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Abstract 

In diabetic cardiomyopathy (DCM), a major diabetic complication, the myocardium is structurally and 
functionally altered without evidence of coronary artery disease, hypertension or valvular disease. 
Although numerous anti-diabetic drugs have been applied clinically, specific medicines to prevent DCM 
progression are unavailable, so the prognosis of DCM remains poor. Mitochondrial ATP production 
maintains the energetic requirements of cardiomyocytes, whereas mitochondrial dysfunction can induce 
or aggravate DCM by promoting oxidative stress, dysregulated calcium homeostasis, metabolic 
reprogramming, abnormal intracellular signaling and mitochondrial apoptosis in cardiomyocytes. In 
response to mitochondrial dysfunction, the mitochondrial quality control (MQC) system (including 
mitochondrial fission, fusion, and mitophagy) is activated to repair damaged mitochondria. Physiological 
mitochondrial fission fragments the network to isolate damaged mitochondria. Mitophagy then allows 
dysfunctional mitochondria to be engulfed by autophagosomes and degraded in lysosomes. However, 
abnormal MQC results in excessive mitochondrial fission, impaired mitochondrial fusion and delayed 
mitophagy, causing fragmented mitochondria to accumulate in cardiomyocytes. In this review, we 
summarize the molecular mechanisms of MQC and discuss how pathological MQC contributes to DCM 
development. We then present promising therapeutic approaches to improve MQC and prevent DCM 
progression. 
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Introduction 

Epidemiology and predisposing factors of 
diabetic cardiomyopathy (DCM) 

From a pathophysiological viewpoint, DCM is a 
heart failure state primarily attributable to chronic 
myocardial metabolic disorder (Table 1). Clinically, 
myocardial damage etiology is always labeled as 
coronary artery disease (such as angina and 
myocardial infarction) in light of the irreplaceable role 
served by coronary arteries in managing heart blood 
flow [1]. However, some patients (especially 
middle-aged women) with no evidence of coronary 
artery disease detectable with imaging tools or 
functional tests may suffer from angina and 

myocardial infarction as a result of cardiac 
microvascular spasm or endothelial dysfunction [2]. 
In addition, several diseases of the heart muscle, 
including hypertrophic cardiomyopathy and 
arrhythmia-induced cardiomyopathy, clinically 
present with ischemia-related symptoms such as 
angina or ventricular wall motion abnormalities due 
to increased myocardial oxygen demand [3]. 
Consequently, the etiology of DCM in an individual 
patient is rarely unambiguous in practice and is 
frequently complicated by overlap between a classical 
ischemic component and discernable non-ischemic 
causes such as viral myocarditis, hypertension, 
diabetes, valvular disease, dyslipidemia, obesity, and 
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unhealthy lifestyles [4] (Figure 1). Although research 
into the pathological mechanism of DCM is ongoing, 
we have not yet precisely defined its epidemiology 
and predisposing factors. Our aim, therefore, is to 
provide reference for the prevention of such diseases 
by reviewing the risk factors that can induce DCM or 
the pathological mechanism underlying DCM. 

 

Table 1. Proposed classification of DCM 

Stage of DCMa Clinical phenotype 
Stage I Diastolic dysfunction with normal ejection fraction 
Stage II Combined systolic and diastolic dysfunction 
Stage III Systolic and diastolic dysfunction with microvascular 

disease/coronary atherosclerosis without obstructive 
coronary heart disease 

Stage IV Clinically overt ischemia/infarct causing HF 
aExcluding coronary heart disease, valvular disease and uncontrolled hypertension. 

 
 
DCM affects more than 23 million people 

worldwide, including more than 15.5 million people 
in the United States [5]. Its prevalence in women (5%) 
is lower than in men (7.5%), and older women with 
DCM are more likely to have atypical ischemic heart 
disease symptoms such as a coronary 
microcirculation disorder, coronary microvascular 

injury, coronary artery dissection, or Takotsubo 
cardiomyopathy [6, 7]. In the United States, 6.6 
million women are diagnosed with DCM each year, 
including 2.7 million patients with a history of 
myocardial infarction [8]. In the Framingham study, 
men and women with coronary heart disease were 
followed for up to 44 years [9].The results show that 
40-year-old men have a higher lifetime risk of 
coronary heart disease than women. However, the 
incidence among women aged 65-94 is higher than 
among those aged 35-64; that is, that rates of 
morbidity and mortality due to coronary artery 
disease are higher among postmenopausal women 
[10]. Among the numerous other risk factors for DCM 
are obesity, hypertension, hyperglycemia, fat 
metabolism disorders, atherosclerosis, sedentary 
lifestyle, lack of exercise, smoking, and pressure [11]. 
These factors may interact with each other and 
directly or indirectly lead to the onset of DCM or 
affect the process of disease [12]. 

Age 
Age is a key risk factor positively correlated with 

the prevalence of DCM [13]. This in large part reflects 
the increased incidence disorders in lipid metabolism 

 

 
Figure 1. The contribution of altered metabolism to cardiovascular risk. 
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and hyperlipidemia seen with increasing age. With 
declines in organ function, blood lipid metabolism is 
slowed, leading to hyperlipidemia and diabetes, 
which may be accompanied by other ailments such as 
hypertension [14, 15]. Such metabolic disorders can 
exacerbate coronary deposition of lipid plaque, which 
can progress to coronary atherosclerosis or 
microvascular damage, indirectly leading to the 
occurrence of DCM [16]. Although age may be related 
to the occurrence of DCM, it is not an inevitable factor. 
Men over 45 years of age and women over 55 years of 
age have similar increased risk of DCM. Moreover, 
the DCM mortality rate among women aged 35 to 44 
is higher than among men of the same age [17].The 
reason may be that there is a lack of knowledge about 
DCM-inducing factors, including the roles of blood 
sugar, blood fat and body weight. Obesity, work 
stress, smoking, sedentary lifestyle, lack of exercise 
and metabolic syndrome are considered to be the arch 
criminals leading to DCM [18, 19]. Age is only one 
factor contributing to the pathogenesis of DCM. 
Indeed, DCM can even occur in some younger 
patients, including patients under 20 years old. In 
those cases, genetic factors and family genetic history 
play key roles. For example, in cases of early-onset 
cardiomyopathy, comorbidities involving abnormal 
blood lipid metabolism are often present. 

Genetic factors 
Cardiovascular disease is one of more than 3000 

diseases in which genetic factors play a role [20]. 
Studies have shown that patients with coronary heart 
disease, hypertension, and other cardiovascular 
diseases, are more than four times more likely to die 
of similar diseases than the general population. If the 
parents of monozygotic twins suffer from 
cardiovascular disease, the probability of 
cardiovascular disease in both twins is more than six 
times higher than in the general population. DCM is a 
complex and multifactorial cardiovascular disease 
and it, too, is affected by genetic as well as 
environmental factors [21, 22]. 

Coronary atherosclerosis is the main cause of 
coronary artery stenosis and DCM. Low density 
lipoprotein (LDL) cholesterol molecules contribute to 
the development and progression of atherosclerosis 
because it is the main type of lipid absorbed by cell 
within atherosclerotic lesion. Therefore, genetic 
changes affecting plasma LDL levels are an important 
factor in the development of DCM [23]. Familial 
hypercholesterolemia caused by genetic factors will 
be accompanied by high levels of LDL and 
cholesterol, which accelerates development of 
atherosclerosis and coronary heart disease [24-26]. 
Nonetheless, the development of DCM still mainly 

depends on an individual’s health behavior. Without 
the influence of genetic factors, a high salt diet, 
high-fat diet, long periods sitting and other stressful 
lifestyle or working environment factors will also lead 
to the onset of DCM [27]. 

Smoking 
Smoking is considered to be an independent 

cause of DCM. It is obviously related to the onset of 
DCM and coronary heart disease [28, 29]. Studies 
have found that smokers are 70% more likely to 
develop DCM than non-smokers. Carbon monoxide, 
thromboxane, nicotine and other harmful components 
in cigarette smoke adversely affect the patient's 
vasodilator function and then cause vascular 
dysfunction and damage to the vascular endothelium 
[30, 31]. Nicotine in cigarettes can also cause 
thickening and abnormal contraction of blood vessel 
walls. In addition, increased levels of cadmium and 
lead in the blood of smokers can induce oxidative 
damage to the vascular endothelial structure, 
reducing the oxygen supply of myocardial cells while 
increasing oxygen consumption by myocardial cells, 
leading to myocardial hypoxia [32]. 

Smoking also promotes abnormal lipid 
metabolism, aggravating atherosclerosis. Nicotine 
promotes oxidation of LDL, after which the oxidized 
LDL bind to receptors on endothelial cell surfaces and 
form lipid plaques over time [33]. Vascular 
endothelial dysfunction caused by smoking can also 
promote the release of inflammatory factors and 
increase the secretion of prostaglandin F2α 
metabolites into the circulation, promoting the 
development of atherosclerosis [34, 35]. In patients 
with acute myocardial infarction, smoking can 
increase levels of thrombolysis and expression of 
inflammatory factors, which will aggravate 
myocardial ischemia directly related to smoking [36, 
37]. Smoking cessation reduces the number of serum 
inflammatory markers, and the longer the patient 
goes without smoking, the more obvious the effect 
will be. 

Diet 
Both epidemiological and experimental results 

show that high intake of animal fat and cholesterol is 
positively correlated with the incidence of DCM [38]. 
High cholesterol and triglyceride caused by diets high 
in fat, calories, salt and sugar can contribute to the 
development hyperlipidemia and DCM as well as 
hypertension [39, 40]. A healthy diet is a primary 
factor contributing to DCM prevention. The benefits 
of the Mediterranean diet are related to the reduction 
various cardiovascular risk factors, including 
inflammation, vascular endothelial injury, insulin 



Int. J. Biol. Sci. 2022, Vol. 18 
 

 
https://www.ijbs.com 

5279 

resistance and especially the formation of 
atherosclerosis and arterial stenosis [41]. Importantly, 
the benefits of a healthy diet are not limited to DCM, 
and a good diet should come first in any effort to 
reduce cardiovascular risk. 

Mental stress 
Mental stress is a major risk factor for DCM, 

though the mechanism by which stress contributes to 
the pathogenesis of coronary atherosclerosis or DCM 
has not yet been confirmed [42, 43]. Nonetheless, 
clinical studies have shown that mental stress can be 
the main factor underlying increases in the prevalence 
of DCM and the triggering factor for acute myocardial 
ischemia (as indicated by sudden death, myocardial 
infarction, ST segment depression) in patients with 
coronary atherosclerosis [44, 45]. 

In a laboratory environment, mental stress can 
cause myocardial ischemia in some patients. The 
prevalence of myocardial ischemia caused by mental 
stress depends on the stressor used, the patient group, 
and especially the diagnostic tool. In fact, ischemic 
attacks caused by mental stress are usually “silent,” 
and their severity and scope are smaller than those 
caused by exercise stress tests. Patients with 
myocardial ischemia caused by mental stress tend to 
have higher scores in terms of aggression, anger, and 
hostility. These psychological characteristics are 
related to higher cardiovascular responsiveness. After 
being under tremendous pressure, the heart rate and 
blood pressure will increase rapidly, and the increase 
is greater. The mechanism of the myocardial ischemia 
induced by mental stress may be an increase in 
myocardial oxygen demand due to the increased 
heart rate and blood pressure [46, 47]. It is noteworthy 
that psychological ailments such as depression and 
anxiety can lead to or affect the condition of patients 
with DCM [48]. Depression can directly affect the 
mortality rate among patients with DCM [49, 50]. 
Attention should therefore be paid to the evaluation 
and treatment of psychological factors in patients 
with DCM. 

Obesity 
Obesity is generally considered to be a risk factor 

for DCM, in part because a high-calorie/fat diet 
contributes to the progression of atherosclerosis. 
Epidemiological studies now tend to support this 
argument. However, angiographic studies have 
shown little or no correlation between total fat mass 
and coronary atherosclerosis [51]. Obesity, especially 
centripetal obesity, is closely related to the traditional 
risk factors of DCM and dyslipidemia. This may be 
due to the high homo-cysteinemia, high lipoprotein 
levels and increased thrombosis in obese people. 

Blood lipids are often beyond the standard range in 
obese individuals, and high calorie diets lead to 
elevations in LDL, triglycerides and blood pressure, 
thereby promoting the formation and/or progression 
of coronary atherosclerosis [52, 53]. Fat in obese 
people often accumulates within important organs 
and blood vessels, which leads to abnormal glucose 
and lipid metabolism, increases in blood pressure, 
myocardial load, and myocardial oxygen consump-
tion while increasing body weight. Metabolic 
processes are greatly altered within cardiomyocytes 
due elevated sugar or calorie sources and low 
self-consumption rate. The resultant dysregulation of 
fat and glucose metabolism can lead to an imbalance 
in mitochondrial oxidative phosphorylation and 
energy metabolism and serious myocardial injury. 

In addition to increasing myocardial load and 
dyslipidemia, obesity has adverse effects on coronary 
circulation. These include coronary vasomotor 
dysfunction and coronary artery occlusion 
[54].Obesity associated with dyslipidemia easily leads 
to increases in coronary and microvascular resistance, 
which is the primary factor contributing to the 
pathogenesis of coronary microvascular disease. 
Moreover, adipose tissue with infiltrating 
macrophages in obese patients are a key source of 
pro-inflammatory mediators, which can induce 
microvascular inflammation and myocardial hypo-
perfusion and further release of pro-inflammatory 
mediators into the coronary circulation [55, 56]. These 
mediators impair coronary microcirculation and are a 
main cause of DCM and heart failure in obese 
patients. More importantly, in addition to their 
underlying diseases, obese people are often sedentary, 
eat an unhealthy diet, and engage in other bad habits. 
The interaction among these habits hinders the 
formation of coronary collateral circulation [57]. In 
addition, obese people often exhibit insulin resistance 
or type 2 diabetes as well as hyperlipidemia and 
hyper-fibrinogen [58, 59], all of which are 
predisposing factors for atherosclerosis and arterial 
stenosis and, ultimately, DCM. 

Sedentary lifestyle 
Many studies suggest that a sedentary lifestyle 

can increase the risk of coronary atherosclerosis or 
DCM [60]. The rapid development of modern science 
and technology has changed people's daily live and 
commuting, resulting in a significant decline in 
people's activity level. Many office workers and the 
elderly now have a sedentary lifestyle characterized 
by long periods of inactivity. This lack of 
activity/exercise can lead to obesity, hypertension, 
arrhythmia, atherosclerosis, slowed blood flow, and 
thrombosis [61, 62]. The coronary atherosclerosis or 
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coronary artery stenosis that often develops as a result 
of this lifestyle becomes the main cause of DCM. 
However, interventions that reduce sedentary 
behavior may improve cardiovascular health and 
well-being. 

 

Table 2. Summary of metabolic processes involved in the 
pathophysiology of DCM 

Pathological 
mechanism 

Pathophysiological 
pathway 

Structural change Functional 
alteration 

Deranged Ca2+ 
homeostasis 

Calcium leak from 
ryanodine receptor; 
Reduced 
sarcolemmal 
elimination of Ca2+; 
Prolonged Ca2+ 
transients 

Mitochondrial 
leakage of toxic 
proteins; 
Myocardial 
cytotoxicity 

Prolonged diastolic 
relaxation time; 
Myocardial 
stiffness; 
Impaired 
relaxation 

Abnormal fatty 
acid metabolism 

Increased systemic 
lipolysis; 
Loss of metabolic 
flexibility; 
Increased utilization 
of free fatty acids 

Cardiac steatosis; 
Lipotoxicity; 
Myocyte apoptosis 

Increased O2 
consumption; 
Pathologic cardiac 
remodeling; 
Systolic 
dysfunction 

Hyperglycemia Activation of protein 
kinase C pathways; 
Production of free 
radicals 

Myocardial 
necrosis; 
Dystrophic 
calcification 

Myocardial 
fibrosis; 
LV hypertrophy; 
Diastolic 
dysfunction 

Myocardial 
fibrosis 

Transforming 
growth factor-β; 
Matrix metallo-
proteinase-2; 
Smooth muscle actin 

Interstitial fibrosis; 
LV hypertrophy; 
Intimal thickening 
of microvasculature 

Diastolic 
dysfunction; 
Systolic 
dysfunction 

AGE/RAGE Janus kinase 
pathway; 
MAPK activation 

Cross-linking of 
extracellular 
matrix; 
Reduction of 
myocardial 
compliance  
Myocardial fibrosis 

Prolonged 
isovolumetric 
relaxation time; 
Elevated LV 
end-diastolic 
diameter 

ROS Diacylglycerol  
Protein kinase C; 
NADPH-oxidase 
pathway 

Oxidative 
myocardial injury; 
Mitochondrial 
damage  
Cardiac fibrosis 

Myocardial 
stiffness; 
Diastolic 
dysfunction 

Inflammation NF-κB; 
Tumor necrosis 
factor-a;  
Interleukin-6 

Inflammatory 
myocardial injury 

Systolic 
dysfunction 

Cardiac autonomic 
neuropathy 

Hyperadrenergic 
state; 
Increased activation 
of b-receptors and 
RAAS  

Interstitial fibrosis Diastolic 
dysfunction 

Altered protein 
homeostasis 

Impaired ubiquitin 
proteasome system 

Proteotoxicity; 
Myocardial cell 
damage 

Pathological 
remodeling in 
diabetic hearts of 
animals 

Microvascular 
dysfunction 

Upregulation of 
vascular endothelial 
growth factor 
pathway 

Fibrosis of 
capillaries 

Impaired 
myocardial 
functional reserve 

RAGE: AGE-specific receptor, NF-κB: nuclear factor kappa-light-chain-enhancer of 
activated B cells, RAAS: Renin–angiotensin–aldosterone system. 

 

Molecular mechanisms of mitochondrial 
dysfunction in DCM 
Mechanisms of DCM 

DCM is a special cardiac complication 
characterized by chronic cardiomyopathy caused by 
diabetes [10]. The pathological process includes 

oxidative stress, energy metabolism, inflammatory 
reaction and increased myocardial cell apoptosis in 
cardiac myocytes [10, 63] (Table 2). Cardiac 
manifestations include early diastolic dysfunction, 
cardiac hypertrophy, ventricular dilatation and 
systolic dysfunction, which eventually lead to heart 
failure [64]. In diabetic mice, studies have showed the 
evidence of impaired mitochondrial function in heart 
tissue, which is related to mitochondrial ultrastruc-
tural defects [65]. Insulin resistance leads to ROS 
overproduction in cardiomyocytes [66]. Studies have 
also shown that hyperglycemia can lead to the 
fragmentation of mitochondria in cardiomyocytes, 
induce mitochondrial division, and produce 
mitochondrial ROS [67]. Additionally, high glucose 
can induce mitochondrial division in cardiomyocytes 
due to an increase in the o-glcnacylation of Drp1 and 
the decrease of Drp1 in Ser637 phosphorylation. In 
addition, high glucose decreased the content of OPA1 
and augmented its glycosylation. Increasing OPA1 
protein level or decreasing OPA1 glycosylation could 
block hyperglycemia-related mitochondrial division. 
Clinical trials show that antagonizing ROS by 
antioxidants alone is not enough to attenuate DCM 
[68, 69]. A more effective strategy is to improve the 
overall ability of mitochondrial quality control to 
maintain healthy mitochondrial pools needed to 
support cardiac contractility. 

Mechanisms of mitochondrial dysfunction 
In recent years, the prevalence and mortality of 

cardiovascular diseases, such as atherosclerosis, 
hypertension, myocardial hypertrophy and diabetic 
cardiomyopathy, are increasing all over the world, 
which are the main causes of death and disability. 
Mitochondria are organelles with double membrane 
structure, which can meet the high energy 
requirement of heart metabolism through oxidative 
phosphorylation [70-72]. Mitochondria are extremely 
sensitive to the changes of their environment. When 
the external environment, such as impaired nutrition 
provision and decreased oxygen supply, mitochon-
dria are able to make corresponding metabolic 
adaptation [73]. However, these protective mitochon-
drial adaptations, including mitochondrial dynamics 
regulation, mitophagy activation, mitochondrial 
biogenesis augmentation, mitochondrial bioenergetics 
improvement and mitochondrial anti-oxidative 
capacity intensification are usually impaired in many 
cardiovascular diseases [74], which is therefore 
accompanied by mitochondrial respiratory chain 
dysfunction, ATP synthesis disorder, oxidative stress 
and mitochondrial integrity loss [75, 76]. In 
dysfunctional mitochondria, the decoupling of 
electron transport chain leads to ROS production and 
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ATP depletion, causing extensive damage to 
cardiomyocytes and activating cell apoptosis or 
necrosis [77]. At present, the relationship between 
mitochondrial dysfunction and cardiovascular 
diseases has been confirmed [78]. Among them, 
abnormal mitochondrial dynamics and impaired 
mitochondrial function have been found to be closely 
associated with decreased mitochondrial biosyn-
thesis, increased mitochondria lipid oxidative 
damage, and excessive mitochondrial DNA breakage 
[79-81]; these alterations have been identified as the 
pathophysiological basis of a variety of cardiovascular 
diseases. 

Mitochondrion is the power source of cells. ATP 
is synthesized by the metabolites of fatty acids, 
glucose and amino acids [82, 83]; these alterations are 
primarily occurred in mitochondria [84]. In addition, 
mitochondria play an important role in calcium 
homeostasis [85], hemoglobin synthesis, fatty acid 
oxidation, ROS production and clearance, and cell 
growth and apoptosis regulation [86, 87]. Therefore, 
the normal structure and function of mitochondria 
have a role in meeting the energy requirements of 
vital activities, maintaining the homeostasis of cellular 
environment and regulating cell growth. 

Mitochondrial dysfunction refers to the 
structural and functional abnormalities of 
mitochondria caused by the accumulation of ROS in 
cells under the stimulation of various damage factors, 
such as ischemia and hypoxia [88]. The features of 
mitochondrial dysfunction include a decrease of 
membrane potential, a reduction in mitochondrial 
biosynthesis, a drop in ATP synthesis and a damage 
to mitochondrial respiratory chain. Besides, the 
well-known outcome of mitochondrial dysfunction is 
ROS overproduction at the mitochondrial respiratory 
chain, causing oxidative damage to cell and 
mitochondrial protein, lipid and DNA [89]. Small ROS 
production will further augment mitochondria 
damage and thus promote mitochondrial ROS 
production, which forms a vicious circle of 
mitochondrial damage. Once the ROS production 
exceeds the scavenging capacity of antioxidant 
system, cellular oxidative stress and tissue damage 
occur. It is necessary to point out that most of the ROS 
in the heart are produced by the decoupling of 
mitochondrial respiratory chain. 

Pathophysiology of mitochondrial 
quality control (MQC) in DCM 
Mitochondrial fusion and fission dynamics 

Mitochondria are highly dynamic organelles in 
most mammalian cells. Through continuous fusion 
and division, the shape, size and quantity of 

mitochondria can be changed to meet the metabolic 
needs of cells (Figure 2) [66, 90]. In mitochondrial 
dynamics, the regulation of mitochondrial division 
and fusion is a group of dynamic-related GTP 
enzymes [91], including fusion of mitochondrial 
endocardium and mitochondrial outer membrane. 
Mitochondrial fusion protein Mfn1/2 promotes 
mitochondrial outer membrane fusion whereas OPA1 
promotes fusion of inter membrane of mitochondria 
[92]. Mammalian Mfn1/2 is a highly similar protein 
(human similarity is about 80%), which is composed 
of 737 and 757 amino acid sequences, respectively 
[93]. They have homology, about 80% similar 
structure related sequences, and have homogeneity 
and heterogeneity in physical function. They will 
form Mfn1 homopolymer, Mfn2 homopolymer and 
Mfn1/2 heteropolymer. The second component 
regulating mitochondrial fusion is OPA1, a trans-
membrane protein closely related to mitochondrial 
inner membrane, which is expressed in a variety of 
variants through alternative splicing and 
post-translational proteolysis, resulting in short (s) 
and long (L) subtypes. Deletion or mutation of any of 
these genes will lead to embryo death and 
mitochondrial dysfunction. The depletion of Mfn1 
and/or Mfn2 in cells leads to poor cell growth, and 
the decrease of cell respiration due to decreased 
mitochondrial membrane potential. Knockout of 
Mfn1 or Mfn2 is also associated with embryo death 
due to placental defects [94]. OPA1 deficiency was 
characterized by mitochondrial fragmentation, 
decreased cristae and oxidative phosphorylation [95]. 
The regulatory factors of mitochondrial division are 
Drp1, Mff, Fis1, Mid49 and Mid51. Drp1-dependent 
mitosis can be divided into four steps [96-99]: 
translocation of Drp1 to the outer membrane of 
mitochondria, subsequent high-level assembly, 
hydrolysis of GTP, and final disassembly. Drp1 is an 
80 kDa dynein GTPase superfamily protein [100, 101]. 
It mainly exists in the cytoplasm in the form of 
dimer/tetramer, shuttling between the cytoplasm and 
mitochondria. The recruitment of Drp1 from the 
cytoplasm to the outer membrane of mitochondria is 
an important step in mitochondrial division. 
Recruitment from cytoplasm to mitochondria is 
mediated by several outer mitochondrial membrane 
proteins, including Mff, Fis1, Mid49 and Mid51 [96, 
102]. Drp1 is recruited into mitochondria through a 
receptor anchored on the outer membrane of 
mitochondria [103]. Once recruited, Drp1 further 
assembles around the mitochondrial tubules to form 
an oligomeric ring, which contracts and splits 
mitochondria in a GTP dependent process [104]. Mff 
is an important factor in the recruitment of Drp1 
during mitosis, and its overexpression leads to 
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increased mitosis [105]. In contrast, other drp1 
receptors, Mid49 and Mid51, seem to recruit inactive 
forms of drp1 because their overexpression inhibits 
mitochondrial division [106]. 

Mitochondrial fusion and fission dynamics in 
DCM 

Mitochondrial morphological changes in 
cardiomyocytes were observed in ob/ob mice [107]. In 
these mice, mitochondria appeared as abnormally 
large ‘mega-mitochondria’ [107]. Cardiomyocytes 
from neonatal rats exposed prenatally to diabetes or a 
high-fat diet exhibited impaired mitochondrial 
dynamics, which resulted in shorter, wider 
mitochondria than those from control rats [108]. These 
hyperglycemia-induced changes in mitochondrial 
dynamics seemed to be gender-specific; in fact, the 
male hearts contained post-translational modifica-
tions known to impair mitochondrial dynamics [108]. 

Another study demonstrated that Drp1 was 
significantly upregulated in cardiomyocytes during 
the progression of DCM, whereas Mfn1 and 2 were 
markedly downregulated [109]. Genetic ablation of 
Drp1 was found to protect the heart against 

hyperglycemic damage by sustaining cardiomyocyte 
viability and function [110]. In diabetic hearts, Drp1 
phosphorylation at Ser616 was induced, and this 
alteration was followed by cardiomyocyte hyper-
trophy and mitochondrial dysfunction, suggesting 
that post-translational modifications of mitochondrial 
dynamics proteins may contribute to mitochondrial 
dysfunction during DCM [111]. In the setting of DCM, 
other phosphorylated forms of Drp1 have also been 
detected, such as p-Drp1Ser637 [112], p-Drp1Ser579 [113] 
and p-Drp1Ser600 [113, 114]. Moreover, increased 
O-GlcNAcylation of Drp1 at threonine 585 and 586 
was observed in diabetic heart mitochondria, 
correlating with elevated mitochondrial fragmen-
tation in cardiomyocytes [115]. Interestingly, lipid 
overload during diabetes was associated with Drp1 
acetylation at lysine 642, which then promoted 
mitochondrial fission and cardiomyocyte death [116]. 
In contrast, transfection of a nonacetylated Drp1 
mutant (K642R) prevented hyperglycemia-induced 
cardiomyocyte hypertrophy and dysfunction [116, 
117]. 

 

 
Figure 2. The regulation of mitochondrial dynamics. Mitochondrial fusion protein Mfn1/2 promotes mitochondrial outer membrane fusion whereas OPA1 promotes fusion of 
inter membrane of mitochondria. The regulatory factors of mitochondrial division are Drp1, Mff, Fis1, Mid49 and Mid51. (By Figdraw (www.figdraw.com)). 
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Table 3. Upstream signals of mitochondrial dynamics in the 
setting of DCM 

Upstream 
regulator 

Mechanism Reference 

Tom70 Tom70 enhances high-glucose and high-fat 
treatment-induced mitochondrial superoxide 
production, resulting in Drp1-induced mitochondrial 
fission. 

[121] 

Cyclin C Cyclin C translocates to the cytoplasm and binds to 
cyclin-dependent kinase 1 to promote Drp1 
phosphorylation at Ser616.  

[122] 

Sirt1 Sirt1 deficiency promotes Akt activation, thus 
increasing Drp1 activity, culminating in excessive 
mitochondrial fission and ROS production.  

[123] 

Estrogen Estrogen upregulates Drp1 and downregulates Mfn2 
in diabetic rats.  

[124] 

Gp78 The Gp78-ubiquitin proteasome system promotes the 
ubiquitination of Mfn1/2. 

[125] 

Insulin Insulin treatment increases OPA1 protein levels, 
promotes mitochondrial fusion, increases the 
mitochondrial membrane potential and elevates both 
intracellular ATP production and oxygen 
consumption in cardiomyocytes. 

[126] 

Norepinephrine Norepinephrine acts through α1-adrenergic 
receptors to increase cytoplasmic Ca2+ levels, thus 
activating calcineurin and promoting Drp1 migration 
to mitochondria.  

[127] 

 
 
Regarding mitochondrial fusion, an in vitro 

model of DCM (primary cultured neonatal rat 
cardiomyocytes treated with high glucose) exhibited 
elevated Mfn1/2 ubiquitination, a reduced 
mitochondrial membrane potential, increased mPTP 
opening and diminished ATP production [118]. 
Hyperglycemia also induced O-GlcNAcylation of 
OPA1 in neonatal cardiac myocytes, thus reducing the 
mitochondrial length and suppressing complex IV 
activity [119]. Of note, a fructose-rich diet stimulated 
mitochondrial fragmentation in the heart by 
suppressing Mfn2 and inducing Drp1 without 
influencing OPA1 [120], suggesting that different 
kinds of sugar may distinctly impact the regulators of 
mitochondrial dynamics in diabetic hearts. 

Several upstream signals of abnormal 
mitochondrial dynamics have been described in the 
setting of DCM, including translocase of outer 
mitochondrial membrane 70 (Tom70) [121], cyclin C 
[122], sirtuin 1 (Sirt1) [123], estrogen [124], Gp78 [125], 
insulin [126] and norepinephrine [127]. The molecular 
effects of these upstream signals on mitochondrial 
dynamics during DCM are detailed in Table 3. In turn, 
the activation of mitochondrial fission in hyper-
glycemia-treated cardiomyocytes has multiple 
downstream effects, including cardiomyocyte 
apoptosis, oxidative stress, myocardial fibrosis [128], 
mitochondrial membrane potential reduction, insulin 
pathway deactivation, insulin resistance [129], 
delayed mitochondrial respiration and mitochondrial 
calcium overload [130]. Together, these alterations 
may eventually induce mitochondrial dysfunction 

and reduce cardiomyocyte viability, accelerating the 
development of DCM. 

Mitophagy 
Mitophagy is a process in which autophago-

somes selectively target to phagocytize dysfunctional 
or damaged mitochondria and transfer them to 
lysosomes for cell recycling (Figure 3) [131, 132]. The 
division of mitochondria is considered by biologists to 
be mainly to separate the mitochondria of daughter 
cells with damaged membrane potential [133, 134]. 
The daughter mitochondria with normal membrane 
potential can fuse with other mitochondria [135]. The 
stability of mitochondrial internal environment 
requires a perfect balance between mitochondrial 
phagocytosis and mitochondrial biogenesis [136, 137]. 
Mitophagy recognizes target mitochondria through 
LC3 adaptor through the ubiquitin-dependent and 
-independent pathways [138]. The first step of 
ubiquitin-dependent mitophagy is the ubiquitination 
of mitochondrial substrate, which is the recognized by 
LC3 adapter [139, 140]. At present, the most studied 
mitophagy pathway in mammals is regulated by the 
putative kinases such as PINK1 and Parkin, which is 
under the control of phosphatase and tensin homolog 
PTEN [141]. PINK1 is a sensor of mitochondrial 
polarization. In healthy polarized mitochondria, 
PINK1 is introduced into mitochondria by transporter 
outer membrane complex and into mitochondria by 
transporter inner membrane complex. Under normal 
conditions, the basal PINK1 level was maintained at a 
low level [142]. In the process of mitochondrial 
depolarization, the decrease of mitochondrial 
membrane potential is related to the accumulation of 
PINK1 on the outer membrane of mitochondria, 
which, together with ubiquitin ligase Parkin, controls 
the elimination of defective mitochondria [143]. In 
addition, PINK1 can phosphorylate the Ser65 site of 
ubiquitin like (UBL) domain, activate the E3 ligase 
activity of Parkin and promote the recruitment of 
Parkin in the outer membrane of mitochondria [144, 
145]. There are many Parkin substrates on the 
mitochondrial outer membrane, including mitochon-
drial fusion protein Mfn1/2, mitochondrial outer 
membrane translocator, mitochondrial transporter 
and voltage dependent anion channel VDAC [146]. By 
interacting with LC3 aptamer on the membrane, 
autophagosomes were recruited to selectively 
encapsulate the modified receptor mitochondria, and 
finally the damaged mitochondria were transferred to 
lysosomes for degradation. LC3 adaptor proteins 
include p62, NBR1, OPTN, NDP53 and TAX1BP1, but 
only OPTN and NDP52 are considered as their main 
substrates. 
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Figure 3. Mitophagy is a process in which autophagosomes selectively target to phagocytize dysfunctional or damaged mitochondria and transfer them to lysosomes for cell 
recycling (by Figdraw (www.figdraw.com)). 

 
In addition to the above ubiquitin dependent 

pathway and LC3 binding mediated mitochondrial 
autophagy, there are some damaged mitochondria 
that can also be recognized by LC3 adapter in a 
ubiquitin independent manner. These LC3 receptors 
are located in mitochondria, which can directly bind 
to LC3 and transfer damaged mitochondria to 
lysosomes for degradation. These receptors include 
BNIP3, Nix, Fundc1, PHB2 [147-149]. 

Mitophagy in DCM 
The changes in mitophagy during DCM were 

evaluated using the mito-Keima assay in 
cardiomyocytes from GFP-LC3 mice fed a high-fat 
diet [150]. Mitophagy was significantly induced after 
three weeks and further increased after two months of 
high-fat-diet treatment, accompanied by an increased 
end-diastolic pressure-volume relationship, lipid 
accumulation and cardiac hypertrophy [150]. 
Knocking out Parkin partially suppressed cardio-
myocyte mitophagy, elevated lipid accumulation and 
worsened diastolic dysfunction in response to 
high-fat-diet feeding [150]. These data suggested that 
mitophagy is enhanced in the early stage of DCM. 

Although mitophagy is cardioprotective, endogenous 
mitophagy fails to prevent the progression of DCM. 
At the molecular level, mitophagy induction has been 
described as an adaptive response to increased fatty 
acid oxidation in the heart, because Parkin expression 
seems to correlate with the levels of acetyl CoA 
carboxylase 2, a regulator of long-chain fatty acid 
transport into mitochondria [151]. 

Using a novel dual-fluorescent mitophagy 
reporter (mt-Rosella), Kobayashi et al. traced 
dysfunctional mitochondria that were degraded in 
lysosomes, and found that chronic hyperglycemic 
stress impaired mitophagy in heart tissues from 
type-1 diabetic mice [152]. In another study, mice 
were fed a high-fat diet for 10 weeks, and changes in 
FUNDC1-dependent mitophagy were monitored in 
the early stage of DCM [153]. FUNDC1 expression 
was slightly elevated and therefore mitophagy was 
moderately enhanced in diabetic heart tissues [153]. 
However, ablation of FUNDC1 exacerbated 
myocardial inflammation, oxidative stress and 
cardiomyocyte apoptosis, suggesting that FUNDC1- 
dependent mitophagy is a defensive program, despite 
its failure to halt the progression of DCM [153]. 
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Mitochondrial morphological changes in 
cardiomyocytes from diabetic mice were observed 
using electron microscopy [154]. Most of the 
cardiomyocytes contained dissociated mitochondria 
that lacked typical contacts, and some of the 
mitochondria exhibited complete destruction of the 
cristae, “watering” of the matrix, and remains that 
resembled large vacuoles [154, 155]. Expanded 
sarcoplasmic reticular profiles and glycogen 
accumulation were often recorded, and the contractile 
apparatus of the cardiomyocytes exhibited displaced 
myofibrils and tortuous Z-disks that were mis-
matched between adjacent myofibrils [154]. However, 
activation of Parkin-induced mitophagy partly 
reversed the ultrastructural changes in cardiomyocyte 
mitochondria and prevented myocardial tissue 
disorganization [154]. These findings confirmed that 
enhanced mitophagy, rather than basal mitophagy, is 
needed to sustain mitochondrial structure and 
myocardial homeostasis [156]. 

 The protective mechanisms of increased 
mitophagy have been widely reported. Mitophagy 
was shown to attenuate mitochondria-induced 
cardiomyocyte apoptosis by reducing OMM 
hyperpermeability, cytochrome c release and 
oxidative stress [157]. In addition to inhibiting 
apoptosis, mitophagy was found to repress cardiac 
ferroptosis, necroptosis and lipid peroxidation [153]. 
Activation of Parkin-induced mitophagy maintained 
the mitochondrial membrane potential, normalized 
mitochondrial energy metabolism and balanced the 
redox response in the heart [158]. During the 
development of DCM, mitophagy enhanced 
cardiomyocyte mitochondrial regeneration and 
biogenesis [159] and normalized the cardiac 
mitochondrial morphology and bioenergetics [160]. 
By improving mitochondrial homeostasis [161], 
mitophagy was found to reduce lipid accumulation 
and increase both diastolic function (end-diastolic 
pressure-volume relationship) and systolic function 
(end-systolic pressure-volume relationship) in 
diabetic hearts [150]. Moreover, the activation of 
mitophagy reduced body weight, improved 
hyperglycemic control, inhibited dyslipidemia, 
attenuated myocardial fibrosis and suppressed the 
inflammatory response (as evidenced by reduced 
transforming growth factor β1, hydroxyproline and 
brain natriuretic peptide levels) in the hearts of 
diabetic rats [162]. 

Targeted pharmacological approaches to activate 
mitophagy may be useful clinical therapeutic 
strategies to retard the progression and/or improve 
the prognosis of DCM (Table 4). The US Food and 
Drug Association has approved the anti-diabetic drug 
empagliflozin for the treatment of HF, regardless of 

diabetes status [163]. Empagliflozin was reported to 
prevent HF by increasing the autophagic vacuole 
number and reducing myocardial fibrosis in diabetic 
hearts [164, 165]. Liraglutide, a glucagon‑like 
peptide‑1 receptor agonist that has been used to treat 
diabetes and obesity, was shown to activate Sirt1, a 
protein deacetylase that depends on both adenosine 
monophosphate-activated protein kinase (AMPK) 
and NAD [158]. Liraglutide thereby increased 
mitophagy activity in diabetic hearts; however, 
deletion of Parkin significantly abrogated these 
cardioprotective effects [158]. 

 

Table 4. Targeted pharmacological or non-pharmacological 
therapeutic strategies to activate mitophagy for the treatment of 
DCM 

Therapeutic strategy Mechanism Reference 
Empagliflozin Empagliflozin prevents diabetic HF by 

increasing the autophagic vacuole number 
in the heart, thus reducing myocardial 
fibrosis. 

[164] 

Ginseng Dingzhi 
Decoction 

Ginseng Dingzhi Decoction activates 
mitophagy and thus ameliorates 
myocardial hypertrophy, heart function 
and mitochondrial homeostasis following 
high-glucose stimulation. 

[169] 

Liraglutide Liraglutide activates the AMPK- and 
NAD‑dependent protein deacetylase Sirt1, 
thus increasing Parkin-induced mitophagy 
in diabetic hearts. 

[158] 

Melatonin Melatonin increases the number of typical 
autophagosomes engulfing mitochondria 
through Parkin-induced mitophagy in 
diabetic hearts, thus reducing cardiac 
remodeling. 

[160] 

Hydrogen sulfide Hydrogen sulfide facilitates Parkin 
translocation onto mitochondria and thus 
promotes mitophagy in the heart, 
ultimately reducing mitochondrial 
fragmentation, enhancing mitochondrial 
respiratory chain activity, suppressing 
mitochondrial apoptosis and improving 
cardiac function in db/db mice. 

[170] 

Alisporivir Alisporivir upregulates PINK1 and Parkin 
mRNA expression in the heart tissues of 
diabetic mice.  

[154] 

D-β-hydroxybutyrate-(R)-
1,3 butanediol monoester 
(ketone ester) diet 

A ketone ester diet improves cytosolic E3 
ubiquitin ligase translocation onto 
mitochondria and reinforces LC3-induced 
autophagosome formation, thus enhancing 
cardiac systolic and diastolic function in 
animals with type-2 diabetes mellitus. 

[168] 

 
 
Melatonin, a regulator of the biological clock, 

was reported to increase the number of typical 
autophagosomes engulfing mitochondria in the heart, 
thus preventing hyperglycemia-induced cardiac 
remodeling during DCM [166]; however, knocking 
out Parkin partly compromised these beneficial effects 
[160]. In the hearts of db/db mice, the gasotransmitter 
hydrogen sulfide facilitated Parkin translocation onto 
mitochondria, thereby promoting mitophagy, 
improving cardiac function, reducing mitochondrial 
fragmentation, enhancing mitochondrial respiratory 
chain activity and suppressing mitochondrial 
apoptosis [167]. Alisporivir, a non-immuno-
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suppressive cyclosporin derivative and selective 
inhibitor of the mPTP, exerted cardioprotective effects 
by upregulating PINK1 and Parkin mRNA expression 
in the heart tissues of diabetic mice, thus inducing 
mitophagy [154]. 

The D-β-hydroxybutyrate-(R)-1,3 butanediol 
monoester (ketone ester) diet was reported as a 
non-pharmacological approach to enhancing cardiac 
mitophagy [168]. The ketone ester diet enhanced the 
resistance of mitochondria to oxidative stress, 
inhibited mPTP opening and increased mitochondrial 
succinyl-CoA:3-oxoacid-CoA transferase expression 
in cardiomyocytes [168]. In addition, the ketone ester 
diet improved cytosolic E3 ubiquitin ligase 
translocation onto mitochondria and reinforced 
LC3-induced autophagosome formation in cardio-
myocytes, leading to better cardiac systolic and 
diastolic function in mice with type-2 diabetes 
mellitus [168]. 

Conclusions and perspectives 
The quality of mitochondria is maintained 

through the synthesis of new mitochondria, fusion 
and division, and the elimination of damaged 
mitochondria by mitophagy (Figure 4). With the 

increase of age, the changes of mitochondrion division 
and fusion process and the inhibition of mitophagy 
will lead to the decrease of mitochondrial biogenesis 
and the damage to mitochondrial clearance, which 
contributes to a series of metabolic disorders and 
pathophysiological diseases. In this review, we briefly 
discuss the roles of mitochondrial dynamics and 
mitophagy in regulating DCM. Meanwhile, the 
potential targeted therapies against mitochondrial 
dysfunction are also introduced in this review. 
However, it requires more attention to describe the 
detailed action afforded by MQC in DCM. Besides, 
new therapeutic approaches with a focus on MQC in 
the setting of DCM are the next clinical issue in the 
world. 
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Figure 4. Physiological MQC is an endogenous defense program that restores the mitochondrial integrity and homeostasis in response to mitochondrial 
damage; however, hyperglycemia compromises this protective mechanism. Mitochondrial fission is overactivated in diabetic hearts, while fusion is markedly 
inhibited, resulting in extensive mitochondrial fragmentation. Under physiological conditions, mitophagy can engulf fragmented mitochondria; however, this process is inhibited 
under high-glucose conditions, so dysfunctional mitochondria accumulate within cardiomyocytes. Likewise, mitochondrial biogenesis can regenerate or replicate mitochondria, 
but hyperglycemia suppresses this process by inhibiting AMPK/PGC-1α. When MQC is blunted, mitochondrial dysfunction cannot be rectified, so the mitochondrial quality and 
quantity are further diminished. 
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