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Abstract 

The replication licensing factors strictly regulate the DNA replication origin licensing process to 
guarantee the stability of the genome. Numerous experimental studies have recently demonstrated that 
the replication licensing factors as oncogenes are essential for the occurrence and development of 
cancers. Drug resistance, being one of the main characteristics of cancer stem cells, can cause a high 
recurrence rate and a low survival rate in patients with different cancers. However, the function of the 
replication licensing factors in cancer stemness remains unclear. The following article highlights the most 
recent research on DNA replication origin licensing factors in cancer and their function in anti-cancer 
drug resistance. Moreover, this article proposes a new perspective that replication licensing factors as 
chemotherapy shield affect anti-cancer drug resistance by promoting the stemness of cancer cells. 
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Introduction 
Cancer is anticipated to be the leading cause of 

mortality worldwide in the twenty-first century, 
posing the most significant impediment to extending 
life expectancy. According to estimates from the 
GLOBOCAN in 2020, there were 19.3 million new 
cancer cases and 9.9 million cancer deaths worldwide 
[1]. Although traditional treatment methods such as 
anti-cancer drugs, surgical resection, combined 
chemotherapy, and radiotherapy have achieved 
significant results, increasing numbers of patients 
inevitably face higher tumor recurrence rates and 
metastasis. The aggressive characteristics of cancer are 
partially due to cancer stem cells (CSCs) being 
resistant to conventional anti-cancer treatments. 

CSCs are considered to have the exclusive ability 
to grow malignant cell populations indefinitely, 
which is recognized as the primary cause of cancer 
recurrence and metastasis [2-5]. Pierce and colleagues 
described CSCs for the first time as malignant cells 

with a high proliferative ability and a limited capacity 
for differentiation under normal homeostatic 
conditions [6]. Nowadays, a substantial body of 
research has established that CSCs are critical in a 
variety of tumor types, including leukemia [7], 
prostate cancer [8], breast cancer [9], and colorectal 
cancer [10]. Based on the analysis from previous 
research, CSCs have been proven to have the 
following five most characteristic properties (as 
shown in Figure 1): (1) self-renewal: tumor-sphere 
formation in vitro and tumorigenic ability in vivo [11, 
12]; (2) the ability of differentiation; (3) the ability of 
transplantation [13]; (4) resistance of conventional 
chemotherapy and radiotherapy [14]; and (5) unique 
surface markers [15]. Additionally, CSCs were 
verified to be dormant [15]. Moreover, identifying and 
isolating CSCs from solid tumors based on their 
characteristics has been widely employed to develop 
more effective strategies for cancer eradication. 
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However, the hierarchical structure of CSCs is shown 
to be more malleable than previously believed, 
complicating their complete elimination [2].  

DNA replication in eukaryotic cells requires a 
precise synthesis process. However, with long-term 
amplification, DNA replication errors continue to 
accumulate, leading to genome instability, which is 
one of the hallmarks of cancer [16-18]. Furthermore, 
increased genomic instability accelerates clonal 
evolution, resulting in more aggressive clones and 
stubborn drug resistance [19]. As a result, controlling 
DNA replication's origin is a critical mechanism for 
cancer elimination [20]. Moreover, the determination 
of DNA replication origins in eukaryotes involves two 
subsequent steps: (1) “licensing”: identification of the 
pre-RC site; (2) “firing”: activation of DNA synthesis 
[21]. "Licensing" is a critical step in enforcing spatial 
and temporal constraints on DNA replication. Factors 
that participate in DNA replication origin licensing 
include the origin recognition complex (ORC, 
comprising the six subunits ORC1–6), cell division 
cycle 6 (CDC6), CDC10‑dependent transcript 1, (also 
known as DNA replication factor CDT1), and the 
mini-chromosome maintenance (MCM) helicase 
complex. These licensing factors have been identified 
as oncogenes, making them attractive potential 
therapeutic targets [22]. Furthermore, there is 
mounting evidence that dysregulation of DNA 
replication licensing factors may influence cancer 
occurrence and progression via regulating CSCs 

stemness maintenance [23, 24]. 
This article highlights the current DNA 

replication licensing factors and their role in drug 
resistance in normal stem cells and CSCs, significantly 
increasing the replication licensing factors' potential 
as novel therapeutic targets. However, more research 
is urgently needed to elucidate the regulatory 
mechanisms of DNA replication licensing factors and 
their related pathways for the differentiation, 
self-renewal, and differentiation of cancer stem cells, 
which may eventually strengthen our ability to 
promote cancer treatment and prevention 
technologies through the elimination of cancer stem 
cells. 

Brief of DNA Replication Origin 
Licensing  

DNA replication origin licensing requires a 
series of different proteins to act in turn. To begin 
with, the evolutionarily conservative ORC features a 
gap that permits DNA to enter through the 
pentameric ORC ring's central channel and interact 
with it via ATP [25, 26]. These binding sites, known as 
replication origins, are essential for loading 
replicative helicases [27-29]. Using cryo-EM, Li et al. 
revealed that subunits of ORC could cooperate with 
the initiator specific motif (ISM) and β-hairpins to 
bend DNA, which is essential for the loading of 
MCM2-7 [30]. Second, CDC6, another AAA+ ATPase, 

 

 
Figure 1. Five most characteristic properties of CSCs. (1) self-renewal: tumor-sphere formation in vitro/ tumorigenic ability in vivo; (2) the ability of differentiation; (3) the ability 
of transplantation; (4) resistance of conventional chemotherapy and radiotherapy; (5) unique surface markers. 
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loads to the replication origin and seals the previous 
gap on ORC, trapping DNA in the ORC⸱CDC6 toroid 
[25, 26]. However, the mechanism by which CDC6 
regulates the loading of MCM2-7 through the change 
of the ATP hydrolysis cycle remains unclear. 
Simultaneously, MCM2-7 and CDT1 form a stable 
OCCM complex to ensure that the opening of the 
hexamer can smoothly pass through the DNA that has 
already been loaded with ORC and CDC6 [31]. The 
research of Yuan et al. discovered that both CDC6 and 
ORC2 interact directly with the MCM3 WH domain 
[32]. Thus, these factors collectively form the 
pre-initiation complex (pre-RC), which "licenses" the 
origins to replicate DNA and progress to the next 
phase of the cell cycle [21] (Figure 2). 
Replication Origin Licensing and Cancers 

To ensure the high accuracy of replication, 
strictly control only one replication origin licensing 
per cell cycle. Once inappropriate replication origin 
licensing occurs in the same cell cycle, it amplifies the 
nuclear genome, a process known as re-replication. 
Mutations such as overexpression of CDT1/ CDC6 or 
depletion of geminin have been reported to lead to 
re-replication rapidly [33, 34]. Besides that, 
Re-replication is usually accompanied by the 
appearance of DNA damage, genomic stress, or 
instability, which is related to cell cycle arrest, 
senescence, and apoptosis. Thus, replication licensing 

is highly associated with multiple clinical 
pathogenesis and tumorigenesis. 

Replication origin licensing factors and cell 
cycle progression and proliferation 

The rapid and uncontrolled proliferation caused 
by multiple genetic mutations is necessary for 
carcinogenesis [16, 17, 35]. Uncontrolled proliferation 
and/ or enhanced genomic instability make most 
tumor cells suffer from high replication stress. 
Consistent with this, it has been reported that 
replication licensing factors are overexpressed in 
various cancer cell lines and function as oncogenes 
[36-38]. Since only licensed DNA is allowed to enter 
the S phase from the G1 phase. The destruction of 
replication licensing can lead to G1-S phase arrest, 
inhibiting cell proliferation. Previous studies have 
demonstrated decreased ORC6 expression induced by 
the siRNA knock-down approach triggered cell cycle 
arrest in the G1 phase. This cell cycle regulation is 
associated with wild-type p53 [37]. Moreover, the 
normal loading of MCM proteins onto chromatin 
during the G1 phase was impeded after the deletion 
of either CDC6 or CDT1, thereby stalling the cell cycle 
progression [39]. In vitro studies on mouse embryonic 
fibroblasts and fetal and adult diploid tissues revealed 
that global or tissue-specific ORC1 deficiency impairs 
DNA replication, cell lineage expansion, and organ 
development [40].  

 
 

 
Figure 2. Brief of DNA replication origin licensing. Sequential loading of replication licensing factors on all potential origins in the genome makes replication initiation restricted 
to the G1 phase. Firstly, the origin recognition complex (ORC, comprising the six subunits ORC1–6) with ATPase activity is recruited to replication origins, followed by cell 
division cycle 6 (CDC6) and CDC10-dependent transcript 1 (CDT1) binding to the ORC, and finally the mini-chromosome maintenance helicase complex (MCM2-7) loading into 
the complex to form Pre-RC. 
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Replication origin licensing factors and cell 
apoptosis and survival 

Reduced expression of licensing factors leads to 
more apoptosis in different cancers. In cell lines of 
gastric cancer, osteosarcoma, and cervical cancer, 
down-regulation of CDC6 promotes cell apoptosis, 
which negatively impacts growth in vivo and in vitro 
[40-42]. Moreover, partial overexpression of MCMs 
can enhance cell proliferation significantly and 
suppress apoptosis, whereas knockdown of MCMs 
reverses these effects [43-45]. Notably, subcellular 
localization of replication licensing factors was found 
to correlate significantly with cell apoptosis in cancer 
cells. The perinuclear accumulation of ORC1 caused 
by the absence of normal ORC1 modifications such as 
monoubiquitylation and hyperphosphorylation was 
demonstrated to induce cell apoptosis.  

Similarly, ORC2 could restore the uniform 
nuclear localization of ORC1 and prevent the 
induction of apoptosis [41]. Furthermore, since 
increased cytoplasmic MCM2 promotes cell 
apoptosis, tumor samples with cytoplasmic MCM2 
demonstrated better prognoses [42]. Hence, targeting 
replication licensing factors through epigenetic 
modification or subcellular localization may be an 
appealing strategy for inducing cancer cell death and 
improving survival. 

Replication origin licensing factors and 
metastasis 

Metastasis consists of two major steps: 
dissemination and colonization. Numerous 
investigations have implicated replication licensing 
factors as the key molecules regulating almost all the 
steps of metastasis by targeting key genes. By 
suppressing the ERK/JNK signaling pathway, 
decreased ORC1 inhibited cancer cell invasion and 
migration [43]. Trans-well migration assays 
demonstrated that silencing CDC6 dramatically 
reduced the ability of UMUC3 and T24 cells to 
migrate [39]. In HCT-116 cells, CDC6 overexpression 
was associated with the reduction of E-cadherin, 
indicating CDC6 may have an important role in the 
metastasis of HPV-associated cancers [44]. A similar 
regulating effect was identified in Sideridou's 
research [45]. Consequently, replication licensing 
factors play an important role in cancer metastasis. 

Replication Origin Licensing and 
Drug-Resistance 
ORC and drug-resistance 

The ORC complex serves as a platform for initial 
assembly during the DNA replication process. 
Various studies have been conducted to determine its 

role in the development and treatment of cancers and 
how its aberrant expression affects the susceptibility 
to traditional cancer therapy. For example, it has been 
observed that in colon cancer cells HCT-116 (wt-p53) 
with lower expression of ORC6 were more sensitive to 
5-fluorouracil (5-FU) and cisplatin treatment than the 
control group, as a result of p53 phosphorylation 
regulation [37]. In response to gemcitabine treatment, 
Plk1-mediated phosphorylation of ORC1/2 at the 
start of replication was elevated, and replication 
initiation was increased, leading to resistance to 
chemotherapeutic agents [46]. The resistance of 
gemcitabine may also involve a p53-dependent 
manner, but the specific molecular mechanism needs 
further study. Another study suggested that siORC1 
enhanced the sensitivity of U2OS cells to hydroxyurea 
(HU), although the removal of other origin licensing 
factors, such as ORC6 or CDC6, did not. Nevertheless, 
in non-tumor cells, the enhanced sensitivity to HU 
was not detected [47]. Compared with non-cancer 
cells, tumor cells may depend on the origin licensing 
capacity due to their higher oxidative and replication 
stress. Consequently, targeting origin licensing factors 
can make cancer cells more sensitive to chemotherapy 
drugs. 

MCM2-7 and drug-resistance  
The MCM2-7 complex, as the core of the 

replication initiation permission complex, is also 
involved in the formation of DNA helicase, which is 
responsible for the melting and unwinding of the 
double helix during DNA synthesis [21, 48, 49]. 
Recently, genomic analyses also identified MCMs as 
gene candidates for acquired drug resistance in 
several types of cancer [50, 51]. MCM2 has been 
shown to be strongly related to the Vemurafenib 
resistance induced by up-regulated expression of 
CDC7 [52]. Due to a p53-dependent apoptotic 
response, MCM2 deletion can also increase the 
sensitivity of ovarian cancer cells to carboplatin [53]. 
Additionally, down-regulation of MUS81 promotes 
apoptosis by inducing S-phase arrest and activation of 
MCM2, thereby increasing the sensitivity of EOC cells 
to Olaparib [54]. Microarray analysis revealed that the 
transcriptional expression of MCM2 in the 
cisplatin-resistant ovarian carcinoma cell was twice 
that of the non-drug-resistant group [55]. However, 
the specific mechanism remains to be explored. 
Research by Mitali Das and colleagues indicated that 
excessive amounts of MCMs could be used as a 
backup for replication stress in cervical cancer cells; 
moreover, its regulatory mechanism of sensitivity to 
cisplatin depends on the HPV status of the cells [56]. 
Furthermore, recent work by Wang et al. indicated 
that the EGFR pathway can regulate the interaction of 
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MCM8 and other DNA replication licensing factors, 
hence preserving the clonogenic and tumorigenic 
potential of GSCs [57]. 

Furthermore, lentivirus-mediated MCM7 
silencing could significantly sensitize chronic 
lymphocytic leukemia cells to fludarabine [58]. It has 
also been demonstrated that MCM7 plays an 
important role in cell cycle arrest, apoptosis, and cell 
death caused by BVP-induced DNA damage [59]. 
Furthermore, the underlying mechanism involves 
regulating retinoblastoma protein (Rb) and the 
expression of checkpoint control proteins [59]. 
Interestingly, statin drugs could reduce the expression 
of MCM7 and RB via activating ER and autophagy 
signaling pathways, which induced the 
growth-inhibitory effects in TamR cells [60, 61]. 
Therefore, these findings suggest that MCMs might be 
a potential target for drug-resistant cancer cells.  

CDC6 and drug-resistance  
Several types of research have revealed that 

despite its function during DNA replication licensing, 
CDC6 also regulates mitosis exit from yeast cells to 
human cells by interacting with Cdk1 [62-64]. In 
addition, CDC6 was found to be highly expressed in a 
variety of cancer cells, including drug-resistant cancer 
cells [39, 65]. Recent studies have elucidated that 
CDC6 could promote mitotic slippage by inhibiting 
CDK1; thus, cancer cells avoid apoptosis and exhibit 
PTX resistance [66]. CDC6 was predicted to play a 
pivotal role in ovarian cancer treated with decitabine 
[67]. Interestingly, both bladder cancer cells and 
CDDP-resistant bladder cancer cells became more 
sensitive to CDDP when CDC6 was down-regulated 
[63]. Because the CDDP-induced S phase arrest was 
abolished under the deletion of CDC6, which led to 
aberrant mitosis by inactivating the 
ATR-Chk1-Cdc25C pathway [39]. CDC6 and Human 
antigen R (HuR) were found to be positively 
correlated with malignant behaviors and oxaliplatin 
(L-OHP) resistance [68]. Mechanistically, it has been 
proved that HuR can bind to CDC6 3’-UTR, thus 
regulating the sensitivity of CRC cells to L-OHP [68]. 
Therefore, CDC6 may be a novel molecular target to 
overcome drug resistance.  

CDT1 and drug-resistance  
According to Stathopoulou and colleagues, 

anticancer chemotherapeutic agents can degrade 
CDT1 in various ways [69]. However, only a few 
researchers have mentioned a relationship between 
CDT1 and anti-cancer drug resistance [70, 71]. 
Intriguingly, stability or activation of CDT1 or acute 
depletion of CDT2 could result in re-replication, 
which radio-sensitizes head and neck squamous cell 

carcinoma (HNSCC) cells [72]. Numerous studies 
published in the last few years have clarified CDT1's 
prognostic function in various types of cancer. 
However, further investigation requires further 
investigation to determine whether it has the same 
effect on anti-cancer treatment resistance as other 
replication licensing factors (Table 1). 

 

Table 1. Replication licensing factors and drug-resistance. 

DNA replication 
licensing proteins 

Anti-cancer agent Cancer cell line reference 

ORC1-6 5-Fluorouracil, 
cisplatin 

HCT-116 [37] 

gemcitabine Panc-1, BxPC-3 [46] 
Hydroxyurea, 
Hydrogen peroxide 

U20S, HeLa, 
MDA-MB-231 

[47] 

CDC6 decitabine ovarian cancer cell [67] 
paclitaxel MDA-MB-231, 

HepG2, BGC823, 
SGC7901 

[65, 66, 
82] 

cisplatin UMUC3 [39] 
oxaliplatin HT-29, HCT116 [68] 

MCM2 Vemurafenib A375, WM983B [52] 
carboplatin A2780 [53] 
Olaparib A2780, SKOV3 [54] 
cisplatin PE01, PE01CDDP [55] 
Trichostatin A HCT116 [71] 
Geinstein LNCaP, PC3 [70] 

MCM4 cisplatin SiHa, ME180, CaSki, 
and C-33A, 

[56] 

MCM5 camptothecins MMRU [50] 
doxorubicin AML-2 [51] 

MCM6 pemetrexed NSCLC cell [83] 
MCM7 fludarabine MEC-1, EHEB [58] 

cisplatin T24, T24R2 [84] 
vinblastine (VBL) KB-3-1, KB-v1 [85] 
Oxaliplatin, Etoposide SW480 [86] 
Gemcitabine, 
5-Fluorouracil 

Panc1, Colo-357 [86] 

Breviscapine LNCap, PC3, C4-2B [59] 
tamoxifen MCF7 TamR, T47D 

TamR 
[61] 

CDT1 Trichostatin A HCT116 [71] 
Geinstein LNCaP, PC3 [70] 

 

Replication Origin Licensing Factors and 
Stemness 
Replication origin licensing factors in normal 
stem cells  

Stemness is the ability of a cell to remain 
undifferentiated (self-renewal) while having the 
ability to differentiate into any other cell type 
(potential) [73]. Stemness exits in both normal stem 
cells and CSCs. According to retrospective 
investigations, replication licensing factors are 
required to maintain stem cell pluripotency. MCMs 
loading is restricted to occurring in the G1 phase to 
prevent re-replication. Initially, partial depletion of 
MCMs proteins was confirmed to result in cancer and 
stem cell deficiencies in vitro and in vivo [74, 75]. 
Although less MCMs loading was sufficient for 
normal proliferation, cells with excess MCMs loading 
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were more resistant to DNA damage and replication 
stress [69, 76]. Further research has reported that 
rapid MCMs loading as an inherent feature of stem 
cells helps maintain pluripotency and slows 
differentiation [23]. Moreover, CDT1 and CDC6 were 
expressed extensively in pluripotent stem cells, 
similar to findings from mouse embryonic stem cell 
research [77]. 

Replication origin licensing factors in CSCs 
Since normal stem cells and CSCs share many 

characteristics, under certain conditions or 
stimulation, normal stem cells can be transformed 
into CSCs. Additionally, cancers will arise when the 
pluripotent stem cells of epigenetic organisms are 
inoculated into heterozygous sites in vivo [78-80]. 
Thus, we hypothesize that replication licensing factors 
could maintain the aggressive characteristics of CSCs, 
such as rapid proliferation, metastasis, and drug 
resistance, which were observed in normal stem cells. 
Numerous experimental studies have also reinforced 
this view. Mechanically, genes that contribute to 
stemness regulation, such as p53, c-MYC, and RB, are 
also proven to exist in the replication licensing 
pathway regulating cancer stemness [47, 60, 61, 75, 
81]. As a consequence, replication licensing factors 
could positively shield cancer cells with stemness 
against chemotherapeutic treatment. The expression 
level of replication initiation factors in cancer cells is 
significantly higher than that of normal cells, and 
tumor stem cells are even higher than the former. To 
this end, we propose using inhibitors that specifically 
target replication initiation factors to destroy tumors. 
It can extirpate not only normal tumor cells but also 
CSCs (Figure 3). As a result, further research on 

selective inhibitors of replication initiation factors is 
urgently needed in the future.  

Possible mechanisms of tumor recurrence due 
to replication licensing factors  

Although there is a relatively complete system 
for cancer treatment, traditional treatments such as 
surgery, adjuvant radiotherapy, and chemotherapy 
can no longer cope with the rapidly increasing rate of 
recurrence and metastasis. And molecular targeted 
therapy emerges in time. It is a revolutionary way to 
selectively target specific molecules with drugs or 
other substances to prevent cancer cells from 
proliferation and spread. Although these selective 
molecular therapy drugs have achieved good results, 
we have found that patients will still relapse and 
metastasize after a period of targeted drug treatment. 
So, what is the root of cancer recurrence and 
metastasis? Here, we give a possible mechanism for it, 
as shown in Figure 4. When molecular target therapy 
agents work on one signal transduction pathway, they 
block the downstream cell events, including cell 
proliferation, invasion and metastasis, cell cycle 
regulation, angiogenesis, and so on. However, after a 
while, the cunning tumor cells choose to increase the 
signal transduction of other pathways to promote the 
downstream cell events, leading to cancer relapse and 
metastasis. But all the cell events are based on the 
DNA replication process, and replication licensing is 
the key step of the DNA replication process. Thus, the 
destruction of replication licensing factors, the cancer 
shield, may be a fundamental treatment to eliminate 
tumors. 

 
 

 
Figure 3. Inhibition of replication origin licensing factors targeting both cancer cells and CSCs. Since replication licensing factor expression is higher in cancer cells, especially in 
cancer stem cells, than in normal cells, inhibitors that selectively target replication initiation factors could eradicate both cancer cells and cancer stem cells. 
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Figure 4. Possible mechanism for targeting Pre-RC to eliminate cancer cells via inhibiting the cancer stemness. Common anti-cancer treatments block one signal transduction 
pathway to inhibit downstream biological events, including cell proliferation, invasion, and migration. However, cunning tumor cells can trigger cancer recurrence and metastasis 
by enhancing the transduction of other signaling pathways. Targeting the replication licensing process specifically, which is the foundation for all biological functions, could 
eradicate cancer thoroughly. 

 

Conclusion and Future Perspectives 
This review briefly reviewed the licensing 

process during replication initiation and the function 
of replication licensing factors in tumorigenesis and 
development. The current information on replication 
licensing factors on the regulation of drug resistance 
in various cancer cells was given in a summary. By 
retrospecting the role of the replication licensing 
factors in stem cells, cancer cells, and cancer stem 
cells, we found that highly expressed replication 
licensing factors maintain the aggressive 
characteristics of CSCs, thus making them stronger 
than non-stem cancer cells in response to DNA 
damage and replication stress caused by 
chemotherapeutic agents. Therefore, we postulated 
that the replication licensing factors, as a shield for 
cancer, could maintain the stemness of CSCs and lead 
to cancer recurrence and metastasis. With the 
continuous deepening of the understanding and 
research of cancer stemness, new anti-cancer methods 
targeting cancer stem cells are needed to reduce the 
possibility of tumor recurrence. Therefore, 
understanding the mechanism of the replication 
licensing factors maintaining stemness and regulating 
drug resistance can significantly benefit us in cancer 
research and treatment. 
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