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Abstract 

Extracellular vesicles (EVs) are nanoscale particles with various physiological functions including 
mediating cellular communication in the central nervous system (CNS), which indicates a linkage between 
these particles and mental disorders such as schizophrenia, bipolar disorder, major depressive disorder, 
etc. To date, known characteristics of mental disorders are mainly neuroinflammation and dysfunctions of 
homeostasis in the CNS, and EVs are proven to be able to regulate these pathological processes. In 
addition, studies have found that some cargo of EVs, especially miRNAs, were significantly up- or 
down-regulated in patients with mental disorders. For many years, interest has been generated in 
exploring new diagnostic and therapeutic methods for mental disorders, but scale assessment and routine 
drug intervention are still the first-line applications so far. Therefore, underlying the downstream 
functions of EVs and their cargo may help uncover the pathogenetic mechanisms of mental disorders as 
well as provide novel biomarkers and therapeutic candidates. This review aims to address the connection 
between EVs and mental disorders, and discuss the current strategies that focus on EVs-related 
psychiatric detection and therapy. 
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Introduction 
Extracellular vesicles (EVs) are minute phospho-

lipid bilayer particles with diameters ranging from 
~30 nm to 10 μm, and are typically classified into 
four sub-categories, exosomes (~30 nm to 150 nm), 
ectosomes (~100 nm to 1000 nm), apoptotic bodies 
(~1000 to 5000 nm), and oncosomes (~1 μm to 10 
μm).[1, 2] The heterogeneity and role of EVs are 

predominantly determined by their cargo, such as 
nucleic acids, proteins, lipids, cytokines, chemokines, 
the end-stage neurotoxic and pathogenic metabolic 
products.[3-5] Among these contents, RNAs have 
drawn special attention. RNAs encapsulated in EVs 
mainly include non-coding RNAs such as mRNAs, 
long non-coding RNAs (lncRNAs), circular RNAs, 
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and the widely-studied microRNAs (miRNAs or 
miR),[3] which have been proposed as emerging 
diagnostic or therapeutic candidates for many 
neuropsychiatric diseases.[6, 7] When transferred 
from cell to cell, RNAs in EVs can mediate the 
orientation, translation, and stability of mRNA in the 
target cells by combining with trans-acting factors, 
such as RNA-binding proteins, thus controlling cell 
development and differentiation.[8] Meanwhile, the 
pathophysiological characteristics of EV-derived 
lncRNAs, circular RNAs, and mRNA have also been 
gradually revealed over the years.[9-11] The 
identification of EVs is based on molecular 
biomarkers such as tetraspanins (e.g., CD9, CD63, 
CD81), syntenin-1, apoptosis-linked gene 2- 
interacting protein X (Alix), TSG101, neuronal origin 
marker L1 cell adhesion molecule (L1CAM), and 
adenosine diphosphate ribosylation factor 6 
(ARF6).[12] Some of these markers can even indicate 
the different origination of EVs. For example, L1CAM 

is commonly recognized as the label of EVs derived 
from neurons in the central nervous system (CNS),[4, 
5, 7] and other biomarkers such as glutamate aspar-
tate transporter and transmembrane protein 119are 
indications of glia-derived EVs.[13] In recent years, 
studies on the classification, biological function, and 
protocols for isolation and detection of EVs are under 
rapid growth (Fig. 1). 

In the CNS, EVs can be secreted by different cells 
and act as message carriers during neighboring and 
distal cellular communication between neurons, glia, 
and other types of cells,[14-23] thereby mediating a 
cascade of downstream reactions. EVs are capable of 
crossing the blood-brain barrier (BBB) via five regular 
routes (shown in Fig. 1) [16, 24] and can be detected in 
various body fluids, and have been proposed as 
possible biomarkers neurodegenerative disease and 
CNS tumors,[25-27] which open a window for us 
explore the physiological and morbid status of the 
brain non-invasively.[28]  

 

 
Fig. 1. EVs and their participation in cellular communication in the brain. EVs originate primordially as multivesicular bodies from intraluminal vesicles and are 
generated by inward budding, encapsulating nucleic acids, proteins, metabolites, and other components, some of which are recognized as detecting markers, such as tetraspanins, 
Alix, TSG101, ARF6, and L1CAM. Fusion of multivesicular bodies membrane with cell membrane facilitates the release of EVs, while fusion with lysosomal membrane leads to the 
degradation of components. When entering the recipient cells via macropinocytosis, phagocytosis, and endocytosis with or without ligand-receptor binding, EVs will end up in the 
lysosome, or participate in the post-transcription regulation, or translate their capsuled RNAs into functional proteins. In the brain, EVs are released by neurons and glia and 
mediate cellular communication between different neurons, or between glia and neurons. Furthermore, peripheral EVs can cross the BBB via five possible pathways theoretically, 
namely, association with a protein G-coupled receptor, surface adhesion and membrane fusion, macropinocytosis, lipid raft, and receptor-mediated transcytosis. EVs: 
extracellular vesicles; L1CAM: L1 cell adhesion molecule; TSG101: tumor susceptibility gene 101; CNS: central nervous system; BBB: blood-brain barrier; Alix: apoptosis-linked 
gene 2-interacting protein X; ARF6: adenosine diphosphate ribosylation factor 6; MHC: major histocompatibility complex 
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EVs and mental disorders 
Up till now, the pathological mechanisms of 

most mental disorders remain largely unclear, thus 
hindering the innovation of strategies for diagnosis 
and treatment.[29] Inspiringly, EVs are a mirror that 
can reflect the real-time status of the brain and specific 
clinical symptoms like non-suicidal self-injury [30] 
and cognitive impairment.[31] Ongoing experimental 
and technological advances have been yielding 
remarkable findings on the physiological effects and 
heterogeneity of EVs and their cargoes,[3] and have 
shown the potential to harness EVs for prevention, 
prediction, precise diagnosis, and treatment of 
neuropsychiatric disorders. For example, insulin 
receptor substrate -1 (IRS-1), a protein associated with 
insulin resistance, was increased in neuron-delivered 
EVs from patients with MDD, thus indicating the 
relationship between insulin resistance in the CNS 
and clinical symptoms such as depressive feelings, 
suicide and anhedonia.[32] However, among various 
components in EVs, miRNA has been adequately 
explored and seems to be the most promising 
biomarker. Despite conflicting findings, accumulating 
studies of schizophrenia, major depressive disorder 
(MDD), bipolar disorder (BD), substance abuse (SA), 
and post-traumatic stress disorder (PTSD) have 

yielded early evidence on dysregulation in EV- 
derived miRNAs (Fig. 2). 

Notably, none of those dysregulated miRNAs 
showed specificity for a given disorder or has been 
repeatedly verified by different studies. Thus, more 
endeavor is needed to make further explorations of 
the EV-related RNA candidates before their clinical 
applications. 

The neuropathological underpinnings 
EVs implicated in the pathophysiological processes in 
the CNS 

Mental disorders are not simply the results of 
brain dysfunction, they have pathophysiological 
underpinnings. EV-mediated myelin impairment of 
neurological diseases[33] are also implicated in 
different mental disorders.[6, 34-41] EVs participate in 
cellular communication between neurons and glia, 
which is known as “neuroimmune interactions”, and 
it is the basis of the pathophysiological processes 
including decreased synaptic activity, elimination of 
waste, and maintenance of myelin integrity.[19, 42] 
The most critical cell population participating in the 
neuroimmune interactions is microglia. Generally, 
EVs are important vehicles of microglia-related 
bioactive molecules which are delivered towards 

 

 
Fig. 2. Overlaps in peripheral miRNAs across different studies and their functions* *Only RNA families were identified, but not limited to specific homologous 
miRNAs as some of the research findings have not been replicated yet. All the miRNAs presented above are detected from serum/plasma. MDD: major depressive disorder; BD: 
bipolar disorder; SCZ: schizophrenia; SA: substance abuse; PTSD: post-traumatic stress disorder 
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other CNS-resident cells, while the phenotype and 
physiological status of microglia could also be 
regulated by EVs from other cells.[43] EVs secreted by 
activated microglia are enriched in selective 
pathogenetic miRNAs and other bioactive factors that 
are entangled in intercellular interactions such as 
complement activation and neuroinflammation, 
which may disrupt innate immune signaling as well 
as neurotropism and synaptic signaling progress 
through regulating expression of neuron-specific 
phosphoproteins.[44-46] In addition, the differen-
tiation and myelin deposition of oligodendrocytes 
that form a highly specialized functional entity could 
be influenced by microglia-derived EVs, which is 
critical for the remyelination process in neuro-
inflammatory diseases.[47] 

EVs derived from astrocytes participate in 
neuroimmune interactions as well as the central- 
to-peripheral immune communication.[48] On the one 
hand, the astrocytes-derived pro-inflammatory EVs 
can be taken by neurons and lead to neuronal 
damage.[17, 48] Meanwhile, those EVs can mediate 
microglia activation, migration, and phagocytic 
capacity, accounting for neuron inflammation.[17, 49] 
On the other hand, in the physiological state, 
astrocyte-derived EVs prevent inflammation, facilitate 
tissue repair, and enhance physiological adaption to 
the inflammatory micro-environment during the 
acute morbid stage.[50-52] Furthermore, EVs could be 
produced by both CNS-resident and CNS-infiltrating 
leukocytes under the circumstance of neuro-
inflammation,[42] regulating the activity of neuron 
and glia cells in the CNS.  

Internalized by neurons in response to stimuli, 
EVs derived from oligodendrocytes have 
neuroprotective properties and are indispensable for 
the homeostasis of the CNS micro-environment.[53] 
Oligodendrocyte-specific genetically defective mice 
secreted fewer EVs-delivered proteins, resulting in a 
deficit of neuronal long-term stability.[54] In addition, 
many myelin proteins relevant to autoimmune 
encephalomyelitis were found in EVs cultured in 
vitro,[55] thus shedding light on drug delivery for 
CNS neuroimmune diseases such as multiple 
sclerosis.[56] Recently, myelin deficits have been 
documented as new neuroimaging characteristics in 
patients with recurrent MDD.[33] but the role of EVs 
in myelin deficits is still unclear.   

EVs increase the permeability of the BBB 
Leakage of the BBB, which is related to 

abnormalities in glutamatergic transmission and 
neuroinflammation,[57] has been observed in 
neurodegenerative diseases and some types of mental 
disorders.[24, 58-60] Proteomic studies also revealed 

that several neurodegenerative diseases biomarkers 
such as amyloid precursor protein and prion protein 
were enriched in neuron-derived or glia-derived EVs 
in human cerebrospinal fluid (CSF),[61] aligning with 
cognitive decline in several mental disorders inclu-
ding schizophrenia,[62] later-life MDD,[63] autism 
spectrum disorder (ASD),[64] sleep disorder (SD),[65] 
and PTSD.[65]Therefore, EVs might be involved in the 
dissemination of the pathological changes from brain 
to other tissues. 

Notably, EVs may participate in regulating the 
permeability of the BBB. According to a study using a 
zebrafish model, EVs containing miR-132 derived 
from the brain could target directly at the tight 
junction between brain microvascular endothelial 
cells (BMECs), resulting in increasing BBB 
permeability and microhemorrhage risk in the 
CNS.[66] 

Nevertheless, we should be cautious with the 
impact of EVs on the BBB. It has been demonstrated 
that brain-derived EVs could either protect BMECs 
from the hypoxia damage[67] and maintain the 
integrity of brain vessels,[66] or disrupt the 
homeostatic permeability of the BBB. Although 
relevant research is limited,[68] the increased BBB 
permeability acts as a bridge combining the 
dysregulation of EVs with the dysfunction of brain, 
indicating the potential of targeting EVs for the 
treatment of mental disorders.   

EVs and major mental disorders 
Schizophrenia 

The clinical manifestations of schizophrenia, a 
prevalent mental disorder with complex etiology, are 
characterized by high heritability, early-onset, and 
debilitating course.[69,70] The pathological mecha-
nisms of schizophrenia are still indistinct, but the 
linkage between schizophrenia and decreased 
dopamine in the prefrontal cortex, excessive 
dopaminergic activity in the mesolimbic tract, 
decreased mesocortical dopaminegic neurons and 
gamma-aminobutyric acid (GABA)-ergic inhibitory 
activities, has been widely recognized.[71] Increasing 
evidence also indicates that epigenetic modification 
may be associated with the pathogenesis of 
schizophrenia,[72] while EV and its encapsulated 
miRNAs may fitly act as epigenetic regulators.[73]  

Neuron- or glia-derived EVs may contribute to 
the onset of schizophrenia by transporting toxic (or 
misfolded) proteins and neurotransmitters, resulting 
in clinical symptoms like cognitive deficits. 25 
perturbed metabolites in EVs related to metabolism of 
glycerophospholipid, phenylalanine, tyrosine, or 
tryptophan have been found to be linked to 
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schizophrenia.[74] In detail, proteins or small 
molecules such as amyloid-beta 42 (Aβ42) [62] and 
glial fibrillary acidic protein was elevated, while 
α-II-spectrin[75], subunits 1 and 6 of NADH- 
ubiquinone oxidoreductase and subunit 10 of 
cytochrome b-c1 oxidase were lower in patients with 
schizophrenia, which provides evidence on the 
astrocyte-related neuroinflammatory underpinnings 
of the association between the dysregulated protein 
expression and increased reactive oxygen species.[76] 
Other research discovered dysregulation of miRNAs 
in EVs from postmortem brain tissues, CSF and 
peripheral blood in patients with schizophrenia or 
other mental disorders with psychosis. Moreover, 
elevated phosphatidylserine-positive EVs were 
detected in the CSF of schizophrenia patients, which 
might be a signature of enhanced membrane 
shedding in the CNS.[77] Studies on blood EV-related 
miRNAs indicate that specific miRNAs might 
contribute to the pathogenesis of schizophrenia 
including abnormalities in protein glycosylation, 
neurotransmitter biosynthesis, and dendrite 
development, and eventually reshape the structural 
and functional phenotype of the brain.[78, 79] For 
example, miR-132 in EVs increased in MDD and BD 
while it decreased in SCZ, indicating the different 
pathological mechanism between mood disorders and 
SCZ, such as the CLOCK gene, a target gene of 
miR-132.[68] Besides, miR-132 has a broad impact on 
the nervous system. It not only regulates the 
differentiation, maturation and functioning of neuron, 
but also widely participates in axon growth and 
neural plasticity, and thus preventing hippocampal 
neurogenesis and relevant memory deficits.[80, 81] 
Other miRNAs are also important. miR-106b-5p, an 
inflammation- and tumor-associated miRNA, was 
reported in both schizophrenia and BD studies, while 
miR-195-5p, miR-181b, miR-144-5p, miR-130b, and 
let-7g were documented in both schizophrenia and 
MDD subjects, indicating the pathological 
mechanisms of dysregulation of AKT pathway, 
cytokine production, macrophage polarization, 
energy metabolism in those disorders,[68] thus 
providing a plausible explanation for the overlapping 
symptom spectrum across different mental disorders.  

However, in-depth explorations on the role of 
EV-related miRNAs in accessing clinical symptoms 
and treatment outcomes of schizophrenia are limited. 
Patients with early-onset schizophrenia showed 
up-regulated exosomal miR-137 and decreased 
cytochrome c oxidase complex IV COX6A2, which is 
involved in the psychological functions of 
mitochondria.[82] This suggests that alternations of 
miR-137/COX6A2 EVs in plasma may represent a 
proxy marker of cortical microcircuit impairment, a 

pathological feature of schizophrenia.[82] Besides, the 
level of miR-223, an EV-related miRNA targeting 
glutamate receptors, was increased in the orbito-
frontal cortex of patients with schizophrenia.[83] 
Following treatment with olanzapine or haloperidol, 
the expression of miR-223 was down-regulated while 
the expression of neuronal Grin2b was increased, thus 
revealing that miR-223 might be a promising 
treatment target of schizophrenia. Therefore, further 
investigation on the cargo of EVs may offer insights 
into the etiology of schizophrenia and new treatment 
strategies. 

In terms of treatment, several studies revealed 
that EVs could alleviate the toxicity of glutamate 
overload in specific regions of the brain. In 
phencyclidine-induced schizophrenia mice model, 
mesenchymal stem cell-derived EVs can migrate to 
the prefrontal cortex by intranasal delivery, a brain 
area that is critically involved in the neuropathology 
of schizophrenia. Following EVs treatment, social 
interaction and disruption due to pre-pulse inhibition 
were significantly improved, parvalbumin-positive 
GABAergic interneurons were preserved, and the 
level of glutamate in the CSF was decreased,[84] thus 
indicating a potentially novel treatment strategy for 
schizophrenia. 

Bipolar disorder 
The pathophysiology of BD is complex. 

Neuroinflammation, disturbed neurogenesis and 
neuroplasticity are found to underline the recurrent 
depressive or manic/hypomanic attacks of BD.[85] 
Interestingly, EVs are closely bound up with the 
pathological mechanisms of BD, and act as emerging 
biomarkers for detecting BD clinically. Omics research 
has provided further evidence. Dozens of 
dysregulated miRNAs, among which some were 
involved in netrin-mediated axon guidance as well as 
signaling pathways of the endothelium, serotonin, 
and androgen, have been detected in BD cases, and a 
few miRNAs showed phase-specific alterations in BD 
patients.[86, 87] 

Alternations in EVs detected from BD patients, 
as well as their cargoes, are potential biomarkers for 
identifying phases of BD. Metabolites produced by 
galactose or amino sugar metabolism like xylitol were 
decreased in serum EVs from patients with BD, and a 
random forest classifier constructed by 15 exosomal 
metabolites showed excellent performance in 
diagnosis and differential diagnosis for BD.[88] 
Astrocyte-derived EVs might transfer the stress 
signals such as cytokines and corticosteroids from 
peripheral blood, thereby causing deficits in 
neurogenesis.[89] The encapsulated miRNAs in EVs 
can regulate both synaptic plasticity and brain 
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development. For example, miR-134 was associated 
with the development of dendritic spines and 
synapses, and was a biomarker for monitoring mania 
episodes in BD.[90] Moreover, miR-128 and miR-378 
were also found to be linked to neurite outgrowth and 
neurogenesis in BD cases.[91]  

Notably, the change of miR-142-3p was inconsis-
tent in different studies, [86, 87] and in patients with 
type II BD, an elevated level of miR-142-3p was more 
likely to be detected in EVs from serum.[92, 93] 
miR-29c, which played a role in neural development 
and signal transduction in the CNS, was up-regulated 
in BD cases, and was proposed as a target of lithium 
treatment.[94] miR-29a, which was also up-regulated 
in BD patients, was critically involved in the 
functional and structural neurotoxic injuries.[95] 
miR-149 can inhibit glial proliferation.[96] It has been 
observed that miR-149 in EVs was altered in the 
anterior cingulate cortex (ACC) of BD patients,[97] 
and an increased miR-149 in EVs led to a reduced 
number of glial cell in the ACC of familial MDD and 
BD patients.[98, 99]  

Besides, recent research have suggested that the 
gut-brain axis (GBA) may be implicated in the 
pathogenesis of BD,[100, 101] with increasing 
evidence revealing the disturbance of the intestinal 
microbiota and disruption of the bidirectional 
interaction between the brain and the gut microbes in 
BD individuals.[102-104] A significant discrepancy 
was found both in the serum and intestinal 
biomarkers of microbiome between BD cases and 
healthy controls.[105] A recently published review 
comprehensively discussed the involvement of brain- 
and gut-derived EV miRNAs in the GBA-related 
pathways (i.e., miR-375-3p, and miR-294-5p),[106-108] 
indicating a novel regulatory strategy targeting the 
GBA via EVs modulation.[109] 

EVs also show a great potential in liquid biopsy 
in clinical practice. The levels of molecules in neuron 
origin EVs such as p-NF-κB and p-FADD were 
associated with anhedonia and treatment outcome of 
infliximab.[110] Moreover, EVs can reflect the cerebral 
status of insulin resistance, which are related to the 
cognitive function as well as the structure of the 
brain.[111] For example, the neuronal-enriched EV 
indicated that biomarkers of insulin signaling were 
associated with cognitive function and brain 
structures independently, and following infliximab 
treatment, improvement in anhedonic symptoms and 
decrease in inflammatory molecules was linked to an 
enhanced insulin signaling via neuron-derived 
EVs.[110, 112] Therefore, EVs provide a new insight 
into the pathological mechanisms of BD, which may 
facilitate the diagnosis and treatment in the future. 

Major depressive disorder 
Current knowledge on the pathophysiology of 

MDD includes alterations in neural and glial activity, 
hypo-connectivity of frontoparietal network, and 
overactivation in the hypothalamic-pituitary-adrenal 
axis, which contribute to disturbance in neruo-
transmitter transmission, as well as structural and 
functional abnormalities in the brain.[113, 114] 

Findings of pre-clinical studies provide 
preliminary evidence that EVs are involved in the 
pathophysiological progression of MDD, of which the 
most well-known mechanisms are neuroinflammation 
and neuroplasticity. Activation of microglial cells in 
different regions of the CNS was observed in MDD 
patients, accompanied with a decrease in neuro-
genesis and an increase in glutamate toxicity.[115-117] 
EVs released by microglia encapsulate inflammatory 
cytokines and miRNAs that are crucial in 
neurogenesis, neurotransmission, and ion channel 
regulation.[118, 119] It has been reported that 
EV-related miR-9-5p promoted microglial M1 polari-
zation and over-released cytokines, such as IL-1β, 
IL-6, and TNF-α, thus exacerbating nerve injury.[120] 
Fan et al.[121] observed that the overexpression of 
microglia-enriched miRNAs, such as miR-146a-5p in 
the hippocampal dentate gyrus of mice, can suppress 
neurogenesis and spontaneous discharge of excitatory 
neurons, and act on the contrary when it was 
down-regulated. Furthermore, miR-207 in the EVs 
derived from natural killer cells alleviated depressive 
symptoms mice by targeting Tril-NF-κB pathway in 
astrocytes.[122] The miR-26a and miR-186-5p were 
dysregulated in the hippocampus from animal 
models of MDD, which may be caused by the 
down-regulation of SERPINF1 encapsulated in EVs 
derived from the bone marrow mesenchymal cells 
and serum.[123, 124]  

Clinical studies have also demonstrated the 
potential of cargoes in EVs for assisting the diagnosis 
of MDD. Molecules in EVs, such as pro-BDNF, 
miR-130b, miR-361-5p, miR-140-3p, miR-574-3p, miR- 
139-5p and miR-335-5p, were up-regulated in MDD 
cases, while BDNF, miR-34c-5p and miR-770-5p, 
miR-1292-3p, let-7b and let-7c were down-regula-
ted.[125-127] Notably, higher miR-9-5p level was 
detected in serum- EVs of MDD patients, suggesting 
the connection between microglia-mediated 
neuroinflammation and MDD pathophysiology.[120] 
Additionally, the concentration of mitochondrial 
proteins and metabolic proteins such as insulin 
receptor substrate-1 in L1CAM enriched EVs, was 
increased in MDD patients, indicating dysregulation 
of neuronal mitochondrial activity and metabolic 
progress in CNS.[32, 128] Those findings suggest that 
changes of EVs and their cargoes can be used as 
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disease markers for monitoring the pathological 
changes of MDD.  

Intriguingly, changes in behavioral phenotypes 
were also linked to the dysregulated level of EVs and 
their cargoes, showing the potential application of 
EVs in accessing the susceptibility, severity and 
symptoms of MDD.  It was found that miRNAs in EVs 
could distinguish the susceptibility to chronic social 
defeat stress-induced social avoidance phenotype in 
mice, which may be due to the production of 
pro-inflammatory cytokines after injection.[129] 
Furthermore, downregulation of miR-146a-5p and 
Exosomal sigma-1 receptor was proven to ameliorate 
depressive-like behaviors in model mice.[121, 130] As 
for clinical findings, some molecules in EVs are 
associated with specific symptoms. For example, 
ISR-1 in neuron-derived EVs was related to the feeling 
of guilt, suicidality and anhedonia, while a higher 
level of pSer-IRS-1 was correlated to an aggravated 
severity of depression in females. [32] Furthermore, 
levels of miR-21-5p, miR-30d-5p, and miR-486-5p 
changed significantly in peripherally extracted 
neuron-derived EVs from patients who had favorable 
responses to antidepressant treatment, and the 
molecular targets of these miRNAs were also altered 
in the brain of depressed individuals,[131] suggesting 
the application of EVs in monitoring the treatment 
outcome of antidepressive treatment in the future. 

In terms of the utility of EVs in MDD treatment, 
miR-146a-5p enriched EVs, RVG-circDYM engineered 
EVs, and miR-207 containing EVs showed the ability 
to alleviate depression-like behavior in mice. [121, 
122, 132] However, there is still a long way to verify 
the accuracy and sensitivity of these biomarkers 
before clinical application. 

EVs and other mental disorders 
Relevant research has also indicated the critical 

role of EVs in other mental disorders including ASD, 
SA, SD, and PTSD. The latest and representative pre- 
and clinical studies are summarized in Table 1. It is 
noteworthy that overlaps of susceptibility between 
these mental disorders and aforementioned disorders 
including schizophrenia, MDD, and BD have been 
reported previously,[133-140] which could probably 
be medicated by the dysregulation of the same EVs or 
their cargoes. 

Autism spectrum disorder 
ASD is an early onset (usually in the first three 

years after birth) mental disorder which is 
characterized by impaired social communication as 
well as repetitive and restricted patterns of behaviors, 
interests, or activities.[141] Several molecules 
targeting on key synaptic genes were found to be 

related to ASD through pathological process 
including neuronal inflammation, microglial 
activation and abnormal growth.[142, 143] Emerging 
evidence indicates that dysfunction of synaptic and 
BBB-related gene expression regulated by miRNAs 
(i.e., miR-146a, miR-221, miR-654-5p, and miR-656) 
and other components such as mitochondrial DNA, 
lncRNA and mRNA derived from EVs originating in 
the CNS may contribute to the abnormalities in the 
growth of microglial and cause neuroinflammation, 
which was considered as a pathological landmark of 
ASD.[144-147] Notably, up-regulated expression of 
neuroinflammatory genes may also influence BBB 
integrity in ASD patients.[142] EVs are capable of 
mediating the increased permeability of the BBB, 
which further aggravates neuroinflammation. 
Therefore, EVs may be involved in the pathological 
mechanism of ASD via impairing the BBB function 
and inducing CNS neuroinflammation.  

Interestingly, stem cell-derived EVs have the 
therapeutic potential for ASD since EVs can be 
directly delivered to the prefrontal cortex after nasal 
administration.[148, 149] Intranasal administration of 
mesenchymal stem cells derived EVs was found to 
relieve autistic-like behaviors in two mice 
models.[141, 150] Bone marrow-extracted mesenchy-
mal stem cell (MSC)-derived exosomes showed the 
capacity to inhibit the release of pro-inflammatory 
molecules such as TNF-α and IL-1β,[151] which might 
in turn reduces the problem behaviors, such as 
irritability and decreased socialization in ASD 
patients.[143] However, clinical studies of EVs in ASD 
is still insufficient and calls for more endeavor. 

Substance abuse 
SA is a multifactorial syndrome resulting from a 

complex interplay between the reward circuitry. 
Research evidence revealed that SA might promote 
the release of endogenous EVs with changed cargoes, 
suggesting that exposure to addictive agents may 
disrupt the EV-mediated signal transduction.[152] A 
recent review comprehensively overviewed the 
current knowledge on EVs and their relationship with 
SA,[153] and concluded that cargo of EVs such as 
toll-like receptor 4, miR-146a, miR-182,[154] 
miR-124,[155] miR-21, miR-126,[156] miR-9-3p, [157] 
miR-21-3p,[158] miR-15b, miR-181, miR-125b,[159] 
and miR-29b[160] could be regarded as potential 
diagnostic biomarkers, and in the future may become 
therapeutic targets for the addiction to alcohol, 
cocaine, heroin, methamphetamine, nicotine, cannabi-
diol, or opiates. Interestingly, the levels of miR-16-5p, 
miR-129-5p, miR-363-3p, and miR-92a-3p from EVs in 
patients with heroin dependence and methamphet-
amine dependence showed a significantly negative 
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correlation with the symptoms of anxiety,[161] 
indicating that EV-related miRNAs may serve as 
overlapping pathogenesis of these two disorders. 
Moreover, a recent study focusing on acute and 
protracted withdrawal showed that the alterations in 

cytokine level and imbalance of Th1/Th2/Th17 in 
patients addicted to heroin corresponded with 
abnormalities in EV-related lncRNA/mRNA 
expression,[162] which provided a novel explanation 
for the pathological mechanism of heroin addiction.  

 

Table 1. Typical pre-clinical and clinical studies on emerging EV-derived biomarkers for ASD, SA, SD, and PTSD* 

Year Disease Subjects Sample source Analysis methods Results / Biomarkers Ref. 
2018 ASD TG: BTBR T+tf/J mice, C57BL mice (MSC-derived EVs 

via intranasal administration) 
CG: BTBR T+tf/J mice, C57BL mice (saline via 
intranasal administration) 

- NanoSight analysis, 
NanoSight technology, 
western blot, etc. 

Intranasal administration of MSC 
derived EVs increased 
male-to-male social interaction 
and reduced repetitive behaviors. 

[145] 

2019 NSC cell lines obtained from single IPSC clones from 
patients with ASD 

Supernatants of spun 
media 

qRT-PCR, TEM, western blot, 
northern blot, etc. 

miR-1290 [200] 

2020 TG: Male Shank3B C57BL/6J mice (20 μl MSC derived 
EVs, 107 particles/μl via intranasal administration) 
CG: Male wild-type littermate mice (placebo via 
intranasal administration) 

Brain homogenates qRT-PCR, etc. Intranasal treatment with 
MSC-derived EVs improved the 
core ASD-like deficits of the 
mouse model of autism. 

[150] 

2018 ASD TG: children with ASD (n = 20) 
CG: healthy children (n = 8) 

Serum Western blot, TEM, ELISA, 
etc. 

mtDNA, IL-1β [146] 

2021 TG: children with ASD (n=100) 
CG: healthy controls (n=60) 

Immunosorbent assay, TEM, 
NTA, western blot, qRT-PCR, 
etc. 

EDNRA, SLC17A6, HTR3A, 
OSTC, TMEM165, 
PC-5p-139289_26, and 
miR-193a-5p 

[201] 

2021 TG: children with ASD (n=14); women with healthy 
pregnancies (n=30) 
CG: healthy children (n=14); women with spontaneous 
preterm birth (n=38), preeclampsia (n=19), gestational 
diabetes mellitus (n=34) 

Plasma TEM, NTA, western blot, 
qRT-PCR, etc. 

lncRNAs of SLC18A2, SYT9, 
STX8, and SYT15 genes 
mRNA of SLC18A2, SYT15, STX8, 
SV2C, SYT9, and SYP genes 

[202] 

2010 SA TG: Male ICR mice with morphine pellets implanted 
(1× 75 mg of morphine base/pellet/mouse) 
CG: Male ICR mice with placebo pellets implanted (1× 
75 mg of placebo base/pellet/mouse) 

Brain homogenates Western blot, qRT-PCR, 
polysome analysis, etc. 

miR-15b, miR-181, miR-125b [159] 

2012 TG: Indian strain rhesus macaques with simian 
immunodeficiency virus affected and Morphine 
injected 
CG: Indian strain rhesus macaques with simian 
immunodeficiency virus affected and saline-injected 

Western blot, virtual northern 
blot, electron microscopy, 
luciferase activity assays, 
qRT-PCR, etc. 

miR-29b [160] 

2016 TG: Adult male C57BL/6N mice with chronic cocaine 
intraperitoneal injection (20 mg/kg) 
CG: Adult male C57BL/6N mice with placebo 
intraperitoneal injection (20 mg/kg) 

Percoll gradient 
centrifugation, flow cytometry 
analysis, etc. 

miR-124 [155] 

2019 TG: 8-week-old male ApoE-/- C57BL/6 mice (high-fat 
diet), 8-week-old male ApoE-/- C57BL/6 mice 
(high-fat diet + nicotine) 
CG: 8-week-old male ApoE-/- C57BL/6 mice (normal 
chow diet) 

vascular smooth 
muscle and 
macrophage cells 

TEM, qRT-PCR, etc. miR-21-3p [158] 

Neurons and astrocytes derived from C57/BL6 
wild-type, TLR4-Knock-out, and transgenic β actin 
DsRed mice 

Supernatants of spun 
media 

Flow cytometry analysis, 
NTA, TEM, etc. 

TLR4, miR-146a, miR-182 [154] 

LN18 (chemo-resistant GBM cell line, grade IV 
glioblastoma derived from a male patient with a right 
temporal lobe glioma) 
LN229 (chemo-sensitive GBM cell line, glioblastoma 
derived from a female patient with right frontal 
parietal-occipital glioblastoma) 

Supernatants of spun 
media 

Western blot, NTA, miRNA 
analysis, etc. 

miR-21, miR-126 [156] 

2020 SA TG: heroin-dependent patients (n=42), 
methamphetamine-dependent patients (n=42) 
CG: health controls (n=42) 

Serum Microarray-based miRNA 
analysis, qRT-PCR, etc. 

miR-9-3p [157] 

2021 TG: methamphetamine-dependent patients (n=10), 
heroin-dependent patients (n=10) 
CG: healthy controls (n=10) 

Plasma Western blot, TEM, NTA, 
qRT-PCR, etc. 

miR-16-5p, miR-129-5p, 
miR-363-3p, miR-92a-3p 

[161] 

2019 SD TG: adult female mice with miR-155 knockout 
CG: female wild-type littermate control mice 

Serum Enzyme immunoassay, etc. miR-155 [169] 

2017 SD TG: narcolepsy patients (n=20) 
CG: healthy controls (n=17) 

Peripheral blood qRT-PCR, miRNA microarray 
analysis, etc. 

miR-188-5p [168] 

2020 PTSD TG: FKBP5 KO mice (male and female) 
CG: littermate wild type (male and female) 

Dissected medial 
prefrontal cortex 

miRNA extraction technology, 
etc.  

Circulating EV-related miRNAs 
showed an altered expression in 
FKBP5 knockout mice 

[203] 

2014 PTSD TG: PTSD patients (n=30) 
CG: healthy controls (n=42) 

Peripheral blood Flow cytometric analysis, 
miRNA array assays, 
qRT-PCR, etc. 

miR-125a [171] 

2019 TG: male Iraq and Afghanistan combat veterans with 
PTSD (n=12) 
CG: male Iraq and Afghanistan combat veterans 
without PTSD (n=12) 

Plasma 
EV plasma 
EV-depleted plasma 

qRT-PCR, small RNA 
sequencing data analysis, etc. 

miR-203a-3p, miR-339-5p [172] 
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Year Disease Subjects Sample source Analysis methods Results / Biomarkers Ref. 
TG: military personnel with mTBI (n=42) 
CG: healthy controls (n=22) 

Plasma Electro-chemiluminescent 
immunoassays, NTA, digital 
array technology, etc. 

Exosomal IL-10 levels were 
related to PTSD symptoms in 
military personnel with mTBI. 

[204] 

2020 TG: patients with PTSD (n=48) 
CG: healthy controls (n=47) 

Serum Structural and perfusion 
magnetic resonance, arterial 
spin labeling, etc. 

miRNA expression levels of 
composite markers may be 
associated with PTSD symptom 
severity 

[203] 

2021 Patients with TBI and/or PTSD (n=144) Plasma miRNA profiling analysis, 
ELISA, etc. 

Plasma neurofilament light chain, 
miR-139–5p 

[205] 

* Yellow: pre-clinical studie; blue: clinical studies. All studies are listed in a chronological order.ASD: autism spectrum disorder; SA: substance abuse; SD: Sleep disturbance; 
PTSD: post-traumatic stress disorder; mTBI: mild traumatic brain injury; TG: test group; CG: control group; PCA: principal component analysis; MSC: mesenchymal stem 
cell; TEM: transmission electron microscope; ELISA: enzyme-linked immunosorbent assay; mtDNA: mitochondrial DNA; miRNA/miR: microRNA; lncRNA: long 
non-coding RNA; NTA: nanoparticle tracking analysis; qRT-PCR: quantitative real-time polymerase chain reaction; EV: extracellular vesicles; Ref: Reference. 

 
EVs also showed the potential of therapeutic use 

for SA. It has been found that intranasal 
administration of EVs with miR-124 alleviated 
cocaine-mediated microglial activation,[163] while 
astrocyte-derived EVs encapsulating siRNA restored 
phagocytic activity of microglia and restrained 
morphine addiction.[164] These studies shed light on 
the feasibility of EVs as a therapeutic option of SA. 

Sleep disorder 
SD, associated with various factors such as 

stress, endocrine dysfunction, and drugs, is constantly 
associated with neurodegenerative diseases and 
affective disorders, with overlapping molecular 
mechanisms such as dysregulation of BDNF.[125, 165, 
166] Studies correlating EVs and sleep mainly focused 
on secondary sleep apnea, but herein we only discuss 
SD from the psychiatric perspective. EVs have been 
found to be involved in the pathogenesis of 
promoting Aβ formation, transferring tau protein, 
mediating neuroinflammation, and increasing BBB 
permeability in elderly patients with SD.[167] A series 
of pre- and clinical studies have shown that some 
EV-related miRNAs, including miR-188-5p[168] and 
miR-155,[169] may be responsible for the 
pathophysiological process of SD, but none showed 
reliable specificity. 

Post-traumatic stress disorder 
PTSD is a severe mental disorder caused by 

trauma and may affect neurodevelopment that result 
in structural and functional abnormalities in 
brain.[170] Significant alternations of EV-related 
miRNAs in veterans with PTSD were associated with 
immune disturbance, including immune response 
and pro-inflammatory cytokines secretion.[171] 
Therefore, these miRNAs may serve as candidates for 
monitoring the inflammatory status in PTSD 
individuals.[171] Additionally, veterans with PTSD 
showed alterations in plasma concentration of 
miR-203a-3p and miR-339-5p,[172] which would 
interact with genes involved in the pathogenesis of 
PTSD and other comorbidity conditions such as 
cardiovascular diseases, inflammatory reaction, and 
neurotransmitter system,[173, 174] suggesting these 

diseases may share similar pathophysiological 
mechanisms. Although growing number of emerging 
studies focusing on EV-related miRNAs and other 
biomarkers of PTSD, most findings still require 
further clinical validations. 

Limitations 
Research of EVs in mental disorders is still in its 

infant stage. Currently, most studies focus on 
improving the detecting techniques, identifying new 
EV candidates and validating their specificity in large 
sample size. In general, no clear conclusions have ever 
been drawn regarding the mechanisms of EVs 
underlying the pathogenesis of mental disorders. 

One major limitation lies in the identification of 
tissue-specific EVs by liquid biopsy. In the CNS, EVs 
may originate from various types of cells including 
neurons, endothelial cells, glia, as well as peripheral 
immune cells migrating into the brain, or simply 
derive from the peripheral circulation.[19, 20, 34, 175] 
This accounts for the diversity in the components of 
EVs, making it difficult to identify the specific 
candidates for certain mental disorder. To overcome 
this difficulty, brain-derived EVs such as neuron- or 
-glia-specific EVs, or brain region-specific EVs with 
specific biomarkers are being developed. 

Another limitation is that few EV-based 
biomarkers are disease-specific and may be identified 
across different diseases. Also, the exact function of 
these EV cargoes is unclear. For example, miR-132 
was observed to be dysregulated in patients with 
different mental disorders, including schizophrenia, 
MDD, and BD,[68] and was known to participate in 
maintaining the integrity of brain vessels.[66] 
However, whether miR-132 contributes to the 
neuropathology of these mental disorders via 
damaging the brain vessels remains unknown. 
Controversial findings call for special concerns. For 
example, the miR-142-3p was increased in two BD 
cohorts from USA and China respectively, while was 
decreased in a cohort from Turkey.[86, 87] This 
inconsistence may generate from differences in 
ethnicity, size of cohorts or measurement methods. 
This phenomenon reminds researchers to establish 
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standardized study design in EVs studies. Therefore, 
great endeavor is needed to clarify the molecular 
mechanisms of EVs and their cargoes in the CNS, 
which may further help to understand the role of EVs 
in mental disorders. 

Future directions 
Precise diagnosis and individualized treatment 

are two major directions for applying EVs in clinical 
psychiatry. Great challenge exists in the clinical 
practice of psychiatry, and most importantly, 
diagnosis of mental disorders is almost dependent on 
self-report symptoms and physicians’ experience. Not 
a single experimental indicator has specificity for any 
mental disorder. Previous studies have demonstrated 
the diagnostic potential for EVs and their cargoes.[3] 
Furthermore, EVs with neuronal origin biomarkers 
provide novel, convenient, and safe approaches for 
exploring and identifying changes in the CNS. For 
example, neuron- and astrocyte-derived EVs in the 
peripheral blood and the encapsulated proteins 
including auto-lysosomal proteins, synaptic proteins, 
etc. were suggested as reliable biomarkers for early 
Alzheimer’s disease (AD) diagnosis and even accurate 
predictors for the development of AD up to 10 years 
before its clinical onset.[176-178] However, there are 
still some issues that need to be considered. Firstly, 
the reliability of EVs as biomarkers for mental 
disorders should be verified, since the contents of EVs 
and their cargo in the peripheral blood are influenced 
by various factors including the interactions among 
different organ-originated EVs and the number of EVs 
crossing the BBB. The peripheral level of 
neuron-derived EVs and their cargo may not be 
sensitive enough to reflect the slight changes in the 
CNS, and in the early stage of many mental disorders, 
the pathobiological brain changes does not mean 
simultaneous change in EVs.[178] The inconsistency 
of experimental results should also be noted. Possible 
confounding factors include the process for extracting 
EVs, number of repeated freezing and thawing, 
antibody sensitivity, quantification methods, and 
contamination of blood on the extracted CSF.[178] 
Unfortunately, no standardized detection process has 
been widely used in different studies. Moreover, new 
evidence has raised question on the authenticity of 
L1CAM, a surface marker for neural EVs.[179] Indeed, 
except for plasma, the antibody of L1CAM is not 
necessarily neuron-specific but can originate from 
peripheral tissues.[180] Therefore, it is necessary to 
identify more specific protein markers originating 
from the brain or even certain cell types. Above all, 
although EVs have shown the potential to be 
developed as brand-new biomarkers for clinical 
diagnosis, differential diagnosis, and even rating the 

severity of symptoms of mental disorders, it is still in 
its infancy and needs more explorations.  

In terms of gene therapy, EVs show advantages 
in targeting ability, therapeutic effect, high safety, and 
low immune response compared with traditional 
drug delivery systems including viruses, liposomes, 
and polyethyleneimine nanoparticles.[181] EVs are 
considered convenient and safe drug-delivering tools 
for treating mental disorders, because of its ability of 
crossing the BBB and being navigated to the target 
cells or receptors after being engineered.[42, 182] 
Indeed, pre-clinical and clinical studies on the 
treatment efficacy of EVs have provided preliminary 
evidence on its well tolerance and favorable response 
without severe toxic reaction.[183, 184] Surface 
ligands of EVs enable the development of receptor- 
mediated cellular communication, and specific 
ligands can be enriched by engineering manipulation, 
according to the need of inhibitory or excitatory 
effects on the downstream pathways.[3] EVs can act 
as carriers of nucleic acid fragments for the treatment 
of mental disorders, since miRNAs encapsulated in 
the EVs are protected from degradation by 
blood-derived ribonucleases,[185] thus helping keep 
their integrity when transported to distant tissues.[3] 
EV-siRNAs have been used to treat neuro-
degenerative diseases in mice,[14] while EV-derived 
miR-124a could enhance the expression of excitatory 
amino acid transporter 2 on the surface of astrocytes, 
which modulates synapse activity and alleviates 
neuronal apoptosis.[186] EVs derived from human 
mesenchymal stem cells are neuroprotective by 
inhibiting neuronal cell apoptosis, promoting nerve 
repair and regeneration, as well as restoring 
bioenergy following energy consumption induced by 
glutamate excitotoxicity.[187] EVs and their cargo 
such as cystatin C also assist in the process of 
degrading Aβ,[188, 189] which helps delay the 
progression of neurodegeneration. Given the complex 
origin of EVs, it is necessary to combine EVs 
biomarkers with other techniques such as MRI 
imaging.[190]  

Notably, engineered EVs were not only a novel 
anticancer treatment via small non-coding RNAs , but 
also showed potential applications in the 
management of morphine addiction when modified 
with rabies viral glycoprotein or curcumin.[191-193] 
When modified with specific molecules such as brain 
homing peptide and neuropilin-1-targeted peptide, 
EVs can not only have the ability of targeted delivery 
but also obtain imaging features in vivo.[194, 195] 
Based on those techniques, similar pre-clinical studies 
have been carried out in neuropsychiatric diseases 
such as ASD,[145] and traumatic brain injury 
(TBI).[196]  
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Furthermore, since the complicated interactions 
in the extracellular micro-environment can hardly be 
reconstructed in vitro, and cultured cells cannot reflect 
the progression or fluctuation of mental disorders, 
novel strategies and more advanced techniques for 
culturing EVs in vitro and establishing a vivid 
environment for exploring the biological functions of 
EVs are urgently needed. One of the advanced 
techniques is the brain chip, a minute co-cultured 
system containing human neurons, BMECs, and glia 
under a biomimetic condition, that can be employed 
as an in vitro model for investigation of mental 
disorders.[197] In addition, with the help of human 
induced pluripotent stem cells, the brain‐derived EVs 
can be further used to explore the alterations in the 
cellular compositions and the specific stage of mental 
disorders. For example, a combination of 16 new 
marker candidates of brain-derived EVs and neural 
cell‐type‐specific EV proteins was recently detected 
for AD, which helps to expand our knowledge of 
molecular mechanisms of neurodegeneration.[198] 
Another promising method is the brain organoid, 
which helps to observe changes in brain phenotypes 
and provides new tools for developing new 
therapeutic strategies free from brain tissues of animal 
models or patients.[199] However, the feasibility of 
these methods remains to be validated, and a 
prospective design with early-stage mental disorder 
would be desirable to detect the objective biomarkers 
for timely diagnosis and treatment in the future. 

Conclusion 
With the rapid development of the EVs field, 

increasing interest has arisen regarding its potential 
role in the neuropathogenesis of mental disorders, 
such as neuroinflammation and dysfunction of the 
BBB. Cargoes in EVs derived from different cell types 
reflect the dynamic status of diseases and thus can act 
as monitor and reveal pathophysiological mecha-
nisms. Therefore, EVs seem to be ideal biomarkers of 
mental status and can promote non-invasive, precise 
diagnosis and treatment for neuropsychiatric 
diseases. In the case of diseases, EVs can mediate 
neuroinflammation and increase the BBB permea-
bility. While under physiological conditions, EVs are 
necessary mediators of cellular communication 
between neurons and glia. Changes in EVs from CSF 
and peripheral biofluids such as serum/plasm, as 
well as their cargoes, have been detected in patients 
with various mental disorders such as schizophrenia, 
MDD, BD, and ASD. Therefore, EVs and their cargoes 
may facilitate the early diagnosis and evaluation of 
mental disorders, thereby improving the disease 
prognosis. However, challenges are also great. Few 
EVs is disease-specific and their exact role in the 

pathogenesis of mental disorders is largely 
unclarified. Moreover, studies with large clinical 
cohorts were also warranted to verify previous 
findings. Taken together, identifying the functions of 
EVs with high histological or pathophysiological 
specificity will help shed light on the 
pathophysiological mechanisms of mental disorders 
and drive the development of psychiatry.  
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