HCC. To prevent overfitting, 
LASSO regression and stepwise Cox regression 
analysis were used to select three key MVIRGs (DBF4, 
ARG2, and SLC16A3) to construct the model. Here, 
the three genes used for modeling have been shown to 
be closely related to tumors. Among them, DBF4 was 
found to be essential for DNA replication in 
eukaryotes. The protein it encodes has a modular 
architecture [43], and plays a key role in DNA 
replication [44], activation of the replication 
checkpoint [45], meiosis [46], mitotic exit [47], 
translesion synthesis [48], and histone homeostasis 
[49]. More than 10 years ago, some scholars pointed 
out that higher ASK/Dbf4-expressing melanomas 
were associated with lower relapse-free survival [50]. 
Inhibition of the Cdc7/Dbf4 kinase activity can affect 

specific phosphorylation sites on MCM2 in cancer 
cells [51]. Dorine et al. [52] found that approximately 
50% of cell lines had increased Cdc7 protein 
expression by examining 62 human tumor cell lines. 
Most of these cell lines had increased Dbf4 
abundance, and some had extra copies of the DBF4 
gene. Cheng et al. [53] confirmed that 
Cdc7-Dbf4-mediated phosphorylation of HSP90-S164 
can stabilize the HSP90-HCLK2-MRN complex to 
enhance ATR/ATM signaling that overcomes 
replication stress in cancer. ARG2 (Arginase 2) is a 
protein-coding gene, and an increase in its activity is 
usually associated with more advanced diseases and 
poor clinical prognosis, in addition to being closely 
related to tumor immune response [54-56]. Recent 
studies have found that overexpression of ARG2 is a 
poor prognostic factor in a variety of cancer types, 
including pancreatic cancer [57], thyroid tumors [58], 
gastric cancer [59], neuroblastoma [60, 61], head and 
neck squamous cell carcinoma [62], and acute myeloid 
leukemia (AML) [63]. Tamara et al. [64] found that 
silencing or the absence of ARG2 can lead to the 
accumulation of ammonia and inhibition of growth of 
obesity-associated pancreatic cancer. One study 
confirmed that mitochondrial ARG2 is a 
cell‑autonomous regulator of CD8+ T cell function and 
antitumor efficacy [65]. However, another study 
showed that ARG2 has a cancer suppressor effect. It 
can suppress renal carcinoma progression via the 
biosynthetic cofactor pyridoxal phosphate depletion 
and increased polyamine toxicity [66]. SLC16A3 
(Solute Carrier Family 16 Member 3) is a protein- 
coding gene. The monocarboxylate transporter 4 
(MCT4) encoded by the SLC16A3 gene can catalyze 
the proton-linked transport of monocarboxylates, 
which participate in many metabolic processes in the 
body and can produce anti-apoptotic effects [67, 68]. 
MCT4 is found prominently in glycolytic tissues, such 
as hypoxic cancer cells, overexpressed in some cancer 
cells, and plays a critical role in cancer cell growth and 
proliferation [69-71]. Zhang et al. [72] verified that 
SLC16A3 is an independent indicator of poor 
prognosis and metastasis in patients with lung 
adenocarcinoma. Yu et al. [73] also revealed that 
SLC16A3 is a key regulator of the metabolic process in 
pancreatic cancer through bioinformatics methods. A 
comprehensive analysis of DNA methylation data 
revealed that SLC16A3 has excellent predictive power 
for tumor diagnosis and prognosis [74]. Some studies 
have also clarified the new epigenetic mechanism of 
SLC16A3 promoter DNA methylation and/or MCT4 
protein levels in thyroid cancer and clear cell renal cell 
carcinoma, which can provide a biological basis for 
clinical prognosis [68, 75, 76]. Furthermore, many 
studies have found that the expression level of MCT4 



Int. J. Biol. Sci. 2022, Vol. 18 
 

 
https://www.ijbs.com 

272 

is closely related to the progression of tumors, such as 
hepatocellular carcinoma [77], colorectal cancer [78], 
pancreatic cancer [70], cervical carcinoma [79], and 
ovarian carcinoma [80]. Through a meta-analysis, 
Bovenzi et al. [81] found that higher levels of MCT4 in 
pan-cancers were associated with poorer clinical 
prognosis. Therefore, these three key MVIRGs (DBF4, 
ARG2, and SLC16A3) are closely associated with the 
tumor and its prognosis, which also proves the 
correctness of choosing these three MVIRGs to 
establish a prognostic model to a certain extent. 

After modeling these three MVIRGs, we carried 
out relevant verification. We calculated the risk score 
of each patient with HCC, and used the median risk 
score as a cut-off value to classify them into high-risk 
group or low-risk group. Survival analysis showed 
that the survival rate of the high-risk group was 
significantly lower than that of the low-risk group, 
and the ROC curve also showed that the model 
performed well in predicting the survival rate of 
patients with HCC. The correlation analysis between 
the expression of the three MVIRGs and clinical 
parameters also showed that the high expression of 
DBF4 and SLC16A3 genes were significantly related 
to the low OS of patients with HCC, and the high 
expression of ARG2 may indicate to a certain extent 
that the prognosis of patients with HCC is poor. We 
also conducted a subgroup analysis of the clinical 
characteristics of the high- and low-risk groups, 
which showed that the model had significant 
predictive power for the prognosis of patients with 
HCC with different clinical characteristics. 
Multivariate Cox regression analysis showed that the 
risk score calculated by the model was an 
independent prognostic indicator, and the ROC curve 
analysis showed that the risk score had a better 
predictive value than other conventional clinical 
parameters. Thus, the excellent predictive value of the 
model was confirmed again. In addition, we also 
found consistent trends through survival analysis and 
ROC curve analysis in the independent data set of the 
ICGC database, which further verified the reliability 
and predictive value of the prognostic model. More 
importantly, we used IHC to perform staining 
analysis on paraffin sections and found that all three 
genes in HCC samples had higher expression levels 
than normal controls. Using qRT-PCR technology and 
follow-up studies, it was found that the expression of 
three genes (DBF4, ARG2, and SLC16A3) in HCC 
samples was increased compared to paired adjacent 
tissues, and the RFS and OS of those with high 
expression levels were lower than those with low 
expression levels. Moreover, we found that the 
expression levels of these three MVIRGs in 
MVI-positive HCC samples were higher than that in 

MVI-negative HCC samples. We standardized the 
risk score formula of the model and calculated the risk 
score, which showed that the high risk score was 
significantly related to the low RFS and OS of patients 
with HCC. The forest plot analysis found that the high 
expression of these three MVIRGs and the higher risk 
scores were more likely to lead to the occurrence of 
MVI, where the risk score had the greatest impact. 
These results confirmed that the model not only has 
good value in terms of survival, but also has 
important prompting significance for predicting the 
early recurrence of HCC. This further affirms the 
clinical utility of this prognostic model at the 
organizational level. Finally, we classified the 
conventional clinical parameters into the prognostic 
model and constructed a nomogram model to achieve 
the purpose of further specific prediction of 
individual prognosis. 

In summary, we constructed and verified a 
prognostic model for patients with HCC based on 
MVI-related genes, and the risk score generated by 
this model can be used as an independent prognostic 
indicator and can distinguish patients with different 
survival outcomes, which has excellent reliability and 
accuracy. Inevitably, our research had some 
limitations. First, the results of the research were 
mainly based on the TCGA and ICGC datasets. 
Although it has been verified in clinical samples, the 
sample size needs to be expanded. In contrast, some 
patients have undergone immune or targeted therapy, 
which had an impact on the prognosis analysis. 
Additionally, the potential molecular mechanisms of 
the three genes we used for modeling lacked further 
functional experiments in vivo or in vitro. 
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